
EDISON: Feature Extraction for NLP, Simplified

Mark Sammons1, Christos Christodoulopoulos1, Parisa Kordjamshidi1, Daniel Khashabi1,
Vivek Srikumar2, Paul Vijayakumar1, Mazin Bokhari1, Xinbo Wu1, Dan Roth1

1Department of Computer Science,
University of Illinois, Urbana-Champaign.

{mssammon,christod,kordjam,khashab2,pvijaya2,mbokhar2,xinbowu2,danr}@illinois.edu

2 School of Computing,
University of Utah.

svivek@cs.utah.edu

Abstract
When designing Natural Language Processing (NLP) applications that use Machine Learning (ML) techniques, feature extraction
becomes a significant part of the development effort, whether developing a new application or attempting to reproduce results
reported for existing NLP tasks. We present EDISON, a Java library of feature generation functions used in a suite of state-of-the-art
NLP tools, based on a set of generic NLP data structures. These feature extractors populate simple data structures encoding the
extracted features, which the package can also serialize to an intuitive JSON file format that can be easily mapped to formats used
by ML packages. EDISON can also be used programmatically with JVM-based (Java/Scala) NLP software to provide the feature
extractor input. The collection of feature extractors is organised hierarchically and a simple search interface is provided. In this
paper we include examples that demonstrate the versatility and ease-of-use of the EDISON feature extraction suite to show that this
can significantly reduce the time spent by developers on feature extraction design for NLP systems. The library is publicly hosted
at https://github.com/IllinoisCogComp/illinois-cogcomp-nlp/, and we hope that other NLP researchers will
contribute to the set of feature extractors. In this way, the community can help simplify reproduction of published results and the
integration of ideas from diverse sources when developing new and improved NLP applications.

Keywords: Natural Language Processing Tools, Feature Extraction, Machine Learning, NLP, Reproducibility

1. Motivation
The process of designing and building Natural Language
Processing (NLP) applications that use Machine Learning
(ML) techniques has a general structure that developers
must follow. Given a specific task – co-reference resolu-
tion, for example – the developers acquire a corpus that
exemplifies this task. Next, they consider what existing
tools and data resources might contribute to a solution to
this problem, and decide on the set of data structures that
will support the task. As part of this decision, they will
decide on what machine learning models would be most
appropriate, as this may affect other design choices (pro-
gramming language, data structures, input resources). As
they build the application, a significant part of their effort
will go into designing features that will be extracted from
the source data and used as inputs to the machine learning
component, and then implementing the corresponding fea-
ture extraction code. Often, other researchers have worked
on the same task and published their own approaches, in
which case the developers may try to recreate the features
described in these publications. Frequently, the published
description is terse due to space constraints, and many small
but important details are omitted. In the best case, the au-
thors have published their code, but even then it may take
significant effort to understand the code and isolate the fea-
ture extraction, and to port it to a different programming
language and/or a different set of data structures.
A number of NLP and ML packages provide libraries that
support various aspects of this process. NLP packages pro-
vide components to generate inputs for a new problem, to-
gether with data structures that can be used programmat-

ically to represent them. ML packages generally specify
an input representation based on feature vectors at a distant
remove from NLP data structures. Few packages to date
have tried to bridge the gap between these two resources,
in which ML features can be specified and extracted from
NLP data structures and either written to file in a generic
format, or programmatically fed to a ML system.
EDISON is a feature extraction library based on generic
NLP data structures from the University of Illinois Cogni-
tive Computation Group (CogComp)’s core NLP libraries
(illinois-core-utilities). It provides an intu-
itive and versatile feature extraction API that can be used
programmatically or as a stand-alone application generat-
ing files in JSON format for ML input. It contains refer-
ence implementations for feature extractors used in sev-
eral CogComp NLP applications: Part of Speech (Roth
and Zelenko, 1998), Chunking (Punyakanok and Roth,
2001), Named Entity Recognition (Ratinov and Roth,
2009), and Semantic Role Labeling (Punyakanok et al.,
2008). We plan to add reference implementations for Co-
reference (Peng et al., 2015) and for Wikifier (Cheng and
Roth, 2013).
The key contributions of this work are: 1. A Java library,
EDISON, that provides a simple, intuitive programmatic
framework to apply feature extraction functions to gener-
ate new feature representations, and which comes with a
simple search interface to help users find existing features
that meet their needs. 2. A simple application wrapper for
EDISON that can be used as a standalone component to gen-
erate JSON-format feature files. 3. A large suite of feature
extractors derived from existing state-of-the-art NLP tools

that serve as reference implementations for those tools’ fea-
tures, and which facilitate the reproduction of state-of-the-
art-results for those tools. 4. A feature classification and
naming scheme that can be used in textual descriptions of
NLP/ML systems so that they become easier to replicate
even when their source code is not available.
This paper describes EDISON and its use in developing
NLP applications with machine learning elements.

