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Abstract—
A number of recent efforts have attempted to design accel-

erators for popular machine learning algorithms, such as those
involving convolutional and deep neural networks (CNNs and
DNNs). These algorithms typically involve a large number of
multiply-accumulate (dot-product) operations. A recent project,
DaDianNao, adopts a near data processing approach, where
a specialized neural functional unit performs all the digital
arithmetic operations and receives input weights from adjacent
eDRAM banks.

This work explores an in-situ processing approach, where
memristor crossbar arrays not only store input weights, but
are also used to perform dot-product operations in an analog
manner. While the use of crossbar memory as an analog dot-
product engine is well known, no prior work has designed or
characterized a full-fledged accelerator based on crossbars. In
particular, our work makes the following contributions: (i) We
design a pipelined architecture, with some crossbars dedicated for
each neural network layer, and eDRAM buffers that aggregate
data between pipeline stages. (ii) We define new data encoding
techniques that are amenable to analog computations and that
can reduce the high overheads of analog-to-digital conversion
(ADC). (iii) We define the many supporting digital components
required in an analog CNN accelerator and carry out a design
space exploration to identify the best balance of memristor
storage/compute, ADCs, and eDRAM storage on a chip. On
a suite of CNN and DNN workloads, the proposed ISAAC
architecture yields improvements of 14.8×, 5.5×, and 7.5× in
throughput, energy, and computational density (respectively),
relative to the state-of-the-art DaDianNao architecture.

Index Terms—CNN, DNN, memristor, analog, neural, acceler-
ator

I. INTRODUCTION

Machine learning algorithms have recently grown in promi-
nence – they are frequently employed for mobile applications,

as well as for data analysis in back-end data centers. Architec-

tures that are optimized for machine learning algorithms, e.g.,
convolutional neural networks (CNNs) and the more general

deep neural networks (DNNs), can therefore have high impact.
Machine learning algorithms are amenable to acceleration

because of a high degree of compute parallelism. They are

also challenging because of the sizes of datasets and the need
to avoid the memory wall [8].

A recent project has taken significant strides in this direction

– the DaDianNao architecture [9] manages the memory wall

with an approach rooted in near data processing. A DaDi-
anNao system employs a number of connected chips (nodes),

each made up of 16 tiles. A tile implements a neural functional

unit (NFU) that has parallel digital arithmetic units; these units
are fed with data from nearby SRAM buffers and eDRAM

banks. The dominant data structures in CNNs and DNNs are

the synaptic weight matrices that define each neuron layer.
These are distributed across several eDRAM banks on multiple

tiles/nodes. The computations involving these weights are
brought to the eDRAM banks and executed on adjacent NFUs,

thus achieving near data processing. This requires moving the

outputs of the previous neuron layer to the relevant tiles so
they can merge with co-located synaptic weights to produce

the outputs of the current layer. The outputs are then routed

to appropriate eDRAM banks so they can serve as inputs to
the next layer. Most of the chip area is used to store synaptic

weights in eDRAM. The number of NFUs are far smaller than

the number of neurons in a layer. Therefore, the NFUs are
shared by multiple neurons in time-multiplexed fashion.

Given the relative scarcity of NFUs, DaDianNao adopts the

following approach to maximize performance. A single CNN
layer is processed at a time. This processing is performed in

parallel on all NFUs in the system. The outputs are collected
in eDRAM banks. Once a layer is fully processed, DaDianNao

moves on to the next layer, again parallelized across all NFUs

in the system. Thus, an NFU is used sequentially by a number
of neurons in one layer, followed by a number of neurons in

the next layer, and so on. This form of context-switching at

each NFU is achieved at relatively low cost by moving the
appropriate inputs/weights from eDRAM banks into SRAM

buffers that feed the NFUs.

The proposed ISAAC architecture differs from the DaDian-
Nao architecture in several of these aspects. Prior work has

already observed that crossbar arrays using resistive memory

are effective at performing many dot-product operations in
parallel [33], [43], [53], [71], [78]. Such a dot-product engine

is analog in nature, essentially leveraging Kirchoff’s Law to
yield a bitline current that is a sum of products. However,

these papers do not leverage crossbars to create a full-fledged

architecture for CNNs, nor do they characterize the behavior
of CNN benchmarks. As this paper shows, a full-fledged

crossbar-based CNN accelerator must integrate several digital
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and analog components, and overcome several challenges.
The potential success of crossbar-based accelerators is also

facilitated by the recent evolution of machine learning algo-

rithms. The best image-analysis algorithms of 2012-2014 [34],
[69], [80] have a few normalization layers that cannot be

easily adapted to crossbars. An accelerator for those algorithms

would require a mix of analog crossbars and digital NFUs.
However, the best algorithms of the past year [24], [63] have

shown that some of these problematic normalization layers are
not necessary, thus paving the way for analog crossbar-based

accelerators that are both efficient and accurate.
The overall ISAAC design is as follows. Similar to Da-

DianNao, the system is organized into multiple nodes/tiles,

with memristor crossbar arrays forming the heart of each tile.

The crossbar not only stores the synaptic weights, it also
performs the dot-product computations. This is therefore an

example of in-situ computing [2], [30], [53]. While DaDian-

Nao executes multiple layers and multiple neurons on a single
NFU with time multiplexing, a crossbar can’t be efficiently

re-programmed on the fly. Therefore, a crossbar is dedicated

to process a set of neurons in a given CNN layer. The outputs
of that layer are fed to other crossbars that are dedicated to

process the next CNN layer, and so on. Such a design is

easily amenable to pipelining. As soon as enough outputs are
generated by a layer and aggregated in an eDRAM buffer,

the next layer can start its operations. By designing such a
pipeline, the buffering requirements between layers is reduced.

This allows us to dedicate most of the chip real estate for dot

product engines. To improve the throughput of a bottleneck
layer and create a more balanced pipeline, more crossbars can

be employed for that layer by replicating the weights. We

also define the many digital components that must support the
crossbar’s analog computation. This efficient pipeline is the

first key contribution of the paper.

We observe that the key overheads in a crossbar are the
analog-to-digital converter (ADC) and digital-to-analog con-

verter (DAC). A second contribution of the paper is a novel

approach to lay out the bits and perform the arithmetic so that

these overheads are significantly lowered.

Finally, we carry out a design space exploration to identify

how the architecture can be optimized for various metrics,

while balancing the chip area dedicated to storage/compute,

buffers, and ADCs. For state-of-the-art full-fledged CNN and
DNN applications, ISAAC improves upon DaDianNao by

14.8×, 5.5×, and 7.5× in throughput, energy, and compu-

tational density (respectively).

II. BACKGROUND

A. CNNs and DNNs

Deep neural networks (DNNs) are a broad class of clas-

sifiers consisting of cascading layers of neural networks.

Convolutional neural networks (CNNs) are deep neural net-
works primarily seen in the context of computer vision,

and consist of four different types of layers: convolutional,
classifier, pooling, and local response/contrast normalization

(LRN/LCN). Of these, the convolutional and classifier are the

two most important layers – these are the two layers primarily
targeted by the ISAAC architecture because they involve dot

product computations. The pooling layer typically involves a

simple maximum or average operation on a small set of input
numbers. The LRN layer is harder to integrate into the ISAAC

design, and will be discussed in Section II-B.

