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Abstract

We study the problem of jointly aligning sen-
tence constituents and predicting their sim-
ilarities. While extensive sentence similar-
ity data exists, manually generating reference
alignments and labeling the similarities of the
aligned chunks is comparatively onerous. This
prompts the natural question of whether we
can exploit easy-to-create sentence level data
to train better aligners. In this paper, we
present a model that learns to jointly align
constituents of two sentences and also predict
their similarities. By taking advantage of both
sentence and constituent level data, we show
that our model achieves state-of-the-art per-
formance at predicting alignments and con-
stituent similarities.

1 Introduction

The problem of discovering semantic relationships
between two sentences has given birth to several
NLP tasks over the years. Textual entailment (Da-
gan et al., 2013, inter alia) asks about the truth of
a hypothesis sentence given another sentence (or
more generally a paragraph). Paraphrase identifi-
cation (Dolan et al., 2004, inter alia) asks whether
two sentences have the same meaning. Foregoing
the binary entailment and paraphrase decisions, the
semantic textual similarity (STS) task (Agirre et al.,
2012) asks for a numeric measure of semantic equiv-
alence between two sentences. All three tasks have
attracted much interest in the form of shared tasks.

While various approaches have been proposed to
predict these sentence relationships, a commonly
employed strategy (Das and Smith, 2009; Chang et
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Figure 1: Example constituent alignment. The solid
lines represent aligned constituents (here, both la-
beled equivalent). The chunk Gunmen is unaligned.

al., 2010a) is to postulate an alignment between con-
stituents of the sentences and use this alignment to
make the final prediction (a binary decision or a nu-
meric similarity score). The implicit assumption in
such approaches is that better constituent alignments
can lead to better identification of semantic relation-
ships between sentences.

Constituent alignments serve two purposes. First,
they act as an intermediate representation for pre-
dicting the final output. Second, the alignments help
interpret (and debug) decisions made by the over-
all system. For example, the alignment between the
sentences in Figure 1 can not only be useful to deter-
mine the equivalence of the two sentences, but also
help reason about the predictions.

The importance of this intermediate representa-
tion led to the creation of the interpretable seman-
tic textual similarity task (Agirre et al., 2015a) that
focuses on predicting chunk-level alignments and
similarities. However, while extensive resources ex-
ist for sentence-level relationships, human annotated
chunk-aligned data is comparatively smaller.

In this paper, we address the following question:
can we use sentence-level resources to better pre-



dict constituent alignments and similarities? To an-
swer this question, we focus on the semantic tex-
tual similarity (STS) task and its interpretable vari-
ant. We propose a joint model that aligns con-
stituents and integrates the information across the
aligned edges to predict both constituent and sen-
tence level similarity. The key advantage of model-
ing these two problems jointly is that, during train-
ing, the sentence-level information can provide feed-
back to the constituent-level predictions.

We evaluate our model on the SemEval-2016 task
of interpretable STS. We show that even without the
sentence information, our joint model that uses con-
stituent alignments and similarities forms a strong
baseline. Further, our easily extensible joint model
can incorporate sentence-level similarity judgments
to produce alignments and chunk similarities that are
comparable to the best results in the shared task.

In summary, the contributions of this paper are:

1. We present the first joint model for predicting
constituent alignments and similarities. Our
model can naturally take advantage of the much
larger sentence-level annotations.

2. We evaluate our model on the SemEval-2016
task of interpretable semantic similarity and
show state-of-the-art results.

2 Problem Definition

In this section, we will introduce the notation
used in the paper using the sentences in Figure
1 as a running example. The input to the prob-
lem is a pair of sentences, denoted by x. We
will assume that the sentences are chunked (Tjong
Kim Sang and Buchholz, 2000) into constituents.
We denote the chunks using subscripts. Thus,
the input x consists of two sequences of chunks
s = (s1, s2, · · · ) and t = (t1, t2, · · · ) respec-
tively. In our running example, we have s =

(Gunmen, abduct, seven foreign workers) and t =

(Seven foreign workers, kidnapped).
The output consists of three components:

1. Alignment: The alignment between a pair of
chunks is a labeled, undirected edge that ex-
plains the relation that exists between them.
The labels can be one of EQUI (semantically

equivalent), OPPO (opposite meaning in con-
text), SPE1, SPE2 (the chunk from s is more
specific than the one from t and vice versa),
SIMI (similar meaning, but none of the pre-
vious ones) or REL (related, but none of the
above)1. In Figure 1, we see two EQUI edges.
A chunk from either sentence can be unaligned,
as in the case of the chunk Gunmen.

