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Abstract

Machine learning systems are deployed in many adversarial
conditions like intrusion detection, where a classifier hasto
decide whether a sequence of actions come from a legitimate
user or not. However, the attacker, being an adversarial agent,
could reverse engineer the classifier and successfully mas-
querade as a legitimate user. In this paper, we propose the
notion of aProactive Intrusion Detection System (IDS)that
can counter such attacks by incorporating feedback into the
process. A proactive IDS influences the user’s actions and
observes them in different situations to decide whether the
user is an intruder. We present a formal analysis of proactive
intrusion detection and extend the adversarial relationship be-
tween the IDS and the attacker to present a game theoretic
analysis. Finally, we present experimental results on realand
synthetic data that confirm the predictions of the analysis.

Introduction
Machine learning systems that use classifiers are deployed to
detect malicious activities such as spam, online identity theft
and intrusion. The perpetrators of these activities have sig-
nificant incentive to reverse engineer the classifiers. (Dalvi
et al. 2004) studies the problem of learning classifiers in ad-
versarial conditions, whereas (Lowd and Meek 2005) con-
siders the inverse setting and presents efficient algorithms
for an attacker to reverse engineer a classifier.

We propose a protocol to address the problem of an adver-
sarial agent that can reverse engineer classifiers, and study it
in the domain of intrusion detection. AnIntrusion Detection
System(IDS) performs the vital task of identifying security
breaches. Detection of intruders is a machine learning prob-
lem, where the task is to recognize illegal users based on pat-
terns of activity. Conventionally, anomaly detection systems
aim to solve this problem by learning a model of the legit-
imate users’ normal behavior. Users whose actions deviate
from the learned behavior are classified as intruders. These
ideas were applied to detect masqueraders in (Schonlau et
al. 2001), which compared six methods for masquerader de-
tection. Further improvements were suggested by (Maxion
and Townsend 2002), (Yung 2003) and others.

The threat of attackers using reverse engineered classi-
fiers is compounded if they are insiders, who have both the
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motivation and opportunity to “learn” to masquerade as le-
gitimate users. A recent survey (cf. (Gordon et al. 2006))
shows that insider attacks are indeed a significant threat to
corporate intellectual property.

We propose the notion ofProactive Intrusion Detection
to reliably identify attackers who mislead intrusion detec-
tion systems. Consider the following scenario – Alice is an
engineer and Bob an accountant in a company. Bob wants
to steal engineering plans and manages to get Alice’s pass-
word. If Bob accesses the system using Alice’s password,
then the anomaly detection system will detect this as an in-
trusion because Bob’s actions will be different from Alice’s.
However, if Bob observes Alice’s behavior and learns to im-
itate her, then an IDS that looks for anomalous behavior
could be misled. Yet, it is reasonable to assume that even
if Bob manages to masquerade as Alice, he may not neces-
sarily be able to handleuncommon situationsthe same way
as Alice does. For example, in the event of a database er-
ror, Bob’s actions need not be similar to the ones of Alice,
who, being an engineer, may address the problem differently
and perhaps more consistently. This motivates the idea of an
IDS that proactively presents uncommon situations to the
users and observes their reaction. This allows the IDS to
observe users’ behavior in other situations than those they
“prepared” for and keep the system secure.

The underlying idea behind proactive intrusion detection
is to expose users of the system to multiple contexts, in a
way that poses no problem to legitimate users but creates
difficulties for attackers who learned to use the system in
a specific context and revert to their own behavior in other
contexts. The different situations that the IDS presents tothe
user, calledmodesof the IDS, depend on the system that is
being protected. One of the modes will be the normal mode
of operation. The ability to change modes allows the IDS to
influence the user’s actions and observe their reactions.

We show that it is possible for an masquerading intruder
to circumvent a traditional machine-learning based IDS in
a behavioral biometrics domain. However, a proactive IDS
can detect the same attacker. We present a formal model for
intruder detection which shows that that a proactive IDS can
identify intrusions better than a traditional system. In addi-
tion, we formalize the adversarial relationship between the
attacker and the IDS as a game. This leads to algorithms for
a proactive IDS which meet the dual goals of maximizing



security with limited disruption to legitimate users. Finally,
we present results of experimental verification of the perfor-
mance these algorithms.