2. Feature Extraction
Feature extraction occurs in the context of machine learn-
ing applications. Machine learning algorithms are used to
automatically generate decision functions (classifiers) that
would be very hard or impossible to implement program-
matically. They do this by building statistical models that
map some representation of the input data to some prede-
fined set of meaningful outputs. For example, a spam clas-
sifier would take as input an email and output either a dis-
crete label (such as spam or not spam), or a score indi-
cating likelihood of being spam (perhaps normalized to the
form of a probability). A document classifier would take
as input a digital document and might output one or more
labels indicating topics (such as politics, sport, religion).
An image processor would take a digital image and might
return names of objects and specify the regions of the image
in which they occurred. A named entity recognizer (NER)
will take digital text as input and return a set of annota-
tions indicating which sequences of words represent names
and what type of entity each represents. Other applications
may produce complex, highly structured output labels (e.g.
groups of objects representing body parts belonging to dif-
ferent people in an image, or representations of events de-
scribed in text), or might not label inputs, but group them
into similar sets (clusters). Data inputs are referred to here
as examples, and the desired output values as labels.
However, learning algorithms require examples in specific
formats. Typically, examples are represented as a list of
features; when training or evaluating the learned algorithm,
each example will also be associated with any relevant la-
bels. These features represent an abstraction over the raw
input at the level of whether or not (or to what degree) some
characteristic is present for a given example. For the spam
classifier, features might represent the presence of specific
words or phrases (e.g. “fast cash”), or the number of un-
known words in the email, or the domain of the sender.
The application developer specifies the relevant abstrac-
tions, and must map the raw input into these features. Of-
ten, this involves processing the raw input with other tools.
We will now sketch an NER implementation to flesh out
some details that will help illustrate key concepts in feature
extraction. This application takes a plain text document as
input, iterating over the sequence of words in the text and
producing a corresponding sequence of examples. Each
example is an abstract representation of the corresponding
word. Each example is classified by the machine learned
classifier to assign it an entity type, and if that type is not
“NONE”, whether or not that word is at the beginning of an
entity or not. Figure 1 shows the corresponding labels for a
short word sequence. We will call the word that is currently
being processed the focus.

One useful feature to distinguish between (proper) names
and non-names includes capitalization, but it is not suffi-
cient and does not help determine the entity type. One pos-
sibly useful feature is the type of word that appears before
or after the focus; if it is a verb, it may be more likely that
the focus represents a person or organization rather than a
location. Typically this information would be acquired by
processing the input text with a Part of Speech tagger. Other
tools might also be used to provide different abstractions –
the role of the focus in the sentence relative to the main verb
(from a syntactic parser), or position within a phrase (from
a shallow parser). Generally, these information sources are
collected in a set of data structures which are then processed
to generate examples by composing lists of features ex-
tracted from specified patterns in the data structures. These
features can be very expressive and carefully specified, and
in such cases tend to be time-consuming to write. The clas-
sifier can only make appropriate distinctions if the relevant
information is exposed (if every example has the same rep-
resentation, the classifier can make no useful prediction;
and some features are more generally characteristic of spe-
cific focus items than others), and so the application de-
veloper has good reason to spend time carefully specifying
potentially useful features.

3. EDISON

EDISON is a Java library to support feature extraction in
Natural Language Processing. It uses the data structures
from illinois-core-utilities1, another Java li-
brary from the Cognitive Computation Group2. Together,
these expand on an older version of EDISON described
in (Clarke et al., 2012).