We will use y to denote the alignment for an
input x. The alignment y consists of a se-
quence of triples of the form (si, tj , l). Here, si
and tj denote a pair of chunks that are aligned
with a label l. For brevity, we will include un-
aligned chunks into this format using a special
null chunk and label to indicate that a chunk is
unaligned. Thus, the alignment for our running
example contain the triple (Gunmen, ;, ;).

2. Chunk similarity: Every aligned chunk is as-
sociated with a relatedness score between zero
and five, denoting the range from unrelated
to equivalent. Note that even chunks labeled
OPPO can be assigned a high score because the
polarity is captured by the label rather than the
score. We will denote the chunk similarities us-
ing z, comprising of numeric zi,j,l for elements
of the corresponding alignment y. For an un-
aligned chunk, the corresponding similarity z

is fixed to zero.

3. Sentence similarity: The pair of sentences is
associated with a scalar score from zero to five,
to be interpreted as above. We will use r to
denote the sentence similarity for an input x.

Thus, the prediction problem is the following:
Given a pair of chunked sentences x = (s, t), pre-
dict the alignment y, the alignment similarities z and
the sentence similarity r. Note that this problem def-
inition integrates the canonical semantic textual sim-
ilarity task (only predicting r) and its interpretable
variant (predicting both y and z) into a single task.

1We refer the reader to the guidelines of the task (Agirre et
al., 2015a) for further details on these labels. Also, for simplic-
ity, in this paper, we ignore the factuality and polarity tags from
the interpretable task.



3 Predicting Alignments and Similarities

This section describes our model for predicting
alignments, alignment scores, and the sentence sim-
ilarity scores for a given pair of sentences. We will
assume that learning is complete and we have all the
scoring functions we need and defer discussing the
parameterization and learning to Section 4.

We frame the problem of inference as an instance
of an integer linear program (ILP). We will first see
the scoring functions and the ILP formulation in
Section 3.1. Then, in Section 3.2, we will see how
we can directly read off the similarity scores at both
chunk and sentence level from the alignment.

3.1 Alignment via Integer Linear Programs

We have two kinds of 0-1 inference variables to rep-
resent labeled aligned chunks and unaligned chunks.

We will use the inference variables i,j,l to denote
the decision that chunks si and tj are aligned with a
label l. To allow chunks to be unaligned, the vari-
ables i,0 and 0,j denote the decisions that si and
tj are unaligned respectively.

Every inference decision is scored by the trained
model. Thus, we have score(i, j, l), score(i, 0)

and score(0, j) for the three kinds of inference
variables respectively. All scores are of the form
A

�
w

T
� (·, s, t)

�
, where w is a weight vector that

is learned, � (·, s, t) is a feature function whose ar-
guments include the constituents and labels in ques-
tion, and A is a sigmoidal activation function that
flattens the scores to the range [0, 5]. In all our ex-
periments, we used the function A(x) =

5
1+e�x

.
The goal of inference is to find the assignment to

the inference variables that maximizes total score.
That is, we seek to solve

argmax

2C

X

i,j,l

score(i, j, l) i,j,l

+

X

i

score(i, 0) i,0

+

X

j

score(0, j) 0,j (1)

Here represents all the inference variables together
and C denotes the set of all valid assignments to the
variables, defined by the following set of constraints:

1. A pair of chunks can have at most one label.

2. Either a chunk can be unaligned or it should
participate in a labeled alignment with exactly
one chunk of the other sentence.

We can convert these constraints into linear in-
equalities over the inference variables using stan-
dard techniques for ILP inference (Roth and Yih,
2004)2. Note that, by construction, there is a one-
to-one mapping from an assignment to the inference
variables and the alignment y. In the rest of the
paper, we use these two symbols interchangeably,
using referring details of inference and y referring
to the alignment as a sequence of labeled edges.

3.2 From Alignments to Similarities

To complete the prediction, we need to compute the
numeric chunk and sentence similarities given the
alignment y. In each case, we make modeling as-
sumptions about how the alignments and similarities
are related, as described below.