Problem Definition
Consider a interactive system in which user’s actions are
driven by their eventual goalandthe feedback from the com-
puter. At each step, a user draws an element from a (possibly
changing) distribution over a set of actions. LetAlice be a
user of the system andBob an attacker. We focus on in-
truders who pretend to be legitimate users. In order to do
so, not only does the intruderBob obtain the login creden-
tials of Alice, but also learns an internal model ofAlice’s
actions and uses this to generate actions. This definition of
an attacker is smarter than the ones in (Schonlau et al. 2001)
and other similar work, where the intruders only know the
login credentials, but do not transform their input to match
the user’s input patterns.

The task of an IDS is to identify whether a window of ac-
tions of sizeN was performed by the legitimate user or not.
Let xi denote theith action in the window andxi

1
the se-

quence(x1, x2, · · · , xi). Then, the IDS is a classifier which
identifies whether the set of actionsxN

1
was performed by

Alice or not. We limit our discussion to the following prob-
abilistic classifier – If the current user is expected to be
Alice, then set of actionsxN

1
is labeled as an intrusion if,

for a user-specific thresholdθ, P (xN
1
|Alice) < θ. Many

anomaly detection systems in the literature (for example,
(Ju and Vardi 2001; DuMouchel 1999)) models the user’s
actions as a Markov model. With this assumption, a window
of actions is labeled as an intrusion if the following holds –

N
∏

i=1

P (xi|x
i−1

1
, Alice) < θ (1)

The intrusion detection system is completely defined by
training a classifier for each legitimate user. While we
use a probabilistic definition of the classifier, most results
of this paper hold for any classifier that can generate a
score for each input. Almost all classifiers can be used
this way (refer (Niculescu-Mizil and Caruana 2005)) and
this model of an IDS covers the systems defined by existing
masquerade detection systems (cf. (Schonlau et al. 2001;
Maxion and Townsend 2002; Yung 2003) and others). A
common assumption in the literature is that each legitimate
user provides uncontaminated data for training.

Proactive Intrusion Detection
Alice draws actions from some probability distribution at
every time step.Bob, the Alice-masquerader has learned
an approximation of that distribution. It is reasonable to as-
sume that, whileBob can masquerade asAlice in normal
situations, he will not have enough data to learnAlice’s be-
havior in all situations. This assumption is especially true
if Alice is an “expert” in her daily usage of the system and
knows how to handle uncommon situations. When these un-
common situations arise, it is unlikely thatBob will behave
similar toAlice, simply because he did not have enough data

to learn her behavior. An IDS should take advantage of such
distinctive responses of users in specific situations.

This notion forms the basis ofProactive Intrusion De-
tection. In this architecture, the anomaly detector observes
a user’s interaction with a computer in many situations and
learns context specific classifiers for each one of the situa-
tions. As in traditional systems, we assume that there is a
training phase when uncontaminated data is available for all
the situations. After training is complete and the IDS is de-
ployed, it occasionally requires the user to perform actions
in these different situations and observes the user’s behavior
in this context. If the user’s behavior is different in any of
these situations, then he is declared an intruder.

The different situations in which the IDS observes the
user are calledmodesof the IDS. The actual semantics of
the modes will depend on the specific system. The key idea
is that a user’s behavior must be consistent in multiple situ-
ations – one of which reflects normal usage of the system.
In all other modes, the IDSsimulatesa situation that does
not normally occur and observes the user’s reactions to it.
It must be noted that the IDS need not actually change the
internal state of the system and only changes the user’s per-
ception of the system. This takes advantage of the fact that
the system is an interactive one.

There are two advantages of using a proactive intrusion
detection system. First, since the user’s behavior is more
distinctive in specific situations, their actions will spana
smaller space. This makes the task of classification easier.
Second, during the design of the IDS, if modes are chosen
so that the reaction to them is at an instinctive level, rather
than at a conscious level, then learning to impersonate a le-
gitimate user across different modes becomes very difficult,
even if the attacker does observe them.

Modes: Example
Consider a transaction processing system in which users ac-
cess a database. If this system needs to be protected with a
proactive IDS, then the different modes could be the follow-
ing – (i) Normal usage, (ii) Simulate “Deadlock Found”, and
(iii) Simulate “Integrity constraint violation”.