3.1. Data Structures
The main data structure used by EDISON is called a
TextAnnotation. It is used to represent a piece of text,
such as a document, and collects all NLP annotations for
that text. NLP annotations such as tokens, phrases, sen-
tences, and other text-related constructs are represented in
terms of spans of tokens/characters (Constituents) and
edges (Relations) linking spans to each other. Each an-
notation source is represented as an independent View over
the original text, that collects the Constituents and
Relations generated by that source. Constituents
and Relations can be labeled and assigned scores, and
Constituents also allow an arbitrary number of at-
tributes (key/value pairs) to be specified. The CogComp
group has successfully used this representation to support
NLP tasks ranging from part-of-speech tagging to semantic
role labeling and co-reference resolution. Figure 2 illus-
trates these data structures as they might be used to repre-
sent token, part-of-speech, named entity, numerical quan-
tity, and semantic role information for a short piece of text.
In the context of a learning application, the developer pop-
ulates these data structures using off-the-shelf NLP compo-
nents. The CogComp NLP tools use these data structures

1https://github.com/IllinoisCogComp/
illinois-cogcomp-nlp/

2http://cogcomp.cs.illinois.edu

John Smith said Jane Smith bought four cakes and two apples
B-PER I-PER O B-PER I-PER O O O O O O

Figure 1: Sequence of words and their labels in a named entity recognition (NER) task. B represents whether the focus word is “begin-
ning” a particular label, I represents the word being “inside” the label, and O (“outside”) represents that a word has no NER label.

Figure 2: Data structures used by EDISON, showing the TextAnnotation of a sample text. The horizontal boxes are Views
which represent different annotation sources: tokenization (WORD), part-of-speech tagging (POS), named enitities (NER), numer-
ical expressions (NUM) and semantic role labeling (SRL). Each View is comprised of Constituents and Relations (edges
between Constituents). Notice the difference in the representation of the NER annotation compared to that of Figure 1: in
TextAnnotation the adjoining labels B-PER and I-PER have been replaced by a two-token Constituent.

natively, but other tools could also be used to populate them
with relatively little effort. TextAnnotation can also be
populated from a JSON-format file.
In our example of an NER application, the application rec-
ognizes sequences of tokens representing individual named
entities and assigns each entity a type. The end-to-end ap-
plication would classify each word into either Begin, In-
side, or Outside, representing its position inside or outside
a named entity, and also whether a name represents a Per-
son, Organization, or Location. We will assume that each
word can belong to only one entity. The application would
then combine the individual predictions to identify the en-
tity boundaries, and also rationalize any inconsistent pre-
dictions (for example, a word labeled Inside but which does
not follow a word labeled Begin, or a Begin-Person fol-
lowed by an Inside-Location). The application would also
track the correspondence between the individual words and
the learned classifier decisions, allowing the user to provide
the resulting annotation to other applications or to generate
visual output for an end user.

3.2. Feature Extraction
EDISON supports a range of feature types, from the stan-
dard combinations provided by Fex (Cumby and Roth,
2003; Cumby and Roth, 2000) and FEXTOR (Broda et
al., 2013) – such as collocations of constituents within

a specified context window, features combining different
levels of annotation, features based on dependency parse
paths between constituents – to more specialized features
proven useful in more complex NLP tasks like semantic
role labeling (e.g. subcategorization frames, or projected
path (Toutanova et al., 2008)). These features are extracted
from a TextAnnotation data structure populated with
the appropriate source annotations: a feature extractor for
part-of-speech bigrams will extract features only from a
View populated with that information.

In a supervised learning setting, the application uses labeled
data to extract examples of the data items it wants the learn-
ing algorithm to classify. In the context of EDISON, we
assume that this labeled data has been used to construct
a View that contains a representation of the focus items
as Constituents. The application code iterates over
these focus items in the TextAnnotation, extracting
features for each. In our NER example, these focus items
are mapped to the word level, so we will make predictions
at the word level. For each word, the feature extraction code
runs a set of feature extractors on the TextAnnotation
representation of that word (over various different Views)
and generates a set of active features. During training or
evaluation of the learned classifier, the code also extracts
the true label for the current word. This list of features, to-
gether with any labels, is the example provided to the learn-