Chunk similarities To predict the chunk similari-
ties, we assume that the label-specific chunk similar-
ities of aligned chunks are the best edge-weights for
the corresponding inference variables. That is, for a
pair of chunks (si, tj) that are aligned with a label
l, the chunk pair similarity zi,j,l is the coefficient as-
sociated with the corresponding inference variable.
If the alignment edge indicates an unaligned chunk,
then the corresponding score is zero. That is,

zi,j,l =

(
A

�
w

T
� (si, tj , l, s, t)

�
if l 6= ;

0 if l = ;.
(2)

But can chunk similarities directly be used to find
good alignments? To validate this assumption, we
performed a pilot experiment on the chunk aligned
part of our training dataset. We used the gold stan-
dard chunk similarities as scores of the inference
variables in the integer program in Eq. 1, with the
variables associated with unaligned chunks being
scored zero. We found that this experiment gives
a near-perfect typed alignment F-score of 0.9875.

2While it may be possible to find the score maximizing
alignment in the presence of these constraints using dynamic
programming (say, a variant of the Kuhn-Munkres algorithm),
we model inference as an ILP to allow us the flexibility to ex-
plore more sophisticated output interactions in the future.



The slight disparity is because the inference only al-
lows 1-to-1 matches between chunks (constraint 2),
which does not hold in a small number of examples.

Sentence similarities Given the aligned chunks y,
the similarity between the sentences s and t (i.e., in
our notation, r) is the weighted average of the chunk
similarities (i.e., zi,j,l). Formally,

r =

1

|y|
X

(s
i

,t
j

,l)2y

↵lzi,j,l. (3)

Note that the weights ↵l depend only on the labels
associated with the alignment edge and are designed
to capture the polarity and strength of the label. Eq.
3 bridges sentence similarities and chunk similari-
ties. During learning, this provides the feedback
from sentence similarities to chunk similarities. The
values of the ↵’s can be learned or fixed before learn-
ing commences. To simplify our model, we choose
the latter approach . Section 5 gives more details.

Features To complete the description of the
model, we now describe the features that define the
scoring functions. We use standard features from the
STS literature (Karumuri et al., 2015; Agirre et al.,
2015b; Banjade et al., 2015).

For a pair of chunks, we extract the following
similarity features: (1) Absolute cosine similarities
of GloVe embeddings (Pennington et al., 2014) of
head words, (2) WordNet based Resnik (Resnik,
1995), Leacock (Leacock and Chodorow, 1998) and
Lin (Lin, 1998) similarities of head words, (3) Jac-
card similarity of content words and lemmas. In ad-
dition, we also add indicators for: (1) the part of
speech tags of the pair of head words, (2) the pair
of head words being present in the lexical large sec-
tion of the Paraphrase Database (Ganitkevitch et al.,
2013), (3) a chunk being longer than the other while
both are not named entity chunks, (4) a chunk hav-
ing more content words than the other, (5) contents
of one chunk being a part of the other, (6) hav-
ing the same named entity type or numeric words,
(7) sharing synonyms or antonyms, (8) sharing con-
junctions or prepositions, (9) the existence of uni-
gram/bigram/trigram overlap, (10) if only one chunk
has a negation, and (11) a chunk having extra con-
tent words that are also present in the other sentence.

For a chunk being unaligned, we conjoin an in-
dicator that the chunk is unaligned with the part of
speech tag of its head word.

3.3 Discussion

In the model proposed above, by predicting the
alignment, we will be able to deterministically cal-
culate both chunk and sentence level similarities.
This is in contrast to other approaches for the STS
task, which first align constituents and then extract
features from alignments to predict similarities in a
pipelined fashion. The joint prediction of alignment
and similarities allows us to address the primary mo-
tivation of the paper, namely using the abundant sen-
tence level data to train the aligner and scorer.

The crucial assumption that drives the joint model
is that the same set of parameters that can discover
a good alignment can also predict similarities. This
assumption – similar to the one made by Chang et al.
(2010b) – and the associated model described above,
imply that the goal of learning is to find parameters
that drive the inference towards good alignments and
similarities.

4 Learning the Alignment Model

Under the proposed model, the alignment directly
predicts the chunk and sentence similarities as well.
We utilize two datasets to learn the model:

1. The alignment dataset DA consists of fully
annotated aligned chunks and respective chunk
similarity scores.

2. The sentence dataset DS that consists of pairs
of sentences where each pair is labeled with a
numeric similarity score between zero and five.