When deployed, the IDS does not affect the system’s nor-
mal operation. However, it does affect the way the user inter-
acts with the system – the output seen by the user depends
on the current mode of the IDS. The most common mode
would be the first mode, where the IDS does not alter the
output. Occasionally, the IDS will change the mode to one
of the other modes based on a mode selection policy that will
be discussed later and the system simulates the appropriate
error messages. The IDS observes the user’s reaction and
performs its classification task. If the masquerader has seen
only the normal behavior of the users, then the responses
of the masquerader to other modes will be different and the
masquerade will be detected.

Modeling a Proactive IDS
Our notation can be extended to accommodate the proactive
IDS. Let the set of modes of the IDS be denoted byM =
{M1, M2, · · · , M|M|}. The modeM1 will be designated
as the normal mode, where the IDS will not transform the



output seen by the users. In all other modes, the IDS will
transform the output. At this point, we do not specify the
explicit transformation that each mode performs.

We extend the definition of the classifier defined in (1)
to include the modes. As with the user’s actions, let the
ith mode within a block bemi and mi

1
be the sequence

(m1, m2, · · · , mi). The classifier has the same form as de-
fined earlier; it has additional input to make its decision. The
classifier is redefined to report an intrusion if –

N
∏

i=1

P (xi, mi|x
i−1

1
, mi−1

1
, Alice) < θ (2)

Since all modes other thanM1 are disruptive, we may
wish to quantify and limit the disruption. Letd(Mi) repre-
sent a non-negative real number representing the disruption
caused the IDS being in modeMi. These values could be
ascertained by surveying the users of the system.

Let the IDS use a policyD to pick its mode. Themode
selection policyis a probability distribution over the modes.
A proactive IDS is completely defined by two independent
aspects – the classifierC and the mode selection policyD.

Bounds on Attacker Performance
We wish to place a bound on the number of iterationsN
before which the attacker has to be identified. Here, one it-
eration is defined as a window of actions after which the IDS
makes a classification decision. We want to limit the proba-
bility that the IDS does not identify an intrusion toδ. For the
discussion in this section, we assume that the IDS changes
mode at the start of a window. This is a simplification of the
general proactive IDS described earlier. The mode is chosen
using the mode switching policyD. At the end of each iter-
ation, the IDS classifies the window as legitimate or not. Let
the generalization error of the classifier beǫ.

We assume that the attacker has observed the user’s inter-
actions with the system for some time and built a model of
the legitimate user’s usage. Letγm represent the probability
that the user’s and the attacker’s actions in modem come
from different distributions. Let the normal modeM1 be de-
fined as that mode for which the attacker’s performance is
the best, i.e.,γM1

≤ γm for every modem.

Theorem 1. If a proactive IDS with modesM has a gener-
alization errorǫ, then with a probability greater than1 − δ,
an attacker who isγm-similar to a legitimate user in mode
m will be identified inN iterations, whereN is bounded by
the following inequality –

N ≤
log(1/δ)

log
(

1−ǫ
ǫ

)
∑

m∈M γmD(m) + log(1 − ǫ)

Def
= NB

(3)

Proof Sketch.In modem, the intruder will not be identi-
fied correctly in two situations – (i) The attacker perfectly
mimics the real user and hence, the IDS does not identify an
intrusion, or (ii) The attacker is imperfect and the IDS makes
an error. This means that the probability that the masquer-
ader is not identified in modem is (1 − γm)(1 − ǫ) + γmǫ.

The probability that the masquerader is not identified for all
modes is the term in the parenthesis in (4). Since the IDS
makes its decision after each iteration independently, bound-
ing the probability of error byδ, we get (4).

(

∑

m∈M

D(m) [(1 − γm)(1 − ǫ) + γmǫ]

)N

< δ (4)

Applying the arithmetic-geometric inequality twice and
rearranging it, we get the required result.

The inequality (3) says that an IDS with an errorǫ should
observe a masquerader who isγm-similar to the real user
for at leastN iterations to guarantee a failure probability
less thanδ. Using (3), we can show that a proactive IDS
can identify masqueraders better than a traditional IDS. A
passive IDS, that is, a traditional anomaly detector, operates
only in the normal mode. In the context of the proactive
IDS, it can be seen that the passive IDS is a proactive IDS in
which the mode selection policy is fixed toD(M1) = 1 and
D(m) = 0 for all otherm.