A typical algorithm in the image processing domain starts

with multiple convolutional layers that first extract basic fea-
ture maps, followed by more complex feature maps. Pooling

layers are interleaved to reduce the sizes of feature maps;

these layers typically use a maximum or average operation
to map multiple neighboring neurons in the input to one

output neuron. The normalization layers (LRN and LCN) mix

multiple feature maps into one. Ultimately, classifier layers
correlate the feature maps to objects seen during training.

The convolutional layer is defined in terms of a collection of
kernels or filters, denoted by K below. Each kernel is defined

by a 3D array of size Ni ×Kx ×Ky and converts an input

feature map (presented as a set of Ni matrices) into an output
matrix or feature map. We refer to the number of such filters

and output matrices in the layer by No. The (x, y) element of
the kth output matrix is defined as:

fout
k (x, y) = σ(

Ni−1∑

j=0

Kx−1∑

s=0

Ky−1∑

t=0

f in
j (x+ s, y + t) ×K(k,x,y)(j, s, t))

where f in
j (x, y) is the neuron at position (x, y) of input

feature map j. In addition, K(k,x,y)(j, s, t) is the weight

at position (j, s, t) of the kth kernel. In many applications,

K(k,x,y)(j, s, t) does not depend on (x, y), and is referred to
as a shared kernel. Finally, σ() is an activation function. We

focus on a sigmoid function such as tanh, but it can also be

easily adapted to model other variants, such as the recently
successful ReLU.

The classifier layer can be viewed as a special case of a

convolution, with many output feature maps, each using the

largest possible kernel size, i.e., a fully connected network.

In CNNs, the kernel weights in a convolutional layer are

shared by all neurons of an output feature map, whereas DNNs
use a private kernel for each neuron in an output feature map.

DNN convolution layers with private kernels have much higher

synaptic weight requirements.

B. Modern CNN/DNN Algorithms

We first summarize CNNs targeted at image detection and

classification, such as the winners of the annual ImageNet

Large Scale Visual Recognition Challenge (ILSVRC) [58].
These algorithms are judged by their top-5 error rates, i.e.,

how often is the target label not among the top 5 predictions

made by the network. The winners in 2012 (AlexNet [34]),
2013 (Clarifai [80]), and 2014 (GoogLeNet [69]) achieved top-

5 error rates of 15.3%, 11.2%, and 6.67% respectively. Based

on the observations of Jarrett et al. [28], all of these networks
incorporate LRN layers. LRN layers are not amenable to

acceleration with crossbars, thus limiting the potential benefit

of ISAAC for these algorithms.

However, results in the past year have shown that LRN
is not as necessary as previously claimed. The Oxford VGG

team showed [63] that on an improved version of AlexNet,

not using LRN is slightly better than using LRN. They also
built a network without LRN that has 16 layers and 138M

parameters, and that achieves a top-5 error rate of 6.8% [63].
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Further, a Microsoft team [24] has built the best model to

date with a top-5 error rate of 4.94% – this surpasses the
human top-5 error rate of 5.1% [58]. The Microsoft network

also does not include any LRN layers. It is comprised of three
models: model A (178M parameters, 19 weight layers), model

B (183M parameters, 22 weight layers) and model C (330M

parameters, 22 weight layers).

We also examine the face detection problem. There are

several competitive algorithms with LRNs [12], [37], [49], and
without LRNs [67], [75]. DeepFace [75] achieves an accuracy

of 97.35% on the Labeled Faces in the Wild (LFW) Dataset.

It uses a Deep Neural Network with private kernels (120M
parameters, 8 weight layers) and no LRN.

We use the above state-of-the-art CNNs and DNNs without
LRN layers to compose our benchmark suite (Table II).

We note that not every CNN/DNN operation can be easily
integrated into every accelerator; it will therefore be important

to engage in algorithm-hardware co-design [17].

C. The DaDianNao Architecture

A single DaDianNao [9] chip (node) is made up of 16 tiles

and two central eDRAM banks connected by an on-chip fat-
tree network. A tile is made up of a neural functional unit

(NFU) and four eDRAM banks. An NFU has a pipeline with

multiple parallel multipliers, a tree of adders, and a transfer
function. These units typically operate on 16-bit inputs. For

the transfer function, two logical units are deployed, each
performing 16 piecewise interpolations (y=ax+b), the coeffi-

cients (a,b) of which are stored in two 16-entry SRAMs. The

pipeline is fed with data from SRAM buffers within the tile.
These buffers are themselves fed by eDRAM banks. Tiling

is used to maximize data reuse and reduce transfers in/out

of eDRAM banks. Synaptic weights are distributed across all
nodes/tiles and feed their local NFUs. Neuron outputs are

routed to eDRAM banks in the appropriate tiles. DaDianNao

processes one layer at a time, distributing those computations
across all tiles to maximize parallelism.

D. Memristor Dot Product Engines

Traditionally, memory arrays employ access transistors to

isolate individual cells. Recently, resistive memories, espe-
cially those with non-linear IV curves, have been implemented

with a crossbar architecture [74], [77]. As shown in Figure 1b,

every bitline is connected to every wordline via resistive
memory cells. Assume that the cells in the first column are

programmed to resistances R1, R2,..., Rn. The conductances

of these cells, G1, G2, ..., Gn, are the inverses of their
resistances. If voltages V1, V2,...,Vn are applied to each of

the n rows, cell i passes current Vi/Ri, or Vi×Gi into the
bitline, based on Kirchoff’s Law. As shown in Figure 1a, the

total current emerging from the bitline is the sum of currents

passed by each cell in the column. This current I represents
the value of a dot product operation, where one vector is the

set of input voltages at each row V and the second vector is

the set of cell conductances G in a column, i.e., I = V × G
(see Figure 1a).

The input voltages are applied to all the columns. The

currents emerging from each bitline can therefore represent the
outputs of neurons in multiple CNN output filters, where each

neuron is fed the same inputs, but each neuron has a different

set of synaptic weights (encoded as the conductances of cells
in that column). The crossbar shown in Figure 1b achieves very

high levels of parallelism – an m×n crossbar array performs

dot products on m-entry vectors for n different neurons in a
single step, i.e., it performs vector-matrix multiplication in a

single step.

A sample-and-hold (S&H) circuit receives the bitline current
and feeds it to a shared ADC unit (see Figure 1b). This con-

version of analog currents to digital values is necessary before

communicating the results to other digital units. Similarly, a
DAC unit converts digital input values into appropriate voltage

levels that are applied to each row.

The cells can be composed of any resistive memory technol-
ogy. In this work, we choose memristor technology because it

has an order of magnitude higher on/off ratio than PCM [35],

thus affording higher bit density or precision. The crossbar
is implemented with a 1T1R cell structure to facilitate more

precise writes to memristor cells [79]. For the input voltages

we are considering, i.e., DAC output voltage range, the pres-
ence of the access transistor per cell has no impact on the dot

product computation.

III. OVERALL ISAAC ORGANIZATION

We first present an overview of the ISAAC architecture,

followed by detailed discussions of each novel feature. At a

high level (Figure 2), an ISAAC chip is composed of a number
of tiles (labeled T), connected with an on-chip concentrated-

mesh (c-mesh). Each tile is composed of eDRAM buffers to

store input values, a number of in-situ multiply-accumulate

(IMA) units, and output registers to aggregate results, all

connected with a shared bus. The tile also has shift-and-add,
sigmoid, and max-pool units. Each IMA has a few crossbar

arrays and ADCs, connected with a shared bus. The IMA also

has input/output registers and shift-and-add units. A detailed
discussion of each component is deferred until Section VI.