The goal of learning is to use these two datasets
to train the model parameters. Note that unlike stan-
dard multi-task learning problems, the two tasks in
our case are tightly coupled both in terms of their
definition and via the model described in Section 3.

We define three types of loss functions corre-
sponding to the three components of the final out-
put (i.e., alignment, chunk similarity and sentence
similarity). Naturally, for each kind of loss, we as-
sume that we have the corresponding ground truth.
We will denote ground truth similarity scores and
alignments using asterisks. Also, the loss functions



defined below depend on the weight vector w, but
this is not shown to simplify notation.

1. The alignment loss La is a structured loss
function that penalizes alignments that are far
away from the ground truth. We used the struc-
tured hinge loss (Taskar et al., 2004; Tsochan-
taridis et al., 2005) for this purpose.

La(s, t,y
⇤
) = max

y
w

T
� (s, t,y)

+� (y,y

⇤
)�w

T
� (s, t,y

⇤
) .

Here, � refers to the Hamming distance be-
tween the alignments.

2. The chunk score loss Lc is designed to pe-
nalize errors in predicted chunk level similar-
ities. To account for cases where chunk bound-
aries may be incorrect, we define this loss as
the sum of squared errors of token similarities.
However, neither our output nor the gold stan-
dard similarities are at the granularity of tokens.
Thus, to compute the loss, we project the chunk
scores zi,j,l for an aligned chunk pair (si, tj , l)
to the tokens that constitute the chunks by
equally partitioning the scores among all pos-
sible internal alignments. In other words, for a
token wi in the chunk si and token wj in chunk
sj , we define token similarity scores as

z(wi, wj , l) =

z
i,j,l

N(s
i

,t
j

)

Here, the normalizing function N is the prod-
uct of the number of tokens in the chunks3.
Note that this definition of the token similarity
scores applies to both predicted and gold stan-
dard similarities. Unaligned tokens are associ-
ated with a zero score.

We can now define the loss for a token pair
(wi, wj) 2 (s, t) and a label l as the squared
error of their token similarity scores:

l(wi, wj , l) = (z(wi, wj , l)� z

⇤
(wi, wj , l))

2

3Following the official evaluation of the interpretable STS
task, we also experimented with the max(|s

i

|, |t
j

|) for the nor-
malizer, but we found via cross validation that the product per-
forms better.

The chunk loss score Lc for a sentence pair is
the sum of all the losses over all pairs of tokens
and labels.

Lc(s, t,y,y
⇤
, z, z

⇤
) =

X

w
i

,w
j

,l

l(wi, wj , l)

3. The sentence similarity loss Ls provides feed-
back to the aligner by penalizing alignments
that are far away from the ground truth in their
similarity assessments. For a pair of sentences
(s, t), given the ground truth sentence simi-
larity r

⇤ and the predicted sentence similarity
r (using Equation (3)), the sentence similarity
loss is the squared error:

Ls(s, t, r
⇤
) = (r � r

⇤
)

2
.

Our learning objective is the weighted combina-
tion of the above three components and a `2 regular-
izer on the weight vector. The importance of each
type of loss is controlled by a corresponding hyper-
parameter: �a, �c and �s respectively.

Learning algorithm We have two scenarios to
consider: with only alignment dataset DA, and with
both DA and sentence dataset DS . Note that even
if we train only on the alignment dataset DA, our
learning objective is not convex because the activa-
tion function is sigmoidal (in Section 3.1).

In both cases, we use stochastic gradient descent
with minibatch updates as the optimizer. In the first
scenario, we simply perform the optimization using
the alignment and the chunk score losses. We found
by preliminary experiments on training data that ini-
tializing the weights to one performed best.

Algorithm 1 Learning alignments and similarities,
given alignment dataset DA and sentence similarity
dataset DS . See the text for more details.

1: Initialize all weights to one.
2: w

0  SGD(DA): Train an initial model
3: Use w

0 to predict alignments on examples in
DS . Call this c

DS .
4: w  SGD(DA [ c

DS): Train on both sets of
examples.

5: return w

When we have both DA and DS (Algorithm 1),
we first initialize the model on the alignment data



only. Using this initial model, we hypothesize align-
ments on all examples in DS to get fully labeled ex-
amples. Then, we optimize the full objective (all
three loss terms) on the combined dataset. Because
our goal is to study the impact on the chunk level
predictions, in the full model, the sentence loss does
not play a part on examples from DA.