Corollary 1. Consider a proactive and a passive IDS with
identical classifier errorsǫ. Assume aγm-similar attacker,
identified by both the IDSs with confidence1 − δ. Then,
the following hold – (i)NB

Proactive ≤ NB
Passive, where

NB
Proactive andNB

Passive are defined as in (3), and (ii) There
exist mode selection policies for which the inequality in (i)
is strict.

Proof Sketch.For the passive IDS, (3) gives us

NPassive ≤
log(1/δ)

log
(

1−ǫ
ǫ

)

γM1
+ log(1 − ǫ)

Def
= NB

Passive

(5)
The attacker’s performance is best for modeM1. That

is, γM1
is the least among allγm and hence also less than

any weighted average of theγm’s. That is, for anyD(m),
γM1

≤
∑

m∈M D(m)γm. In particular, there existD where
the inequality is strict. (For example, if the weight forD(0)
is set to zero, then the inequality can be made strict.)

Since ǫ < 1

2
, comparing (3) and (5) shows that the

upper bound onNProactive is less than the upper bound
on NPassive. This, with the observation that there exist
mode selection policies where the improvement is achiev-
able, gives the required result.

Mode Selection

The earlier discussion assumed that we know the accuracy
of the attacker’s model in each mode. In this section, we
examine different policies for the selection of modes without
knowledge of the attacker’s model. For the analysis in this
section, we remove the restriction that the IDS changes its
mode only at the beginning of each window.



Passive and Random IDS
A Passive IDSis one that always operates in the normal
mode. This view of a passive IDS shows that the set of
proactive intrusion detection systems is a strict supersetof
the set of passive intrusion detection systems. Another sim-
ple mode selection policy is to pick the next mode randomly
from a uniform distribution. In other words, aRandom
Proactive IDS is defined by the following mode selection
policy – for every modem, D(m) = 1

|M| .

Game Theoretic Proactive IDS
While the random proactive systems do improve perfor-
mance , we would like to have better control over the modes.
Here, we analyze the IDS based on the worst-case assump-
tion that the IDS and the user have an adversarial relation-
ship. The starting point of this analysis is the inequality (2).
The implicit goal of the intruderBob is to make the classi-
fier of the IDS believe that he isAlice. In our current setting,
his goal will be to make the left hand side of (2) (called the
scoreof the classifier) more than the thresholdθ.

The multiplicative form of the score can be interpreted as
follows: each term in the product makes an incremental con-
tribution of P (xi, mi|x

i−1

1
, mi−1

1
, Alice) to the final score.

At the ith step, the goal ofBob is to pick an actionxi such
that its incremental contribution is maximized. The assump-
tion of an adversarial relationship between the IDS and the
user will imply that the proactive IDS should pick modemi

such that the mode’s incremental contribution to the final
score is minimized for any action ofBob’s. This gives us
the followingDecision Theoreticpolicy to pick modes –

mi = argM

(

max
X

min
M

P (xi, mi|x
i−1

1
, mi−1

1
, Alice)

)

(6)
The adversarial notion can be analyzed as a zero sum

game between the IDS and the user. In the decision theo-
retic analysis presented above, the IDS picks a single mode
whose incremental contribution to the final score is maxi-
mized for all possible actions of the user. Instead of picking
a single mode, we can derive a probability distribution over
the modes such that theexpected incremental contribution
to the final score is maximized for all possible user actions.
If p = (p1, p2, · · · , p|M|) is a probability distribution over
the modes wherepi is the probability that the IDS will pick
modeMi, then we wish the following to hold –

p = max
X

min
p

Ep

[

P (xi, mi|x
i−1

1
, mi−1

1
, Alice)

]

(7)

whereEp denotes the expectation over the distribution
p. Once we have the optimalp, the next mode is picked
by drawing from the distribution. This gives us theMixed
Strategy IDS . This representation allows us to use a prin-
cipled approach for solving the min-max problem. Linear
programming is a commonly used technique to solve zero-
sum games (see, for example, (Vaserstein and Byrne 2002)).
Computing the optimal set of probabilitiesp can be done by
converting the game to a linear program and solving it.

It must be noted that in this analysis, there is a departure
from traditional game theoretic analysis for mixed strate-
gies. Traditionally, it is assumed that both the players make
their move simultaneously. Clearly this is not the case here.
Yet, it is shown in the experiments that the mixed strategy is
among the best performing policies. We believe that this is
because, in reality, the user is not really perfectly adversar-
ial. The goal of the user, in addition to thwarting the IDS, is
also to perform some activity on the system.