The architecture is not used for in-the-field training; it is

only used for inference, which is the dominant operation in
several domains (e.g., domains where training is performed

once on a cluster of GPUs and those weights are deployed on

millions of devices to perform billions of inferences). Adapting
ISAAC for in-the-field training would require non-trivial effort

and is left for future work.
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After training has determined the weights for every neuron,

the weights are appropriately loaded into memristor cells with

a programming step. Control vectors are also loaded into each
tile to drive the finite state machines that steer inputs and

outputs correctly after every cycle.
During inference, inputs are provided to ISAAC through an

I/O interface and routed to the tiles implementing the first layer

of the CNN. A finite state machine in the tile sends these inputs

to appropriate IMAs. The dot-product operations involved in
convolutional and classifier layers are performed on crossbar

arrays; those results are sent to ADCs, and then aggregated
in output registers after any necessary shift-and-adds. The

aggregated result is then sent through the sigmoid operator and

stored in the eDRAM banks of the tiles processing the next
layer. The process continues until the final layer generates an

output that is sent to the I/O interface. The I/O interface is

also used to communicate with other ISAAC chips.
At a high level, ISAAC implements a hierarchy of

chips/tiles/IMAs/arrays and c-mesh/bus. While the hierarchy

is similar to that of DaDianNao, the internals of each tile and
IMA are very different. A hierarchical topology enables high

internal bandwidth, reduced data movement when aggregating

results, short bitlines and wordlines in crossbars, and efficient
resource partitioning across the many layers of a CNN.

IV. THE ISAAC PIPELINE

DaDianNao operates on one CNN layer at a time. All the

NFUs in the system are leveraged to perform the required

operations for one layer in parallel. The synaptic weights for
that layer are therefore scattered across eDRAM banks in all

tiles. The outputs are stored in eDRAM banks and serve as

inputs when the next layer begins its operation. DaDianNao
therefore maximizes throughput for one layer. This is possible

because it is relatively easy for an NFU to context-switch from

operating on one layer to operating on a different layer – it
simply has to bring in a new set of weights from the eDRAM

banks to its SRAM buffers.
On the other hand, ISAAC uses memristor arrays to not

only store the synaptic weights, but also perform computations

Fig. 3. Minimum input buffer requirement for a 6×6 input feature map with
a 2× 2 kernel and stride of 1. The blue values in (a), (b), and (c) represent
the buffer contents for output neurons 0, 1, and 7, respectively.

on them. The in-situ computing approach requires that if an

array has been assigned to store weights for a CNN layer, it
has also been assigned to perform computations for that layer.

Therefore, unlike DaDianNao, the tiles/IMAs of ISAAC have

to be partitioned across the different CNN layers. For example,
tiles 0-3 may be assigned to layer 0, tiles 4-11 may be assigned

to layer 1, and so on. In this case, tiles 0-3 would store all

weights for layer 0 and perform all layer 0 computations in
parallel. The outputs of layer 0 are sent to some of tiles 4-11;

once enough layer 0 outputs are buffered, tiles 4-11 perform
the necessary layer 1 computations, and so on.

To understand how results are passed from one stage to the

next, consider the following example, also shown in Figure 3.

Assume that in layer i, a 6×6 input feature map is being
convolved with a 2×2 kernel to produce an output feature

map of the same size. Assume that a single column in an
IMA has the four synaptic weights used by the 2×2 kernel.

The previous layer i − 1 produces outputs 0, 1, 2, ..., 6, 7,

shown in blue in Figure 3a. All of these values are placed
in the input buffer for layer i. At this point, we have enough

information to start the operations for layer i. So inputs 0, 1,

6, 7 are fed to the IMA and they produce the first output for
layer i. When the previous layer i−1 produces output 8, it gets

placed in the input buffer for layer i. Value 0, shown in green

in Figure 3b, is no longer required and can be removed from
the input buffer. Thus, every new output produced by layer i−1
allows layer i to advance the kernel by one step and perform

a new operation of its own. Figure 3c shows the state of the
input buffer a few steps later. Note that a set of inputs is fed

to Nof convolutional kernels to produce Nof output feature

maps. Each of these kernels constitutes a different column in
a crossbar and operates on a set of inputs in parallel.

We now discuss two important properties of this pipeline.

The first pertains to buffering requirements in eDRAM be-
tween layers. The second pertains to synaptic weight storage

in memristors to design a balanced pipeline. In our discussions,

a cycle is the time required to perform one crossbar read
operation, which for most of our analysis is 100 ns.

The eDRAM buffer requirement between two layers is fixed.

In general terms, the size of the buffer is:

((Nx × (Ky − 1)) +Kx)×Nif

where Nx is the number of rows in the input feature map, Ky

and Kx are the number of columns and rows in the kernel,



and Nif is the number of input feature maps involved in the
convolution step. Without pipelining, the entire output (Nx ×
Ny × Nif ) from layer i − 1 would have to be stored before

starting layer i. Thus, pipelining helps reduce the buffering
requirement by approximately Ny/Ky.

The Kx ×Ky kernel is moved by strides Sx and Sy after

every step. If say Sx = 2 and Sy = 1, the previous layer i− 1
has to produce two values before layer i can perform its next

step. This can cause an unbalanced pipeline where the IMAs

of layer i − 1 are busy in every cycle, while the IMAs of
layer i are busy in only every alternate cycle. To balance the

pipeline, we double the resources allocated to layer i − 1. In

essence, the synaptic weights for layer i−1 are replicated in a
different crossbar array so that two different input vectors can

be processed in parallel to produce two output values in one

cycle. Thus, to estimate the total synaptic storage requirement
for a balanced pipeline, we work our way back from the last

layer. If the last layer is expected to produce outputs in every
cycle, it will need to store Kx × Ky × Nif × Nof synaptic

weights. This term for layer i is referred to as Wi. If layer i is

producing a single output in a cycle, the storage requirement
for layer i − 1 is Wi−1 × Sxi × Syi. Based on the values of

Sx and Sy for each layer, the weights in early layers may be

replicated several times. If the aggregate storage requirement
exceeds the available storage on the chip by a factor of 2×,

then the storage allocated to every layer (except the last) is

reduced by 2×. The pipeline remains balanced and most IMAs
are busy in every cycle; but the very last layer performs an

operation and produces a result only in every alternate cycle.

A natural question arises: is such a pipelined approach
useful in DaDianNao as well? If we can design a well-balanced

pipeline and keep every NFU busy in every time step in

DaDianNao, to a first order, the pipelined approach will match
the throughput of the non-pipelined approach. The key here is

that ISAAC needs pipelining to keep most IMAs busy most

of the time, whereas DaDianNao is able to keep most NFUs
busy most of the time without the need for pipelining.