5 Experiments and Results

The primary research question we seek to answer via
experiments is: Can we better predict chunk align-
ments and similarities by taking advantage of sen-
tence level similarity data?

Datasets We used the training and test data from
the 2016 SemEval shared tasks of predicting seman-
tic textual similarity (Agirre et al., 2016a) and inter-
pretable STS (Agirre et al., 2016b), that is, tasks 1
and 2 respectively. For our experiments, we used the
headlines and images sections of the data. The data
for the interpretable STS task, consisting of manu-
ally aligned and scored chunks, provides the align-
ment datasets for training (DA). The headlines sec-
tion of the training data consists for 756 sentence
pairs, while the images section consists for 750 sen-
tence pairs. The data for the STS task acts as our
sentence level training dataset (DS). For the head-
lines section, we used the 2013 headlines test set
consisting of 750 sentence pairs with gold sentence
similarity scores. For the images section, we used
the 2014 images test set consisting of 750 exam-
ples. We evaluated our models on the official Task 2
test set, consisting of 375 sentence pairs for both the
headlines and images sections. In all experiments,
we used gold standard chunk boundaries if they are
available (i.e., for DA).

Pre-processing We pre-processed the sentences
with parts of speech using the Stanford CoreNLP
toolkit (Manning et al., 2014). Since our setting as-
sumes that we have the chunks as input, we used
the Illinois shallow parser (Clarke et al., 2012) to
extract chunks from DS . We post-processed the
predicted chunks to correct for errors using the fol-
lowing steps: 1. Split on punctuation; 2. Split on
verbs in NP; 3. Split on nouns in VP; 4. Merge
PP+NP into PP; 5. Merge VP+PRT into VP if the
PRT chunk is not a preposition or a subordinating

conjunction; 6. Merge SBAR+NP into SBAR; and
7. Create new contiguous chunks using tokens that
are marked as being outside a chunk by the shal-
low parser. We found that using the above post-
processing rules, improved the F1 of chunk accuracy
from 0.7865 to 0.8130. We also found via cross-
validation that this post-processing improved overall
alignment accuracy. The reader may refer to other
STS resources (Karumuri et al., 2015) for further
improvements along this direction.

Experimental setup We performed stochastic
gradient descent for 200 epochs in our experiments,
with a mini-batch size of 20. We determined the
three �’s using cross-validation, with different hy-
perparameters for examples from DA and DS . Table
1 lists the best hyperparameter values. For perform-
ing inference, we used the Gurobi optimizer4.

Setting �a,�c,�s

headlines, DA 100, 0.01, N/A
headlines, DS 0.5, 1, 50
images, DA 100, 0.01, N/A
images, DS 5, 2.5, 50

Table 1: Hyperparameters for the various settings,
chosen by cross-validation. The alignment dataset
do not have a � associated with the sentence loss.

As noted in Section 3.1, the parameter ↵l com-
bines chunk scores into sentence scores. To find
these hyper-parameters, we used a set of 426 sen-
tences from the from the headlines training data that
had both sentence and chunk annotation. We sim-
plified the search by assuming that ↵Equi is always
1.0 and all labels other than OPPO have the same ↵.
Using grid search over [�1, 1] in increments of 0.1,
we selected ↵’s that gave us the highest Pearson cor-
relation for sentence level similarities. The best ↵’s
(with a Pearson correlation of 0.7635) were:

↵l =

8
><

>:

1, l = EQUI,

�1, l = OPPO,

0.7, otherwise

Results Following the official evaluation for the
SemEval task, we evaluate both alignments and their

4http://www.gurobi.com/

http://www.gurobi.com/


Setting

untyped typed

ali score ali score

Baseline 0.8462 0.7610 0.5462 0.5461
Rank 1 0.8194 0.7865 0.7031 0.6960

DA 0.9257 0.8377 0.7350 0.6776
DA +DS 0.9235 0.8591 0.7281 0.6948

(a) Headlines results

Setting

untyped typed

ali score ali score

Baseline 0.8556 0.7456 0.4799 0.4799
Rank 1 0.8922 0.8408 0.6867 0.6708
DA 0.8689 0.7905 0.6933 0.6411
DA +DS 0.8738 0.8193 0.7011 0.6769