ing algorithm. EDISON provides some utilities to generate
output compatible with two popular learning frameworks –
see Section 3.3.
EDISON’s feature extractors all implement the
FeatureExtractor interface (see Figure 3) which
has two methods: getName(), which returns the
name of the feature (to be used as part of the feature’s
lexical representation, which will uniquely identify
features extracted by the implementing class), and
getFeatures(Constituent c), which apply some
logic to the Constituent it is passed to generate a set of
features. These Feature objects store a feature name and
an optional numerical term that may be used to represent a
weight, count, or confidence.
Figure 3 shows a code snippet for some typical NLP
features extracted using the EDISON library. Con-
sider the NER constituent for “Jane Smith” in the
example shown in Figure 2: when the feature ex-
tractor is called using the “Jane Smith” NER con-
stituent as its argument, it will extract the features
[NNP-NNP,NNP-VBD,John-Smith,Smith-said].
If this feature extractor were instead called with the word
constituent for “Jane” as its argument, it will extract the
same features because its left context is the same. However,
a feature extractor that used the right context of the focus
would produce different results, since the NER constituent
covers an additional word, and the right context for that
constituent will begin after the second word.
For a given focus constituent, the application will pool the
sets of features produced by all its feature extractors plus
the target label for the focus to create a single example for
the learning algorithm. In our working example, if we have
only the single feature extractor, the first word of the entity
will be assigned the label Begin-Person and the application
will create an example for this word of the form B-PER,
[NNP-NNP,NNP-VBD,John-Smith,Smith-said].
This example, or some alternative representation of it (usu-
ally indexed to a set of integers), would be passed to the
learning algorithm for processing.

3.3. Programmatic integration with learning
frameworks

Programmatically, EDISON’s feature extractors can be eas-
ily integrated into JVM-based learning frameworks such
as LBJava (Rizzolo and Roth, 2010), Mallet (McCallum,
2002), Weka (Hall et al., 2009), and Saul (Kordjamshidi et
al., 2015). Here we will show programmatic integrations
for the CogComp tools (LBJava/Saul) and provide a file-
based integration for the other ML tools. We plan to create
programmatic interfaces for these tools in the near future.
For LBJava, features can be trivially wrapped as
Classifier objects and used directly in the LBJava def-
inition file. Figure 4 illustrates the way EDISON feature
extractors can be used in the LBJava language, by creating
a class that inherits from LBJava’s Classifier interface
to wrap the feature extractor so that it can be used directly
in an LBJava definition file. The integration with Saul (Fig-
ure 5) is even easier since there is no need for a wrapper.
Instead, EDISON’s extractors can be directly called inside
Saul’s property definitions.

3.4. Writing to File for use in ML Frameworks
Many learning frameworks such as Mallet (McCallum,
2002) and Weka (Hall et al., 2009) support the use
of formatted files to provide input to their learning al-
gorithms. EDISON provides classes that write the ex-
tracted features to sparse vector formats used by each tool
(WriteToSvmLight and WriteToXrff respectively).

3.5. Developer Support
EDISON’s feature extractors have been carefully organized,
named, documented, and assigned meaningful keywords
(see section 4.). The goal is to make it as easy as possi-
ble for developers to find existing extractors that meet their
needs. For convenience, we have created additional classes
that group the feature extractors that correspond to some of
CogComp’s existing NLP tools3.
To improve ease of use, EDISON comes with a simple
search tool that opens a web browser and allows the user to
search for feature extractors using keywords. This tool uses
the in-code comments, keywords and EDISON’s hierarchi-
cal package structure to identify the set of features most
relevant to the user’s query. Figure 6 shows a screenshot of
the search interface. The search tool returns a set of snip-
pets that link to the Javadoc descriptions for the relevant
feature extractors, and for each snippet a link to a concrete
example of use for the corresponding feature extractor.

4. Methodology
This section provides information about the way we orga-
nized the feature extractor classes and describes the process
we used to port the feature extractors of some well-known
CogComp NLP tools.

4.1. Organization and Navigation
We use descriptive names for feature extractors based on
the types of information they use, and the way these pieces
of information are combined. There are five key character-
istics of the feature extractors we processed:

1. The source View(s) in the TextAnnotation (such
as Word, POS, NER, or SRL).

2. Whether n-grams over features are taken (unigrams
assumed if none specified). If only one n is spec-
ified (e.g. Bigrams) only that n-gram will be re-
turned. Alternatively an arbitrary number of interme-
diate n-grams can returned by specifying a sequence
of 0 ≤ i ≤ n terms (e.g. TwoThreeFourGram).