V. MANAGING BITS, ADCS, AND SIGNED ARITHMETIC

The Read/ADC Pipeline

The ADCs and DACs in every tile can represent a significant
overhead. To reduce ADC overheads, we employ a few ADCs

in one IMA, shared by multiple crossbars. We need enough

ADCs per IMA to match the read throughput of the crossbars.
For example, a 128×128 crossbar may produce 128 bitline

currents every 100 ns (one cycle, which is the read latency

for the crossbar array). To create a pipeline within the IMA,
these bitline currents are latched in 128 sample-and-hold

circuits [48]. In the next 100 ns cycle, these analog values
in the sample-and-holds are fed sequentially to a single 1.28

giga-samples-per-second (GSps) ADC unit. Meanwhile, in a

pipelined fashion, the crossbar begins its next read operation.
Thus, 128 bitline currents are processed in 100 ns, before the

next set of bitline currents are latched in the sample-and-hold

circuits.

Input Voltages and DACs

Each row in a crossbar array needs an input voltage pro-

duced by a DAC. We’ll assume that every row receives its

input voltage from a dedicated n-bit DAC. Note that a 1-bit
DAC is a trivial circuit (an inverter).

Next, we show how high precision and efficiency can be

achieved, while limiting the size of the ADC and DAC. We

target 16-bit fixed-point arithmetic, partially because prior
work has shown that 16-bit arithmetic is sufficient for this

class of machine learning algorithms [8], [21], and partially

to perform an apples-to-apples comparison with DaDianNao.

To perform a 16-bit multiplication in every memristor cell,
we would need a 16-bit DAC to provide the input voltage, 216

resistance levels in each cell, and an ADC capable of handling

well over 16 bits. It is clear that such a naive approach would
have enormous overheads and be highly error-prone.

To address this, we first mandate that the input be provided

as multiple sequential bits. Instead of a single voltage level

that represents a 16-bit fixed-point number, we provide 16
voltage levels sequentially, where voltage level i is a 0/1 binary

input representing bit i of the 16-bit input number. The first

cycle of this iterative process multiplies-and-adds bit 1 of the
inputs with the synaptic weights, and stores the result in an

output register (after sending the sum of products through the

ADC). The second cycle multiplies bit 2 of the inputs with
the synaptic weights, shifts the result one place to the left,

and adds it to the output register. The process continues until

all 16 bits of the input have been handled in 16 cycles. This
algorithm is similar to the classic multiplication algorithm used

in modern multiplier units. In this example where the input
is converted into 1-bit binary voltage levels, the IMA has to

perform 16 sequential operations and we require a simple 1-

bit DAC. We could also accept a v-bit input voltage, which
would require 16/v sequential operations and a v-bit DAC.

We later show that the optimal design point uses v = 1 and

eliminates the need for an explicit DAC circuit.

One way to reduce the sequential 16-cycle delay is to repli-
cate the synaptic weights on (say) two IMAs. Thus, one IMA

can process the 8 most significant bits of the input, while the

other IMA can process the 8 least significant bits of the input.
The results are merged later after the appropriate shifting. This

halves the latency for one 16-bit dot-product operation while

requiring twice as much storage budget. In essence, if half
the IMAs on a chip are not utilized, we can replicate all the

weights and roughly double system throughput.

Synaptic Weights and ADCs

Having addressed the input values and the DACs, we now

turn our attention to the synaptic weights and the ADCs. It is

impractical to represent a 16-bit synaptic weight in a single
memristor cell [26]. We therefore represent one 16-bit synaptic

weight with 16/w w-bit cells located in the same row. For the
rest of this discussion, we assume w = 2 because it emerges

as a sweet spot in our design space exploration. When an

input is provided, the cells in a column perform their sum
of products operations. The results of adjacent columns must

then be merged with the appropriate set of shifts and adds.

If the crossbar array has R rows, a single column is

adding the results of R multiplications of v-bit inputs and
w-bit synaptic weights. The number of bits in the resulting

computation dictates the resolution A and size of the ADC.



The relationship is as follows:

A = log(R) + v + w, if v > 1 and w > 1 (1)

A = log(R) + v + w − 1, otherwise (2)

Thus, the design of ISAAC involves a number of independent

parameters (v, w, R, etc.) that impact overall throughput,

power, and area in non-trivial ways.

Encoding to Reduce ADC Size

To further reduce the size of the ADC, we devise an

encoding where every w-bit synaptic weight in a column is
stored in its original form, or in its “flipped” form. The flipped

form of w-bit weight W is represented as W̄ = 2w − 1−W .

If the weights in a column are collectively large, i.e., with
maximal inputs, the sum-of-products yields an MSB of 1, the

weights are stored in their flipped form. This guarantees that

the MSB of the sum-of-products will be 0. By guaranteeing
an MSB of 0, the ADC size requirement is lowered by one

bit.

The sum-of-products for a flipped column is converted to

its actual value with the following equation:

R−1∑

i=0

ai×W̄i =
R−1∑

i=0

ai×(2w−1−Wi) = (2w−1)
R−1∑

i=0

ai−

R−1∑

i=0

ai×Wi

where ai refers to the ith input value. The conversion requires
us to compute the sum of the current input values ai, which

is done with one additional column per array, referred to as

the unit column. During an IMA operation, the unit column

produces the result
∑R−1

i=0 ai. The results of any columns that

have been stored in flipped form is subtracted from the results
of the unit column. In addition, we need a bit per column to

track if the column has original or flipped weights.

The encoding scheme can be leveraged either to reduce
ADC resolution, increase cell density, or increase the rows per

crossbar. At first glance, it may appear that a 1-bit reduction
in ADC resolution is not a big deal. As we show later, because

ADC power is a significant contributor to ISAAC power, and

because some ADC overheads grow exponentially with resolu-
tion, the impact of this technique on overall ISAAC efficiency

is very significant. In terms of overheads, the columns per

array has grown from 128 to 129 and one additional shift-and-
add has been introduced. Note that the shift-and-add circuits

represent a small fraction of overall chip area and there is

more than enough time in one cycle (100 ns) to perform a
handful of shift-and-adds and update the output register. Our

analysis considers these overheads.

Correctly Handling Signed Arithmetic

Synaptic weights in machine learning algorithms can be

positive or negative. It is important to allow negative weights

so the network can capture inhibitory effects of features [70].
We must therefore define bit representations that perform

correct signed arithmetic operations, given that a memristor
bitline can only add currents. There are a number of ways

that signed numbers can be represented and we isolate the

best approach below. This approach is also compatible with
the encoding previously described. In fact, it leverages the unit

column introduced earlier.

We assume that inputs to the crossbar arrays are provided
with a 2’s complement representation. For a 16-bit signed

fixed-point input, a 1 in the ith bit represents a quantity of

2i (0 ≤ i < 15) or −2i (i = 15). Since we have already
decided to provide the input one bit at a time, this is easily

handled – the result of the last dot-product operation undergoes
a shift-and-subtract instead of a shift-and-add.

Similarly, we could have considered a 2’s complement

representation for the synaptic weights in the crossbars too,

and multiplied the quantity produced by the most significant
bit by −215. But because each memristor cell stores two bits,

it is difficult to isolate the contribution of the most significant

bit. Therefore, for synaptic weights, we use a representation
with a bias (similar to the exponent in the IEEE 754 floating-

point standard). A 16-bit fixed-point weight between −215 and

215 − 1 is represented by an unsigned 16-bit integer, and the
conversion is performed by subtracting a bias of 215. Since

the bitline output represents a sum of products with biased
weights, the conversion back to a signed fixed-point value will

require that the biases be subtracted, and we need to subtract

as many biases as the 1s in the input. As discussed before, the
unit column has already counted the number of 1s in the input.

