Alla Rozovskaya, Dan Roth and Vivek Srikumar
EACL 2014.


Verb errors are some of the most common mistakes made by non-native writers of English but some of the least studied. The reason is that dealing with verb errors requires a new paradigm; essentially all research done on correcting grammatical errors assumes a closed set of triggers – e.g., correcting the use of prepositions or articles – but identifying mistakes in verbs necessitates identifying potentially ambiguous triggers first, and then determining the type of mistake made and correcting it. Moreover, once the verb is identified, modeling verb errors is challenging because verbs fulfill many grammatical functions, resulting in a variety of mistakes. Consequently, the little earlier work done on verb errors assumed that the error type is known in advance. We propose a linguistically-motivated approach to verb error correction that makes use of the notion of verb finiteness to identify triggers and types of mistakes, before using a statistical machine learning approach to correct these mistakes. We show that the linguistically-informed model significantly improves the accuracy of the verb correction approach.


Bib Entry

  author    = {A. Rozovskaya  and D.  Roth  and V. Srikumar},
  title     = {Correcting Grammatical Verb Errors},
  booktitle = {Proceedings of EACL},
  month     = {April},
  year      = {2014},
  address   = {Gothenburg, Sweden},
  publisher = {Association for Computational Linguistics},
  pages     = {358--367},