3. The operator for combining multiple extracted fea-
tures. The default is disjunction (each feature is added
separately to the list of returned features). Conjunc-
tion indicates that the set of features in the feature
name are concatenated before being added to the list of
returned features (so POSWordConjThreeBefore
called on the word “library” in Figure 7 will return the
single feature NN-Construction).

4. The relative position of the extracted feature, or the
size of the context window in which features are ex-
tracted. If unspecified, assume just the focus is used.

3see the documentation for EDISON

/∗ ∗
∗ An i n t e r f a c e t h a t s p e c i f i e s what a f e a t u r e e x t r a c t o r s h o u l d do .
∗ In g e n e r a l , a f e a t u r e e x t r a c t o r l o o k s a t a {@code C o n s t i t u e n t } o f a {@code
∗ T e x t A n n o t a t i o n } and g e n e r a t e s a s e t o f f e a t u r e s f o r t h a t
∗ c o n s t i t u e n t .
∗ /

p u b l i c i n t e r f a c e F e a t u r e E x t r a c t o r {
Set<F e a t u r e> g e t F e a t u r e s (C o n s t i t u e n t c) throws E d i s o n E x c e p t i o n ;
S t r i n g getName () ;

}

/∗ ∗
∗ E x t r a c t par t−of−s pe ec h and word bigrams from 3 words b e f o r e t h e
∗ t a r g e t c o n s t i t u e n t
∗ @Keywords pos , word , bigrams , b e f o r e
∗ /

p u b l i c c l a s s POSAndWordBigramThreeBefore {
p u b l i c Set<F e a t u r e> g e t F e a t u r e s (C o n s t i t u e n t c){ / / f o c u s c o n s t i t u e n t

N g r a m F e a t u r e E x t r a c t o r posBigrams =
N g r a m F e a t u r e E x t r a c t o r . b ig rams (W o r d F e a t u r e E x t r a c t o r F a c t o r y . pos) ;

N g r a m F e a t u r e E x t r a c t o r wordBigrams =
N g r a m F e a t u r e E x t r a c t o r . b ig rams (W o r d F e a t u r e E x t r a c t o r F a c t o r y . word) ;

/ / C o n t e x t F e a t u r e E x t r a c t o r s p e c i f i e s t h e window b e f o r e and a f t e r
/ / t h e t a r g e t w i t h i n which t o e x t r a c t f e a t u r e s
C o n t e x t F e a t u r e E x t r a c t o r c f e = new C o n t e x t F e a t u r e E x t r a c t o r (3 , f a l s e , f a l s e) ;
c f e . a d d F e a t u r e E x t r a c t o r (posBigrams) ;
c f e . a d d F e a t u r e E x t r a c t o r (wordBigrams) ;
re turn c f e . g e t F e a t u r e s (c) ;

}
}

Figure 3: Sample code snippets showing the feature extractor interface and illustrating a feature extractor definition in EDISON. The
extractor returns part-of-speech and word bigrams in a window of 3 tokens before the focus constituent.

If a single focus at a fixed relative position, indicate
the position (e.g. TwoBefore). A window implies
features are extracted at every position within that win-
dow: WindowK indicates a symmetric window of size
K; if asymmetric, specify KBefore and/or NAfter.
In all cases, K specifies relative positions in the View
from which the focus is selected.

5. Whether the feature records the position of an ex-
tracted feature relative to the focus Constituent.
If recorded, this results in much more specific features
by distinguishing between e.g. the word “the” appear-
ing before the focus and the same word appearing after
the focus, which are then marked as distinct features.

To facilitate immediate understanding of their purpose,
extractor names are based on these characteristics and
follow a consistent order: source Views (in decreas-
ing order of “expense” of processing), then level of n-
grams used, then combination operator, then context win-
dow size, then position. The feature extractor in Fig-
ure 3 generates a set of part-of-speech bigrams and a
set of word bigrams in the context preceding the focus
Constituent, within a window of 3 Constituents
in the same View as the focus Constituent. Fol-
lowing these naming guidelines, the feature extractor is
named POSAndWordBigramsThreeBefore. Since