This count is multiplied by the bias of 215 and subtracted from

the end result. The subtraction due to the encoding scheme
and the subtraction due to the bias combine to form a single

subtraction from the end result.

In summary, this section has defined bit representations for

the input values and the synaptic weights so that correct signed
arithmetic can be performed, and the overheads of ADCs

and DACs are kept in check. The proposed approach incurs
additional shift-and-add operations (a minor overhead), 16-

iteration IMA operations to process a 16-bit input, and 8 cells

per synaptic weight. Our design space exploration shows that
these choices best balance the involved trade-offs.

VI. EXAMPLE AND INTRA-TILE PIPELINE

Analog units can be ideal for specific functions. But to

execute a full-fledged CNN/DNN, the flow of data has to
be orchestrated with a number of digital components. This

section describes the operations of these supporting digital

components and how these operations are pipelined.

This is best explained with the example shown in Figure 4.
In this example, layer i is performing a convolution with a 4×4
shared kernel. The layer receives 16 input filters and produces
32 output filters (see Figure 4a). These output filters are fed to

layer i+1 that performs a max-pool operation on every 2× 2
grid. The 32 down-sized filters are then fed as input to layer
i + 2. For this example, assume that kernel strides (Sx and

Sy) are always 1. We assume that one IMA has four crossbar

arrays, each with 128 rows and 128 columns.

Layer i performs a dot-product operation with a 4× 4× 16
matrix, i.e., we need 256 multiply-add operations, or a crossbar

with 256 rows. Since there are 32 output filters, 32 such
operations are performed in parallel. Because each of these

32 operations is performed across 8 2-bit memristor cells in a

row, we need a crossbar with 256 columns. Since the operation
requires a logical crossbar array of size 256× 256, it must be

spread across 4 physical crossbar arrays of size 128 × 128.
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Fig. 4. Example CNN layer traversing the ISAAC pipeline.

A single IMA may be enough to perform the computations
required by layer i.

The outputs of layer i− 1 are stored in the eDRAM buffer

for layer i’s tile. As described in Figure 3, when a new
set of inputs (Ni 16-bit values) shows up, it allows layer i
to proceed with its next operation. This operation is itself
pipelined (shown in detail in Figure 4b), with the cycle time

(100 ns) dictated by the slowest stage, which is the crossbar

read. In the first cycle, an eDRAM read is performed to
read out 256 16-bit inputs. These values are sent over the

shared bus to the IMA for layer i and recorded in the input

register (IR). The IR has a maximum capacity of 1KB and
is implemented with SRAM. The entire copy of up to 1KB

of data from eDRAM to IR is performed within a 100 ns

stage. We design our eDRAM and shared bus to support this
maximum bandwidth.

Once the input values have been copied to the IR, the IMA

will be busy with the dot-product operation for the next 16+
cycles. In the next 16 cycles, the eDRAM is ready to receive

other inputs and deal with other IMAs in the tile, i.e., it
context-switches to handling other layers that might be sharing

that tile while waiting for the result of one IMA.

Over the next 16 cycles, the IR feeds 1 bit at a time for
each of the 256 input values to the crossbar arrays. The first

128 bits are sent to crossbars 0 and 1, and the next 128 bits

are sent to crossbars 2 and 3. At the end of each 100 ns cycle,
the outputs are latched in the Sample & Hold circuits. In the

next cycle, these outputs are fed to the ADC units. The results

of the ADCs are then fed to the shift-and-add units, where the
results are merged with the output register (OR) in the IMA.

The OR is a 128B SRAM structure. In this example, it

produces 32 16-bit values over a 16-cycle period. In each
cycle, the results of the ADCs are shifted and added to the

value in the OR (this includes the shift-and-adds required by
the encoding schemes). Since we have 100 ns to update up to

64 16-bit values, we only need 4 parallel shift-and-add units,

which represents a very small area overhead.

As shown in Figure 4b, at the end of cycle 19, the OR in

the IMA has its final output value. This is sent over the shared

bus to the central units in the tile. These values may undergo
another step of shift-and-adds and merging with the central

OR in the tile if the convolution is spread across multiple

IMAs (not required for layer i in our example). The central
OR contains the final results for neurons at the end of cycle

20. Note that in the meantime, the IMA for layer i has already
begun processing its next inputs, so it is kept busy in every

cycle.
The contents of the central OR are sent to the sigmoid

unit in cycle 21. The sigmoid unit is identical to that used

in DaDianNao, and incurs a relatively small area and power
penalty. Finally, in cycle 22, the sigmoid results are written to

the eDRAM that will provide the inputs for the next layer. In

this case, since layer i+1 is being processed in the same tile,
the same eDRAM buffer is used to store the sigmoid results.

If the eDRAM had been busy processing some other layer

in cycle 22, we would have to implement layer i + 1 on a
different tile to avoid the structural hazard.

To implement the max-pool in layer i + 1 in our example,
4 values from a filter have to be converted into 1 value; this

is repeated for 32 filters. This operation has to be performed

only once every 64 cycles. In our example, we assume that the
eDRAM is read in cycles 23-26 to perform the max-pool. The

max-pool unit is made up of comparators and registers; a very

simple max-pool unit can easily keep up with the eDRAM
read bandwidth. The results of the max-pool are written to the

eDRAM used for layer i+ 2 in cycle 27.
The mapping of layers to IMAs and the resulting pipeline

have to be determined off-line and loaded into control registers
that drive finite state machines. These state machines ensure

that results are sent to appropriate destinations in every cycle.

Data transfers over the c-mesh are also statically scheduled
and guaranteed to not conflict with other data packets. If a

single large CNN layer is spread across multiple tiles, some

of the tiles will have to be designated as Aggregators, i.e.,
they aggregate the ORs of different tiles and then apply the

Sigmoid.

VII. METHODOLOGY

Energy and Area Models

All ISAAC parameters and their power/area values are sum-
marized in Table I. We use CACTI 6.5 [45] at 32 nm to model

energy and area for all buffers and on-chip interconnects. The

memristor crossbar array energy and area model is based on
[26]. The energy and area for the shift-and-add circuits, the

max-pool circuit, and the sigmoid operation are adapted from

the analysis in DaDianNao [9]. For off-chip links, we employ
the same HyperTransport serial link model as that used by

DaDianNao [9].
For ADC energy and area, we use data from a recent

survey [46] of ADC circuits published at major circuit con-

ferences. For most of our analysis, we use an 8-bit ADC
at 32 nm that is optimized for area. We also considered

ADCs that are optimized for power, but the high area and
low sampling rates of these designs made them impractical

(450 KHz in 0.12 mm2 [36]). An SAR ADC has four

major components [36]: a vref buffer, memory, clock, and a
capacitive DAC. To arrive at power and area for the same

style ADC, but with different bit resolutions, we scaled the



power/area of the vref buffer, memory, and clock linearly, and
the power/area of the capacitive DAC exponentially [59].

For most of the paper, we assume a simple 1-bit DAC

because we need a DAC for every row in every memristor
array. To explore the design space with multi-bit DACs, we

use the power/area model in [59].