Constrained Proactive IDS
We may want to limit the total disruption caused by the
proactive IDS per block toDMax. Extending the ran-
dom proactive IDS, aConstrained Random Proactive IDS
picks modes randomly while ensuring that the total disrup-
tion for the whole block is not more thanDMax. A similar
extension to the Mixed Strategy IDS limits the expected dis-
ruption toDMax. Adding this constraint will not make the
original linear program infeasible becaused(M1) = 0 and
hence, always pickingM1 will be a feasible solution. Con-
strained games and their relation to linear programming are
discussed in (Charnes 1953). The IDS that uses this con-
strained game to pick its mode will be referred to as the
Constrained Mixed Strategy Proactive IDS.

Experiments
We present results of two experiments. First, using real data
from users, we demonstrate a successful masquerade attack
against a traditional IDS and show the capacity of a proac-
tive IDS to identify it. In the second, we compare the dif-
ferent mode selection policies in terms of intruder detection
accuracy and disruption to normal usage.

Behavioral Biometrics
Behavioral biometric systems authenticate users based on
their usage of input devices. Recent work ((Gamboa and
Fred 2003; Pusara and Brodley 2004; Gunetti and Picardi
2005)) has shown the success of systems based on keystroke
and mouse movement dynamics. As a baseline, we imple-
mented the system described in (Gamboa and Fred 2003),
which distinguishes users based on their mouse movement.

We collected mouse movement data (pointer position and
button state) from ten users interacting with three Linux ap-
plications and segmented it intostrokes, which represent the
data collected between successive mouse clicks. For each
stroke, we used statistics like the mean and standard devia-
tion of the horizontal, vertical and angular velocities as fea-
tures. (For a complete description of features, see (Gamboa
and Fred 2003)). We implemented the passive and random
proactive IDS for the users, using 90% of the data for train-
ing and the rest for testing. The IDSs were trained using
Support Vector Machines with a Gaussian kernel tuned ac-
cording to the procedure described in (Hsu, Chang, and Lin
2006). During evaluation, we added the raw scores of the
classifier over a window of strokes and compared the sum to
a threshold to decide if there is an intrusion. We tuned the
classifier such that it achieved equal error rate, i.e., the rate
of false positives and false negatives were made equal.
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(a) Example of a successful attack: Error of the passive sys-
tem for increasing window lengths under masquerade attack us-
ing 25% of training data. While the system is able to detect un-
transformed strokes of other users (solid line) its error ishigh
when detecting strokes transformed by the attacker (dashedline).
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(b) Detection of a smart attacker by a proactive IDS: Error
of the proactive detection system under masquerade attack using
100% of training data. Unlike the passive system, this IDS is
able to correctly identify strokes both before (solid line)and after
(dashed line) they are transformed by the attacker.

Figure 1: Biometrics comparison of the passive and random proactive IDS. In both cases, the graphs show the variation of the
equal error rate (EER) (that is, the error of the system that is tuned such that the number of false positives and false negatives
are equal.)

We implemented a masquerade attack in this setting. The
goal of the attacker was to move the mouse pointer and ex-
ecute a click. Our attacker had access to a fraction of the
data used to train the system and knew the learning algo-
rithm and features of the IDS. We implemented a masquer-
ader script that used a genetic algorithm to generate a path
between two points that would be accepted by the IDS. The
fitness function of the genetic algorithm was the classifier
A mutation consisted of changing individual points within
a stroke, while a crossover split two strokes into two parts,
and interchanged them to get two new solutions. After each
generation, the ten highest scoring solutions were retained.

To implement the random proactive IDS, we chose the
following six modes – (i) Normal usage, (ii) Dropping short
mouse sequences, (iii) Introducing delay, (iv) Introducing
random jitter, (v) Slowing down the pointer, and (vi) Speed-
ing up the pointer. We trained a classifier for each user for
every mode using data obtained from six users. In this case,
the attacker learns the “average” behavior of each user.