the position of the bigrams relative to the focus is
not recorded, the term “Position” is not used in the
name; if the position were recorded, the name would be
POSAndWordBigramsPositionThreeBefore.
Very complex feature extractors (e.g. verb subcategoriza-
tion) cannot generally be completely described this way, so
feature extractor code is documented with a description in-
tended to clarify the extractor’s behavior. This description
also includes keywords intended to assist users in identify-
ing relevant feature extraction behavior. Each feature ex-
tractor also has a corresponding unit test that exemplifies
the behavior with a literal string indicating the features ex-
tracted. This is used by the search tool (see Section 3.5.),
which indexes the description and keywords and which will
return not just the link to the relevant Javadoc, but also the
usage example from the corresponding unit test.
These additional documentation requirements are deemed
necessary to make the library sufficiently accessible, as
Javadoc alone is seldom sufficient to give the reader a con-
crete understanding of how a class can be used.

4.2. Creating reference feature implementations
To test the validity and ease-of-use of EDISON’s feature ex-
tractor definitions, as well as to provide reference imple-
mentation for the features used in some of CogComp’s most
successful NLP tools, we recreate their features in EDI-

/ / Java wrapper f o r LBJava :
p u b l i c c l a s s d e p e n d e n c y M o d i f i e r F e a t u r e s implements C l a s s i f i e r {

POSAndWordBigramThreeBefore f e x = new POSAndWordBigramThreeBefore () ;
. . . / / More f e a t u r e e x t r a c t o r s here
@over r ide
p u b l i c F e a t u r e V e c t o r c l a s s i f y (O b j e c t o) {

C o n s t i t u e n t f o c u s = (C o n s t i t u e n t) o ;
Set<F e a t u r e> f e a t u r e s = f e x . e x t r a c t F e a t u r e s (f o c u s) ;
/ / Conver t t h e Edison F e a t u r e s t o LBJava ’ s F e a t u r e V e c t o r
F e a t u r e V e c t o r f e a t u r e V e c t o r = F e a t u r e U t i l i t i e s . g e t L B J F e a t u r e s (f e a t u r e s) ;
/ / C o n c a t e n a t e more f e a t u r e s t o t h e v e c t o r
f e a t u r e V e c t o r . a d d F e a t u r e s (o t h e r F e a t V e c t o r) ;
re turn f e a t u r e V e c t o r ;

}
}

/ / LBJava c l a s s i f i e r d e f i n i t i o n :
/ / −− u s e s c l a s s s i m p l y by r e f e r r i n g t o i t s name
d i s c r e t e n a m e d E n t i t y C l a s s i f i e r (NamedEnt i ty eg) <−

l e a r n n e r L a b e l
u s i n g d e p e n d e n c y M o d i f i e r F e a t u r e s
. . .

end

Figure 4: Sample code snippets showing part of an EDISON feature extractor in LBJava (Rizzolo and Roth, 2010). The extractor needs
to be written as an LBJava Classifier class (upper half), and then it can be used in an LBJava Learner definition.

v a l posWordFea tu re s = p r o p e r t y (p r e d i c a t e s) {
p r e d i c a t e : C o n s t i t u e n t => {

v a l f e x = new POSAndWordBigramThreeBefore ()
/ / Conver t t h e S e t o f F e a t u r e s i n t o a comma−s e p a r a t e d l i s t
f e x . g e t F e a t u r e s (p r e d i c a t e) . mkSt r ing (‘ ‘ , ’ ’)

}
}

Figure 5: Sample Scala code snippet showing the use of an EDISON feature extractor in Saul (Kordjamshidi et al., 2015). Saul’s
properties (features or labels of nodes) are represented as strings.

Figure 6: Screenshot of EDISON feature browser search interface. The user can search through the feature extractors’ Keywords or
their Javadoc header; the search is tolerant to spelling errors as shown in the example query for “bigran”. The resulting entries (left) will
contain a link to the corresponding Java API page as well as a code snippet (right) demonstrating their use and returned features.

The construction of the library finished on time .
DT NN IN DT NN VBD IN NN .

CogComp Chunker EDISON

POSWindowpp POSOneTwoThreeGramWindowThree
IN IN
DT DT
NN NN
VBD VBD
. .
IN DT IN DT
DT NN DT NN
NN VBD NN VBD
VBD IN VBD IN
IN NN IN NN
NN . NN .
IN DT NN IN DT NN
DT NN VBD DT NN VBD
NN VBD IN NN VBD IN
VBD IN NN VBD IN NN
IN NN . IN NN .