The energy and area estimates for DaDianNao are taken

directly from that work [9], but scaled from 28 nm to 32 nm
for an apples-to-apples comparison. Also, we assume a similar

sized chip for both (an iso-area comparison) – our analysis in
Table I shows that one ISAAC chip can accommodate 14×12

tiles. It is worth pointing out that DaDianNao’s eDRAM

model, based on state-of-the-art eDRAMs, yields higher area
efficiency than CACTI’s eDRAM model.

Performance Model

We have manually mapped each of our benchmark ap-

plications to the IMAs, tiles, and nodes in ISAAC. Similar
to the example discussed in Section VI, we have made

sure that the resulting pipeline between layers and within a

layer does not have any structural hazards. Similarly, data
exchange between tiles on the on-chip and off-chip network

has also been statically routed without any conflicts. This

gives us a deterministic execution model for ISAAC and the
latency/throughput for a given CNN/DNN can be expressed

with analytical equations. The performance for DaDianNao

can also be similarly obtained. Note that CNNs/DNNs exe-
cuting on these tiled accelerators do not exhibit any run-time

dependences or control-flow, i.e., cycle-accurate simulations

do not capture any phenomena not already captured by our
analytical estimates.

Metrics

We consider three key metrics:

1) CE: Computational Efficiency is represented by the num-
ber of 16-bit operations performed per second per mm2

(GOPS/s×mm2).

2) PE: Power Efficiency is represented by the number of
16-bit operations performed per watt (GOPS/W ).

3) SE: Storage Efficiency is the on-chip capacity for synap-

tic weights per unit area (MB/mm2).

We first compute the peak capabilities of the architectures

for each of these metrics. We then compute these metrics for

our benchmark CNNs/DNNs – based on how the CNN/DNN
maps to the tiles/IMAs, some IMAs may be under-utilized.

Benchmarks

Based on the discussion in Section II-B, we use seven

benchmark CNNs and two DNNs. Four of the CNNs are
versions of the Oxford VGG [63], and three are versions of

MSRA [24] – both are architectures proposed in ILSVRC

2014. DeepFace is a complete DNN [75] while the last work-
load is a large DNN layer [37] also used in the DaDianNao

paper [9]. Table II lists the parameters for these CNNs and
DNNs. The largest workload has 26 layers and 330 million

parameters.

VIII. RESULTS

A. Analyzing ISAAC

Design Space Exploration

ISAAC Tile at 1.2 GHz, 0.37 mm2

Component Params Spec Power Area (mm2)
eDRAM size 64KB 20.7 mW 0.083
Buffer num banks 2

bus width 256 b
eDRAM num wire 384 7 mW 0.090

-to-IMA bus
Router flit size 32 42 mW 0.151

num port 8 (shared by
4 tiles)

Sigmoid number 2 0.52 mW 0.0006
S+A number 1 0.05 mW 0.00006

MaxPool number 1 0.4 mW 0.00024
OR size 3 KB 1.68 mW 0.0032

Total 40.9 mW 0.215 mm2

IMA properties (12 IMAs per tile)
ADC resolution 8 bits 16 mW 0.0096

frequency 1.2 GSps
number 8

DAC resolution 1 bit 4 mW 0.00017
number 8× 128

S+H number 8× 128 10 uW 0.00004
Memristor number 8 2.4 mW 0.0002

array size 128 × 128
bits per cell 2

S+A number 4 0.2 mW 0.00024
IR size 2 KB 1.24 mW 0.0021
OR size 256 B 0.23 mW 0.00077

IMA Total number 12 289 mW 0.157 mm2

1 Tile Total 330 mW 0.372 mm2

168 Tile Total 55.4 W 62.5 mm2

Hyper Tr links/freq 4/1.6GHz 10.4 W 22.88
link bw 6.4 GB/s

Chip Total 65.8 W 85.4 mm2

DaDianNao at 606 MHz scaled up to 32nm
eDRAM size 36 MB 4.8 W 33.22

num banks 4 per tile
NFU number 16 4.9 W 16.22

Global Bus width 128 bit 13 mW 15.7

16 Tile Total 9.7 W 65.1 mm2

Hyper Tr links/freq 4/1.6GHz 10.4 W 22.88
link bw 6.4 GB/s

Chip Total 20.1 W 88 mm2

TABLE I
ISAAC PARAMETERS.

ISAAC’s behavior is a function of many parameters: (1)
the size of the memristor crossbar array, (2) the number of

crossbars in an IMA, (3) the number of ADCs in an IMA,

and (4) the number of IMAs in a tile. The size of the central
eDRAM buffer in a node is set to 64 KB and the c-mesh flit

width is set to 32 bits. These were set to limit the search space

and were determined based on the buffering/communication
requirements for the largest layers in our benchmarks. Many

of the other parameters, e.g., the resolution of the ADC, and
the width of the bus connecting the eDRAM and the IMAs,

are derived from the above parameters to maintain correctness

and avoid structural hazards for the worst-case layers. This
sub-section reports peak CE, PE, and SE values, assuming

that all IMAs can be somehow utilized in every cycle.

Figure 5a plots the peak CE metric on the Y-axis as we
sweep the ISAAC tile design space. The optimal design point

has 8 128×128 arrays, 8 ADCs per IMA, and 12 IMAs per tile.
We refer to this design as ISAAC-CE. The parameters, power,

and area breakdowns shown in Table I are for ISAAC-CE.

Figure 5b carries out a similar design space exploration with
the PE metric. The configuration with optimal PE is referred

to as ISAAC-PE. We observe that ISAAC-CE and ISAAC-



input VGG-1 VGG-2 VGG-3 VGG-4 MSRA-1 MSRA-2 MSRA-3 input DeepFace

size size

224 3x3,64 (1) 3x3,64 (2) 3x3,64 (2) 3x3,64 (2) 7x7,96/2(1) 7x7,96/2(1) 7x7,96/2(1) 152 11x11,32(1)
2x2 maxpool/2 142 3x3 maxpool/2

112 3x3,128 (1) 3x3,128 (2) 3x3,128 (2) 3x3,128 (2) 71 9x9,16/2(1)
2x2 maxpool/2 63 9x9,16(1)*

56 3x3,256 (2) 3x3,256 (2) 3x3,256 (3) 3x3,256 (4) 3x3,256 (5) 3x3,256 (6) 3x3,384 (6) 55 7x7,16/2(1)*
1x1, 256(1)

2x2 maxpool/2 25 5x5,16(1)*
28 3x3,512 (2) 3x3,512 (2) 3x3,512 (3) 3x3,512 (4) 3x3,512 (5) 3x3,512 (6) 3x3,768 (6) FC-4096(1)

1x1,256 (1)
2x2 maxpool/2 FC-4030(1)

14 3x3,512 (2) 3x3,512 (2) 3x3,512 (3) 3x3,512 (4) 3x3,512 (5) 3x3,512 (6) 3x3,896 (6)
1x1,512 (1)

2x2 maxpool/2 spp,7,3,2,1
FC-4096(2)
FC-1000(1)

DNN: Nx = Ny=200, Kx = Ky=18, No = Ni=8

TABLE II
BENCHMARK NAMES ARE IN BOLD. LAYERS ARE FORMATTED AS Kx ×Ky, No /STRIDE (T), WHERE T IS THE NUMBER OF SUCH LAYERS. STRIDE IS 1

UNLESS EXPLICITLY MENTIONED. LAYER* DENOTES CONVOLUTION LAYER WITH PRIVATE KERNELS.