We show the results of our evaluation in Fig. 1(a) and
1(b), which show the performance of the passive and proac-
tive IDS respectively. We compare the performance of the
systems for simple masquerade attacks (i.e., attackers who
do not transform the strokes of the target user) and smart
masqueraders (i.e., attackers who learn to transform the
strokes of the target user). We can see that while the passive
IDS can identify attackers who do not masquerade, masquer-
aders are not identified for any window lengths. On the other
hand, the proactive IDS can identify both masquerading and
non-masquerading attackers. The fact that we can identify
attackers in the biometrics experiments with a proactive IDS
validates the assumption that users behave consistently even

in unexpected situations. For attackers who do not transform
their input, even at a window size of 20, the proactive IDS
achieves the best performance of the passive IDS.

Comparison of Mode Selection Policies

We compared the different mode selection policies with re-
spect to their ability to spot intruders and the disruption they
cause to normal activity. The most effective IDS is one that
can identify intruders with minimum disruption. For this
set of experiments, we used synthetically generated data.
Our experimental setup is similar to that of (Schonlau et
al. 2001), which showed that the best model for users is
a Markov model. We modeled twenty users’ actions with
random Markov chains. We defined six modes, without ex-
plicitly defining their semantics because the algorithms do
not depend on the semantics of the mode. As earlier, we des-
ignated modeM1 as the normal mode with zero disruption
and assigned unit disruptions for five other modes. For each
user, we defined as session as 50 non-overlapping blocks,
with 100 actions in each block.

Masqueraders were inserted into a user’s session similar
to (Schonlau et al. 2001): If the previous block was not a
masquerade, then the current block is not a masquerade with
probabilitypu. Otherwise, the current block is a masquerade
with probabilitypm. In our experiments, we set the values of
bothpm andpu to 0.8. When exceptional situations are en-
countered, a masquerader reverts to his own behavior. This
is captured by having the masquerader learn the behavior of
the user in normal mode using the IDS’s training data and
using random Markov chains for all other modes.

We used a Markov model as the IDS’s internal model of
the users. For each user, during training, the IDS computes



IDS Type Average Effectiveness
Error ×10

−4

Passive 0.427 –
Random Proactive 0.019 2.360
Decision Theoretic 0.049 2.256
Mixed 0.027 2.334
Constrained Mixed 0.107 3.614
Constrained Random 0.303 2.788

Table 1: Evaluation of different mode selection policies.
All the proactive policies have a lower error than the passive
IDS. Random selection of modes is the best in terms of av-
erage error followed by the mixed strategy IDS. However,
when we constrain the disruption to 2500 we see that the
constrained mixed strategy IDS outperforms the constrained
random IDS. Effectiveness, which captures the need for high
accuracyand low disruption, shows that the most effective
IDS is the constrained mixed strategy IDS.

the probability of an action given the mode and the previous
action. The classification was done per-block by computing
the probability of the actions in the block given the modes.
We tuned the threshold to get equal error rate in the passive
IDS. For each IDS, we measured the error and the total dis-
ruption for the entire user session for each IDS. For each
proactive IDS, we defined a metric calledEffectivenessthat
captures the need for high accuracy and low disruption. The
effectiveness of a proactive IDS is defined as the ratio of the
accuracy of the IDS to the total disruption.

The errors in masquerade detection the effectiveness for
each mode selection policy are shown in Table 1. All the
proactive IDSs perform better than the passive IDS in terms
of average error and the best performing proactive systems
are the random proactive IDS and the mixed strategy proac-
tive IDS. However, in terms of the effectiveness, we see
that the constrained mixed strategy IDS performs best. This
gives us a parameter to trade off disruption and security.

Conclusions
We introduced the novel idea of proactive intrusion detec-
tion to detect smart attackers. The key intuition is that while
average behavior could be masqueraded, exceptional situa-
tions force people to revert to their own behavior and this
idea can be used to detect intrusions. The IDS, instead of
just observing the user’s actions, participates in influencing
them with its own set of actions called modes, thus broaden-
ing its capability. These ideas are presented without special
emphasis on any specific domain or specific classifiers and
can be used with different classifiers in diverse domains. We
analyzed the interaction of the user and the IDS as a game
and developed algorithms for proactive intrusion detection
systems. We experimentally and analytically showed that
proactive intrusion detection does detect masqueraders and
we presented an application in the domain of behavioral bio-
metrics. From a broader perspective, our paradigm of em-
ploying a proactive agent can be applied to any interactive
environment where there is an incentive for an adversarial
agent to reverse engineer a machine learning based system.
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