Figure 7: Comparison of features extracted by a single feature extractor (POSWindowpp) from the CogcComp Chunker (shallow parser)
pacakge with its new EDISON implementation, POSOneTwoThreeGramWindowThree, for the word “finished” in the sentence
shown. Note that feature extractors return sets of features, so duplicate features are not repeated. If the feature extractor used relative
positions of features, there would be additional 1-gram outputs because the same part-of-speech occurs before and after the focus.

SON. In creating the reference implementations for Cog-
Comp NLP tools, we defined and followed a process. For
each tool, we first studied the existing feature extraction
code to understand where the requisite data came from and
how it would correspond to an implementation using the
illinois-core-utilities data structures. Next,
we wrote the EDISON implementation for the feature ex-
tractor, testing it on a TextAnnotation populated with
the requisite Views, applied the naming convention de-
scribed above, and added the description of behavior to the
documentation. Finally, we verified that the new feature
extractor followed the behavior of the original by running
both extractors on the same focus item of equivalent inputs,
and comparing the feature outputs.
For original applications that used their own data structures,
it was necessary to populate comparable source package
data structures as well as a TextAnnotation for the new
EDISON implementation. We developed a simple applica-
tion to generate the feature set for each member of the ex-
tractor pair, allowing side-by-side comparisons and direct
human evaluation.

4.3. Validation and Experiments
During the reimplementation process, we wrote a simple
application to compare two feature extractor outputs on
sample text. This application ran each member of the pair
on a deterministically created input text with other support-
ing annotations as needed. This generates a set of features
for each focus item in the text (generally, each word).
The application generates a pair of extracted feature lists
and compares the number and distribution of features (the
original application may use a different feature output rep-

resentation than EDISON). If these were not in agreement,
we knew the behavior was different. For those in agree-
ment, a human evaluator visually checked the outputs to
verify that they matched. Figure 7 shows the output of the
original and reference implementation of the feature extrac-
tor POSOneTwoThreeGramWindowThree.
For some reference implementations there were some mi-
nor differences with the original implementation. Specifi-
cally, some feature extractors that specified a window had
unintuitive behavior at sentence boundaries which we de-
cided to change, as we could see no principled reason for
the exact original behavior.

5. Related Work
The most closely related feature extraction systems are
FEXTOR (Broda et al., 2013) and Fex (Cumby and Roth,
2000). The latter is a C++ tool that can be run either pro-
grammatically or stand-alone to extract features for words,
phrases, or simple entity-relation structures. It can be
programmatically extended to introduce new features, but
ships with a set of word-, part-of-speech-, and chunk-level
features that can be easily combined for English text. It
uses a very basic data structure to represent the input anno-
tations it requires to generate the feature representation.
FEXTOR is implemented in Python and C++ and offers
support for multiple languages. It supports feature extrac-
tion across sentence boundaries. The workflow is oriented
towards file-based interaction – like Fex, FEXTOR uses a
purpose-built scripting language to determine feature ex-
traction behavior.
There is little explicit support for feature extraction for NLP
in learning packages such as NLTK (Loper and Bird, 2002),

in NLP development frameworks like GATE (Cunningham
et al., 2002), or in NLP software bundles like Stanford’s
CoreNLP (Manning et al., 2014). All these software frame-
works provide integrated natural language processing tools,
but they do not directly support extraction of arbitrary fea-
tures by composing the outputs of these processes. Such
features are essential to achieve good performance using
machine learning models in many NLP tasks.
EDISON explicitly supports feature extraction but, in con-
trast to FEXTOR and Fex, is oriented more towards pro-
grammatic interaction (although the package can be run as
an application that reads from and writes to files). It pack-
ages a suite of reference implementations of feature extrac-
tors used in a number of state-of-the-art NLP tools, with
the goal of making it easier for developers and researchers
to implement their own baseline NLP components with a
minimum of effort. Its API also more directly supports in-
tegration of a machine-learned NLP system into an end-to-
end application. EDISON is written in Java, due to Java’s
widespread use in the academic and commercial NLP de-
veloper communities and its compatibility with Scala.