PE are quite similar, i.e., the same design has near-maximum

throughput and energy efficiency.
Table I shows that the ADCs account for 58% of tile power

and 31% of tile area. No other component takes up more than
15% of tile power. Scaling the ISAAC system in the future

would largely be dictated by the ADC energy scaling, which

has historically been improving 2× every 2.6 years, being only
slightly worse than Moore’s Law scaling for digital circuits

[1]. The eDRAM buffer and the eDRAM-IMA bus together

take up 47% of tile area. Many of the supporting digital units
(shift-and-add, MaxPool, Sigmoid, SRAM buffers) take up

negligibly small amounts of area and power.
For the SE metric, we identify the optimal ISAAC-SE

design in Figure 5. We note that ISAAC-CE, ISAAC-PE, and
ISAAC-SE have SE values of 1 MB/mm2, 0.85 MB/mm2,

and 27.59 MB/mm2, respectively. It is worth noting that

while ISAAC-SE cannot achieve the performance and energy
of ISAAC-CE and ISAAC-PE, it can implement a large

network with fewer chips. For example, the large DNN

benchmark can fit in just one ISAAC-SE chip, while it needs
32 ISAAC-CE chips, and 64 DaDianNao chips. This makes

ISAAC-SE an attractive design point when constrained by cost

or board layouts.
As a sensitivity, we also consider the impact of moving

to 32-bit fixed point computations, while keeping the same
bus bandwidth. This would reduce overall throughput by 4×
since latency per computation and storage requirements are
both doubled. Similarly, if crossbar latency is assumed to be

200 ns, throughput is reduced by 2×, but because many of the

structures become simpler, CE is only reduced by 30%.

Impact of Pipelining

ISAAC’s pipeline enables a reduction in the buffering

requirements between consecutive layers and an increase in

throughput. The only downside is an increase in power because
pipelining allows all layers to be simultaneously busy.

Table III shows the input buffering requirements for the

biggest layers in our benchmarks with and without pipelining.

In an ISAAC design without pipelining, we assume a cen-
tral buffer that stores the outputs of the currently executing

layer. The size of this central buffer is the maximum buffer

requirement for any layer in Table III, viz, 1,176 KB. With

the ISAAC pipeline, the buffers are scattered across the tiles.
For our benchmarks, we observe that no layer requires more

than 74 KB of input buffer capacity. The layers with the

largest input buffers also require multiple tiles to store their
synaptic weights. We are therefore able to establish 64 KB

as the maximum required size for the eDRAM buffer in a

tile. This small eDRAM size is an important contributor to
the high CE and SE achieved by ISAAC. Similarly, based on

our benchmark behaviors, we estimate that the inter-tile link

bandwidth requirement never exceeds 3.2 GB/s. We therefore
conservatively assume a 32-bit link operating at 1 GHz.

Ni, k ,Nx No pipeline (KB) With pipeline (KB)
VGG and MSRA

3,3,224 147 1.96
96,7,112 1176 74
64,3,112 784 21
128,3,56 392 21
256,3,28 196 21
384,3,28 294 32
512,3,14 98 21
768,3,14 150 32

Deep Face
142,11,32 142 48
71,3,32 71 6.5
63,9,16 15.75 8.8
55,9,16 13.57 7.7
25,7,16 6.25 2.7

TABLE III
BUFFERING REQUIREMENT WITH AND WITHOUT PIPELINING FOR THE

LARGEST LAYERS.

The throughput advantage and power overhead of pipelining
is a direct function of the number of layers in the benchmark.

For example, VGG-1 has 16 layers and the pipelined version

is able to achieve a throughput improvement of 16× over an
unpipelined version of ISAAC. The power consumption within

the tiles also increases roughly 16× in VGG-1, although,

system power does not increase as much because of the
constant power required by the HyperTransport links.

Impact of Data Layout, ADCs/DACs, and Noise

As the power breakdown in Table I shows, the 96 ADCs

in a tile account for 58% of tile power. Recall that we had



Fig. 5. CE and PE numbers for different ISAAC configurations. H128-A8-C8 for bar I12 corresponds to a tile with 12 IMAs, 8 ADCs per IMA, and 8
crossbar arrays of size 128×128 per IMA.

carefully mapped data to the memristor arrays to reduce these

overheads – we now quantitatively justify those choices.

In our analysis, we first confirmed that a 9-bit ADC is never

worth the power/area overhead. Once we limit ourselves to

using an 8-bit ADC, a change to the DAC resolution or the
bits per cell is constrained by Equations 1 and 2. If one of these

(v or w) is increased linearly, the number of rows per array

R must be reduced exponentially. This reduces throughput per
array. But it also reduces the eDRAM/bus overhead because

the IMA has to be fed with fewer inputs. We empirically

estimated that the CE metric is maximized when using 2 bits
per cell (w = 2). Performing a similar analysis for DAC

resolution v yields maximal CE for 1-bit DACs. Even though
v and w have a symmetric impact on R and eDRAM/bus

overheads, the additional overhead of multi-bit DACs pushes

the balance further in favor of using a small value for v. In
particular, using a 2-bit DAC increases the area and power of

a chip by 63% and 7% respectively, without impacting overall

throughput. Similarly, going from a 2-bit cell to a 4-bit cell
reduces CE and PE by 21% and 41% respectively.

The encoding scheme introduced in Section V allows the

use of a lower resolution 8-bit ADC. Without the encoding
scheme, we would either need a 9-bit ADC or half as many

rows per crossbar array. The net impact is that the encoding

scheme enables a 50% and 80% improvement in CE and
PE, respectively. Because of the nature of Equation 2, a

linear change to ADC resolution has an exponential impact on
throughput; therefore, saving a single bit in our computations

is very important.

Circuit parasitics and noise are key challenges in designing
mixed-signal systems. Hu et al. [26] demonstrate 5 bits per

cell and a 512×512 crossbar array showing no accuracy

degradation compared to a software approach for the MNIST

dataset, after considering thermal noise in memristor, short
noise in circuits, and random telegraphic noise in the crossbar.

Our analysis yields optimal throughput with a much simpler

and conservative design: 1-bit DAC, 2 bits per cell, and
128×128 crossbar arrays. A marginal increase in signal noise

can be endured given the inherent nature of CNNs to tolerate

noisy input data.

B. Comparison to DaDianNao

Table IV compares peak CE, PE, and SE values for

DaDianNao and ISAAC. DaDianNao’s NFU unit has high

computational efficiency – 344 GOPS/s × mm2. Adding
eDRAM banks, central I/O buffers, and interconnects brings

CE down to 63.5 GOPS/s × mm2. On the other hand,

a 128×128 memristor array with 2 bits per cell has a CE
of 1707 GOPS/s × mm2. In essence, the crossbar is a

very efficient way to perform a bulk of the necessary bit

arithmetic (e.g., adding 128 sets of 128 2-bit numbers) in
parallel, with a few shift-and-add circuits forming the tail

end of the necessary arithmetic (e.g., merging 8 numbers).
Adding ADCs, other tile overheads, and the eDRAM buffer

brings the CE down to 479 GOPS/s × mm2. The key to

ISAAC’s superiority in CE is the fact that the memristor array
has very high computational parallelism, and storage density.