(b) Imags results
Table 2: F-score for headlines and images datasets. These tables show the result of our systems, baseline
and top-ranked systems. DA is our strong baseline trained on interpretable STS dataset; DA+DS is trained
on interpretable STS as well as STS dataset. The rank 1 system on headlines is Inspire (Kazmi and Schüller,
2016) and UWB (Konopik et al., 2016) on images. Bold are the best scores.

corresponding similarity scores. The typed align-
ment evaluation (denoted by typed ali in the results
table) measures F1 over the alignment edges where
the types need to match, but scores are ignored. The
typed similarity evaluation (denoted by typed score)
is the more stringent evaluation that measures F1 of
the alignment edge labels, but penalizes them if the
similarity scores do not match. The untyped ver-
sions of alignment and scored alignment evaluations
ignore alignment labels. These metrics, based on
Melamed (1997), are tailored for the interpretable
STS task5. We refer the reader to the guidelines of
the task for further details. We report both scores in
Table 2. We also list the performance of the base-
line system (Sultan et al., 2014a) and the top ranked
systems from the 2016 shared task for each dataset6.

By comparing the rows labeled DA and DA+DS

in Table 2 (a) and Table 2 (b), we see that in both the
headlines and the images datasets, adding sentence
level information improves the untyped score, lifting
the stricter typed score F1. On the headlines dataset,
incorporating sentence-level information degrades
both the untyped and typed alignment quality be-
cause we cross-validated on the typed score metric.

The typed score metric is the combination of un-
typed alignment, untyped score and typed align-
ment. From the row DA +DS in Table 2(a), we ob-
serve that the typed score F1 is slightly behind that
of rank 1 system while all other three metrics are
significantly better, indicating that we need to im-
prove our modeling of the intersection of the three
aspects. However, this does not apply to images

5In the SemEval 2016 shared task, the typed score is the
metric used for system ranking.

6http://alt.qcri.org/semeval2016/task2/

dataset where the improvement on the typed score
F1 comes from the typed alignment.

Further, we see that even our base model that
only depends on the alignment data offers strong
alignment F1 scores. This validates the utility of
jointly modeling alignments and chunk similarities.
Adding sentence data to this already strong system
leads to performance that is comparable to or better
than the state-of-the-art systems. Indeed, our final
results would have been ranked first on the images
task and a close second on the headlines task in the
official standings.

The most significant feedback coming from
sentence-level information is with respect to the
chunk similarity scores. While we observed slight
change in the unscored alignment performance, for
both the headlines and the images datasets, we saw
improvements in both scored precision and recall
when sentence level data was used.

6 Analysis and Discussion

In this section, first, we report the results of man-
ual error analysis. Then, we study the ability of our
model to handle data from different domains.

6.1 Error Analysis

To perform a manual error analysis, we selected
40 examples from the development set of the head-
lines section. We classified the errors made by the
full model trained on the alignment and sentence
datasets. Below, we report the four most significant
types of errors:

1. Contextual implication: Chunks that are
meant to be aligned are not synonyms by them-

http://alt.qcri.org/semeval2016/task2/


selves but are implied by the context. For in-
stance, Israeli forces and security forces might
be equivalent in certain contexts. Out of the 16
instances of EQUI being misclassified as SPE,
eight were caused by the features’ inability to
ascertain contextual implications. This also ac-
counted for four out of the 15 failures to iden-
tify alignments.

2. Semantic phrase understanding: These are
the cases where our lexical resources failed, e.
g., ablaze and left burning. This accounted for
ten of the 15 chunk alignment failures and nine
of the 21 labeling errors. Among these, some
errors (four alignment failures and four label-
ing errors) were much simpler than others that
could be handled with relatively simple fea-
tures (e.g. family reunions$ family unions).

3. Preposition semantics: The inability to ac-
count for preposition semantics accounts for
three of the 16 cases where EQUI is mistaken as
a SPE. Some examples include at 91 $ aged
91 and catch fire$ after fire.

4. Underestimated EQUI score: Ten out of 14

cases of score underestimation happened on
EQUI label.

Our analysis suggests that we need better contex-
tual features and phrasal features to make further
gains in aligning constituents.

6.2 Does the text domain matter?

In all the experiments in Section 5, we used sentence
datasets belonging to the same domain as the align-
ment dataset (either headlines or images). Given
that our model can take advantage of two separate
datasets, a natural question to ask is how the do-
main of the sentence dataset influences overall align-
ment performance. Additionally, we can also ask
how well the trained classifiers perform on out-of-
domain data. We performed a series of experiments
to explore these two questions. Table 3 summarizes
the results of these experiments.