6. Conclusions
This paper presents EDISON, a feature extraction library to
support machine-learning NLP applications. EDISON pro-
vides a large suite of feature extractors, including reference
implementations of features from a set of state-of-the-art
NLP tools. We show how EDISON can be used to specify
and implement feature extractors for use in a wide range
of NLP applications using several popular Machine Learn-
ing frameworks. By providing reference implementations
for many of our state-of-the-art NLP components, we hope
to make it easier for other researchers to leverage our NLP
experience. By making it accessible via github, we hope to
launch a community-wide effort to collect and share feature
extraction functionality. By pooling our collective knowl-
edge we can develop NLP applications more efficiently and
improve the reproducability of our NLP research.

7. Acknowledgements
This material is based on research sponsored by DARPA
under agreement number FA8750-13-2-0008. The U.S.
Government is authorized to reproduce and distribute
reprints for Governmental purposes notwithstanding any
copyright notation thereon. The views and conclusions
contained herein are those of the authors and should not be
interpreted as necessarily representing the official policies
or endorsements, either expressed or implied, of DARPA or
the U.S. Government.

Bibliographical References
Broda, B., Kedzia, P., Marcińczuk, M., Radziszewski, A.,

Ramocki, R., and Wardyński, A., (2013). Computational
Linguistics: Applications, chapter Fextor: A Feature Ex-
traction Framework for Natural Language Processing:
A Case Study in Word Sense Disambiguation, Rela-
tion Recognition and Anaphora Resolution, pages 41–
62. Springer Berlin Heidelberg, Berlin, Heidelberg.

Cheng, X. and Roth, D. (2013). Relational inference for
wikification.

Clarke, J., Srikumar, V., Sammons, M., and Roth, D.
(2012). An NLP Curator (or: How I Learned to Stop
Worrying and Love NLP Pipelines). In LREC.

Cumby, C. and Roth, D. (2000). Relational representations
that facilitate learning. In KR, pages 425–434.

Cumby, C. and Roth, D. (2003). On kernel methods for
relational learning. In ICML, pages 107–114.

Cunningham, H., Maynard, D., Bontcheva, K., and Tablan,
V. (2002). GATE: A Framework and Graphical Devel-
opment Environment for Robust NLP Tools and Appli-
cations. In ACL.

Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reute-
mann, P., and Witten, I. H. (2009). The WEKA data
mining software: an update. ACM SIGKDD explorations
newsletter, 11(1):10–18.

Kordjamshidi, P., Roth, D., and Wu, H. (2015). Saul: To-
wards declarative learning based programming. In IJ-
CAI.

Loper, E. and Bird, S. (2002). NLTK: the Natural Lan-
guage Toolkit. In Proceedings of the ACL-02 Workshop
on Effective Tools and Methodologies for Teaching Nat-
ural Language Processing and Computational Linguis-
tics.

Manning, C. D., Surdeanu, M., Bauer, J., Finkel, J.,
Bethard, S. J., and McClosky, D. (2014). The Stan-
ford CoreNLP natural language processing toolkit. In
Proceedings of 52nd Annual Meeting of the Association
for Computational Linguistics: System Demonstrations,
pages 55–60.

McCallum, A. K. (2002). MALLET: A machine learning
for language toolkit. http://www.cs.umass.edu/ mccal-
lum/mallet.

Peng, H., Chang, K., and Roth, D. (2015). A joint frame-
work for coreference resolution and mention head detec-
tion. In CoNLL, page 10, University of Illinois, Urbana-
Champaign, Urbana, IL, 61801, 7. ACL.

Punyakanok, V. and Roth, D. (2001). The use of classifiers
in sequential inference. pages 995–1001. MIT Press.

Punyakanok, V., Roth, D., and Yih, W. (2008). The impor-
tance of syntactic parsing and inference in semantic role
labeling. Computational Linguistics, 34(2):257–287.

Ratinov, L. and Roth, D. (2009). Design challenges and
misconceptions in named entity recognition. In CoNLL.

Rizzolo, N. and Roth, D. (2010). Learning Based Java for
Rapid Development of NLP Systems. In LREC, Valletta,
Malta.

Roth, D. and Zelenko, D. (1998). Part of speech tag-
ging using a network of linear separators. In COLING-
ACL, The 17th International Conference on Computa-
tional Linguistics, pages 1136–1142.

Toutanova, K., Haghighi, A., and Manning, C. D. (2008).
A global joint model for semantic role labeling. Compu-
tational Linguistics.