Also, to perform any computation, DaDianNao fetches two

values from eDRAM, while ISAAC has to only fetch one input
from eDRAM (thanks to in-situ computing).

An ISAAC chip consumes more power (65.8 W) than a

DaDianNao chip (20.1 W) of the same size, primarily because

it has higher computational density and because of ADC
overheads. In terms of PE though, ISAAC is able to beat

DaDianNao by 119%. This is partially because DaDianNao



Fig. 6. Normalized throughput (top) and normalized energy (bottom) of
ISAAC with respect to DaDianNao.

pays a higher “tax” on HyperTransport power than ISAAC.
The HT is a constant overhead of 10 W, representing half of

DaDianNao chip power, but only 16% of ISAAC chip power.

Architecture CE PE SE

GOPs/(s×mm2) GOPs/W MB/mm2

DaDianNao 63.46 286.4 0.41
ISAAC-CE 478.95 627.5 0.74
ISAAC-PE 409.67 644.2 0.62
ISAAC-SE 103.35 312.5 20.25

TABLE IV
COMPARISON OF ISAAC AND DADIANNAO IN TERMS OF CE, PE, AND

SE. HYPERTRANSPORT OVERHEAD IS INCLUDED.

Next, we execute our benchmarks on ISAAC-CE and Da-

DianNao, while assuming 8-, 16-, 32-, and 64-chip boards.

Figure 6a shows throughputs for our benchmarks for each
case. We don’t show results for the cases where DaDianNao

chips do not have enough eDRAM storage to accommodate all
synaptic weights. In all cases, the computation spreads itself

across all available IMAs (ISAAC) or NFUs (DaDianNao) to

maximize throughput. Figure 6b performs a similar compari-
son in terms of energy.

For large benchmarks on many-chip configurations, DaDi-

anNao suffers from the all-to-all communication bottleneck

during the last classifier layers. As a result, it has low NFU
utilization in these layers. Meanwhile, ISAAC has to replicate

the weights in early layers several times to construct a balanced
pipeline. In fact, in some benchmarks, the first layer has to be

replicated more than 50K times to keep the last layer busy

in every cycle. Since we don’t have enough storage for such
high degrees of replication, the last classifier layers also see

relatively low utilization in the IMAs. Thus, on early layers,

ISAAC has a far higher CE than early layers of DaDian-
Nao – the actual speedups vary depending on the degree of

replication for each layer. In later layers, both operate at low

utilization – DaDianNao because of bandwidth limitations and
ISAAC because of limitations on replication. The net effect of

these phenomena is that on average for 16-chip configurations,

ISAAC-CE achieves 14.8× higher throughput, consumes 95%
more power, and achieves 5.5× lower energy than DaDianNao.

While we don’t compare against state-of-the-art GPU im-

plementations of CNNs, we note that a 64-chip DaDianNao [9]
has already been shown to have 450× speedup and 150×
lower energy than an NVIDIA K20M GPU.

IX. RELATED WORK

Accelerators. Accelerators have been designed for several
application domains, e.g., databases [76], Memcached [40],

and machine learning algorithms for image [34], [38] and

speech [19] recognition. DianNao [8] highlights the memory
wall and designs an accelerator for CNNs and DNNs that

exploit data reuse with tiling. The inherent sharing of weights
in CNNs is explored in ShiDianNao [13]. Origami [7] is

an ASIC architecture that tries to reduce I/O Bandwidth for

CNNs. The PuDianNao accelerator [41] focuses on a range of
popular machine learning algorithms and constructs common

computational primitives. CNNs have also been mapped to

FPGAs [11], [15], [16]. The Convolution Engine [55] identifies
data flow and locality patterns that are common among kernels

of image/video processing and creates custom units that can

be programmed for different applications. Minerva [57] auto-
mates a co-design approach across algorithm, architecture, and

circuit levels to optimize digital DNN hardware. RedEye [39]

moves processing of convolution layers to an image sensor’s
analog domain to reduce computational burden. Neurocube

[31] maps CNNs to 3D high-density high-bandwidth memory
integrated with logic, forming a mesh of digital processing

elements. The sparsity in CNN parameters and activations

are leveraged by EIE [62] to design an accelerator for sparse
vector-matrix multiplication.

Neuromorphic Computing. A related body of neural-

inspired architectures includes IBM’s neurosynaptic core [44]

that emulates biological neurons. At the moment, these archi-
tectures [27], [44], [47], based on spiking neural networks, are

competitive with CNNs and DNNs in terms of accuracy in a
limited number of domains.

Memristors. Memristors [66] have been primarily targeted

as main memory devices [25], [74], [77]. Memristor crossbars

have been recently proposed for analog dot product computa-
tions [32], [51]. Studies using SPICE models [71] show that

an analog crossbar can yield higher throughput and lower
power than a traditional HPC system. Mixed-signal compu-

tation capabilities of memristors have been used to speed

up neural networks [33], [42], [43], [53]. In-situ memristor
computation has also been used for perceptron networks to

recognize patterns in small scale images [78]. Bojnordi et al.

design an accelerator for Boltzmann machine [4], using in-
situ memristor computation to estimate a sum of products

of two 1-bit numbers and a 16-bit weight. A few works

have attempted training on memristors [2], [53], [65]. Other
emerging memory technologies (e.g., PCM) have also been

used as synaptic weight elements [6], [68]. None of the above

works are targeted at CNNs or DNNs. Chi et al. [10] propose
PRIME, a morphable PIM structure for ReRAM based main

memory with carefully designed peripheral circuits that allow
arrays to be used as memory, scratchpads, and dot product

engines for CNN workloads. The data encoding and pipelining

in ISAAC and PRIME are both very different. While PRIME
can support positive and negative synapses, input vectors must

be unsigned. Also, the dot-product computations in PRIME are



lossy because the precision of the ADC does not always match
the precision of the computed dot-product.

Hardware Neural Networks. A number of works have
designed hardware neural networks and neuromorphic circuits

using analog computation [5], [29], [52], [60], [61], [72] to
take advantage of faster vector-matrix multiplication [18], [56].

Neural network accelerators have also been built for signal

processing [3] with configurable digital-analog models, or for
defect tolerant cores [14], [22], [73]. Neural models have been

used to speedup approximate code [20] using limited precision

analog hardware [64].

Large Scale Computing. DjiNN [23] implements a high

throughput DNN service cloud infrastructure using GPU
server designs. Microsoft has published a whitepaper [50] on

extending the Catapult project [54] to deploy CNN workloads
on servers augmented with FPGAs.

X. CONCLUSIONS

While the potential for crossbars as analog dot product

engines is well known, our work has shown that a number
of challenges must be overcome to realize a full-fledged CNN

architecture. In particular, a balanced inter-layer pipeline with

replication, an intra-tile pipeline, efficient handling of signed
arithmetic, and bit encoding schemes are required to deliver

high throughput and manage the high overheads of ADCs,
DACs, and eDRAMs. We note that relative to DaDianNao,

ISAAC is able to deliver higher peak computational and power

efficiency because of the nature of the crossbar, and in spite
of the ADCs accounting for nearly half the chip power. On

benchmark CNNs and DNNs, we observe that ISAAC is

able to out-perform DaDianNao significantly in early layers,
while the last layers suffer from under-utilization in both

architectures. On average for a 16-chip configuration, ISAAC

is able to yield a 14.8× higher throughput than DaDianNao.
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