The columns labeled Train and Test of the ta-
ble show the training and test sets used. Each
dataset can be either the headlines section (denoted
by hdln), or the images section (img) or not used

(;). The last two columns report performance on the
test set. The rows 1 and 5 in the table correspond to
the in-domain settings and match the results of typed
alignment and score in Table 2.

Id Train

Test

Typed F1

DA DS ali score

1.

hdln

; hdln 0.7350 0.6776
2. img 0.6826 0.6347
3. ; img 0.6547 0.5989
4. img 0.6161 0.5854
5.

img

; img 0.6933 0.6411
6. hdln 0.7033 0.6793
7. ; hdln 0.6702 0.6274
8. hdln 0.6672 0.6445

Table 3: F-score for the domain adaptation experi-
ments. This table shows the performance of training
on different dataset combinations.

When the headlines data is tested on the images
section, we see that there is the usual domain adap-
tation problem (row 3 vs row 1) and using target im-
ages sentence data does not help (row 4 vs row 3).
In contrast, even though there is a domain adaptation
problem when we compare the rows 5 and 7, we see
that once again, using headlines sentence data im-
proves the predicted scores (row 7 vs row 8). This
observation can be explained by the fact that the im-
ages sentences are relatively simpler and headlines
dataset can provide richer features in comparison,
thus allowing for stronger feedback from sentences
to constituents.

The next question concerns how the domain of the
sentence dataset DS influences alignment and sim-
ilarity performance. To answer this, we can com-
pare the results in every pair of rows (i.e., 1 vs 2,
3 vs 4, etc.) We see that when the sentence data
from the image data is used in conjunction to the
headlines chunk data, it invariably makes the clas-
sifiers worse. In contrast, the opposite trend is ob-
served when the headlines sentence data augments
the images chunk data. This can once again be
explained by relatively simpler sentence construc-
tions in the images set, suggesting that we can lever-
age linguistically complex corpora to improve align-
ment on simpler ones. Indeed, surprisingly, we ob-
tain marginally better performance on the images set
when we use images chunk level data in conjunction



with the headlines sentence data (row 6 vs the row
labeled DA +DS in the Table 2(b)).

7 Related Work

Aligning words and phrases between pairs of sen-
tences is widely studied in NLP. Machine translation
has a rich research history of using alignments (for
e.g., (Koehn et al., 2003; Och and Ney, 2003)), go-
ing back to the IBM models (Brown et al., 1993).
From the learning perspective, the alignments are
often treated as latent variables during learning, as
in this work where we treated alignments in the sen-
tence level training examples as latent variables. Our
work is also conceptually related to (Ganchev et al.,
2008), which asked whether improved alignment er-
ror implied better translation.

Outside of machine translation, alignments are
employed either explicitly or implicitly for recog-
nizing textual entailment (Brockett, 2007; Chang
et al., 2010a) and paraphrase recognition (Das and
Smith, 2009; Chang et al., 2010a). Additionally,
alignments are explored in multiple ways (tokens,
phrases, parse trees and dependency graphs) as a
foundation for natural logic inference (Chambers et
al., 2007; MacCartney and Manning, 2007; Mac-
Cartney et al., 2008). Our proposed aligner can be
used to aid such applications.

For predicting sentence similarities, in both vari-
ants of the task, word or chunk alignments have ex-
tensively been used (Sultan et al., 2015; Sultan et
al., 2014a; Sultan et al., 2014b; Hänig et al., 2015;
Karumuri et al., 2015; Agirre et al., 2015b; Banjade
et al., 2015, and others). In contrast to these sys-
tems, we proposed a model that is trained jointly to
predict alignments, chunk similarities and sentence
similarities. To our knowledge, this is the first ap-
proach that combines sentence-level similarity data
with fine grained alignments to train a chunk aligner.

8 Conclusion

In this paper, we presented the first joint frame-
work for aligning sentence constituents and pre-
dicting constituent and sentence similarities. We
showed that our predictive model can be trained us-
ing both aligned constituent data and sentence simi-
larity data. Our jointly trained model achieves state-
of-the-art performance on the task of predicting in-

terpretable sentence similarities.
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