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Key Points

Distributed representations for inputs: A successful idea

Superficially different inputs may share meaning. E.g. Words
are not discrete units of meaning.

Distributed representations allow sharing of statistical infor-
mation across inputs.
E.g. vector representations for words.

Observation: Predicted labels are not discrete units of meaning

Labels encode rich semantic information
with varying degrees of similarities to each
other. Yet, standard models treat them as
separate, discrete objects!

Structures are not discrete units of meaning

Graphs labeled with semantically rich labels
are not discrete objects either. Some
graphs are closer in meaning than others.

All three sequences here are equidistant by
Hamming distance.

This paper: Distributed representations for structured output

The Setup: Standard Structured Models

(i.e conditional random fields, structural support vector machines)

Goal: Score structures (represented as feature vectors) to find the highest scoring one.

•Multiclass classification (i.e atomic output)

By construction, separate part of the
parameter vector associated with each label.

Labels do not interact with each other!

• Same applies to compositions of atomic labels

E.g. transitions of sequence models, where pairs of labels are assigned different weights

•Complex structures (like sequences) can have both atomic and compositional parts.
The feature vector for a structure simply sums over features of all the parts.

•No sharing of information across vaguely defined labels and their compositions.

DIStributed for Structured Output (Distro)

1. Represent atomic labels by dense vectors

Define ΦA (x, y) = vec (ay ⊗ φ(x))
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Standard multi-class classification
=

one-hot encoding of labels

Lower dimensional and dense la-
bel vectors force the labels’ feature
vectors to interact.

2. Composing labels via tensor products
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ΦA (x,y) = vec
(
aly0 ⊗ aly1 ⊗ aly2 ⊗ φp(x)

)
Generalize from multiclass by defining feature vectors via
the tensor product of vectors corresponding to its com-
ponents.
See paper for the recursive definition.
One-hot encoding gives us standard conditional models.

3. General structures
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General structures are a collection of atomic and
compositional parts. The feature vector for a struc-
ture sums over the features for its parts.

Comments

1. Feature vectors redefined. Given label vectors, scoring of structures and inference is
same as usual.

2. Dimensionality of label vectors is a parameter to the problem. Lower dimensionality
encourages parameters to be shared across labels.

Learning

1: Initialize A0 randomly
2: Initialize w0 = minw f (w,A0)
3: for t = 1, · · · , T do
4: At← minA f (wt−1,A)
5: wt+1 ← minw f (w,At)
6: end for
7: return (wT+1,AT )

Objective is not convex in both A and w. Alternating algorithm to learn the parameters.
In experiments, L = structured hinge loss.

Experiments

Document classification

20 newsgroup classification: Multiclass problem with semantically rich labels

English part-of-speech classification

First order sequence model, English Penn Treebank tag set

Basque part-of-speech classification

First order sequence model, labels themselves are defined to be compositional

Final words
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This work: Arbitrary structures

•Represent atomic labels by dense vectors

•Use tensor products to construct compositional structures

•Generalizes standard CRF/structured SVM


