
Extraction of Entailed Semantic Relations Through
Syntax-based Comma Resolution

Vivek Srikumar 1 Roi Reichart2 Mark Sammons1 Ari Rappoport 2 Dan Roth1

1University of Illinois at Urbana-Champaign
{vsrikum2|mssammon|danr }@uiuc.edu

2Institute of Computer Science, Hebrew University of Jerusalem
{roiri|arir }@cs.huji.ac.il

Abstract

This paper studies textual inference by inves-
tigating comma structures, which are highly
frequent elements whose major role in the ex-
traction of semantic relations has not been
hitherto recognized. We introduce the prob-
lem of comma resolution, defined as under-
standing the role of commas and extracting the
relations they imply. We show the importance
of the problem using examples from Tex-
tual Entailment tasks, and presentA Sentence
Transformation Rule Learner (ASTRL), a ma-
chine learning algorithm that uses a syntac-
tic analysis of the sentence to learn sentence
transformation rules that can then be used to
extract relations. We have manually annotated
a corpus identifying comma structures and re-
lations they entail and experimented with both
gold standard parses and parses created by a
leading statistical parser, obtaining F-scores of
80.2% and 70.4% respectively.

1 Introduction
Recognizing relations expressed in text sentences is
a major topic in NLP, fundamental in applications
such as Textual Entailment (or Inference), Question
Answering and Text Mining. In this paper we ad-
dress this issue from a novel perspective, that of un-
derstanding the role of the commas in a sentence,
which we argue is a key component in sentence
comprehension. Consider for example the following
three sentences:

1. Authorities have arrested John Smith, a retired
police officer.

2. Authorities have arrested John Smith, his friend
and his brother.

3. Authorities have arrested John Smith, a retired
police officer announced this morning.

Sentence (1) states that John Smith is a retired
police officer. The comma and surrounding sen-
tence structure represent the relation ‘IsA’. In (2),
the comma and surrounding structure signifies a list,
so the sentence states that three people were ar-
rested: (i) John Smith, (ii) his friend, and (iii) his
brother. In (3), a retired police officer announced
that John Smith has been arrested. Here, the comma
and surrounding sentence structure indicate clause
boundaries.

In all three sentences, the comma and the sur-
rounding sentence structure signify relations essen-
tial to comprehending the meaning of the sentence,
in a way that is not easily captured using lexical-
or even shallow parse-level information. As a hu-
man reader, we understand them easily, but auto-
mated systems for Information Retrieval, Question
Answering, and Textual Entailment are likely to en-
counter problems when comparing structures like
these, which are lexically similar, but whose mean-
ings are so different.

In this paper we present an algorithm forcomma
resolution, a task that we define to consist of (1) dis-
ambiguating comma type and (2) determining the
relations entailed from the sentence given the com-
mas’ interpretation. Specifically, in (1) we assign
each comma to one of five possible types, and in
(2) we generate a set of natural language sentences
that express the relations, if any, signified by each
comma structure. The algorithm uses information
extracted from parse trees. This work, in addition to
having immediate significance for natural language
processing systems that use semantic content, has
potential applications in improving a range of auto-

mated analysis by decomposing complex sentences
into a set of simpler sentences that capture the same
meaning. Although there are many other widely-
used structures that express relations in a similar
way, commas are one of the most commonly used
symbols1. By addressing comma resolution, we of-
fer a promising first step toward resolving relations
in sentences.

To evaluate the algorithm, we have developed an-
notation guidelines, and manually annotated sen-
tences from the WSJ PennTreebank corpus. We
present a range of experiments showing the good
performance of the system, using gold-standard and
parser-generated parse trees.

In Section 2 we motivate comma resolution
through Textual Entailment examples. Section 3 de-
scribes related work. Sections 4 and 5 present our
corpus annotation and learning algorithm. Results
are given in Section 6.

2 Motivating Comma Resolution Through
Textual Entailment

Comma resolution involves not only comma dis-
ambiguation but also inference of the arguments
(and argument boundaries) of the relationship repre-
sented by the comma structure, and the relationships
holding between these arguments and the sentence
as a whole. To our knowledge, this is the first pa-
per that deals with this problem, so in this section
we motivate it in depth by showing its importance
to the semantic inference task of Textual Entailment
(TE) (Dagan et al., 2006), which is increasingly rec-
ognized as a crucial direction for improving a range
of NLP tasks such as information extraction, ques-
tion answering and summarization.

TE is the task of deciding whether the meaning
of a textT (usually a short snippet) can be inferred
from the meaning of another textS. If this is the
case, we say thatS entailsT . For example2, we say
that sentence (1) entails sentence (2):

1. S: Parviz Davudi was representing Iran at a
meeting of the Shanghai Co-operation Orga-
nization (SCO), the fledgling association that

1For example, the WSJ corpus has 49K sentences, among
which 32K with one comma or more, 17K with two or more,
and 7K with three or more.

2The examples of this section are variations of pairs taken
from the Pascal RTE3 (Dagan et al., 2006) dataset.

binds two former Soviet republics of central
Asia, Russia and China to fight terrorism.

2. T: SCO is the fledgling association that binds
several countries.

To see that (1) entails (2), one must understand
that the first comma structure in sentence (1) is an
apposition structure, and does not indicate the begin-
ning of a list. The second comma marks a boundary
between entities in a list. To make the correct infer-
ence one must determine that the second comma is a
list separator, not an apposition marker. Misclassify-
ing the second comma in (1) as an apposition leads
to the conclusion that (1) entails (3):

3. T: Russia and China are two former Soviet re-
publics of central Asia .

Note that even to an educated native speaker of
English, sentence1 may be initially confusing; dur-
ing the first reading, one might interpret the first
comma as indicating a list, and that ‘the Shanghai
Co-operation Organization’ and ‘the fledgling asso-
ciation that binds...’ are two separate entities that are
meeting, rather than two representations of the same
entity.

From these examples we draw the following con-
clusions: 1. Comma resolution is essential in com-
prehending natural language text. 2. Explicitly rep-
resenting relations derived from comma structures
can assist a wide range of NLP tasks; this can be
done by directly augmenting the lexical-level rep-
resentation, e.g., by bringing surface forms of two
text fragments with the same meaning closer to-
gether. 3. Comma structures might be highly am-
biguous, nested and overlapping, and consequently
their interpretation is a difficult task. The argument
boundaries of the corresponding extracted relations
are also not easy to detect.

The output of our system could be used to aug-
ment sentences with an explicit representation of en-
tailed relations that hold in them. In Textual Entail-
ment systems this can increase the likelihood of cor-
rect identification of entailed sentences, and in other
NLP systems it can help understanding the shallow
lexical/syntactic content of a sentence. A similar ap-
proach has been taken in (Bar-Haim et al., 2007; de
Salvo Braz et al., 2005), which augment the source
sentence with entailed relations.

3 Related Work

Since we focus on extracting the relations repre-
sented by commas, there are two main strands of
research with similar goals: 1) systems that directly
analyze commas, whether labeling them with syn-
tactic information or correcting inappropriate use in
text; and 2) systems that extract relations from text,
typically by trying to identify paraphrases.

The significance of interpreting the role of com-
mas in sentences has already been identified by (van
Delden and Gomez, 2002; Bayraktar et al., 1998)
and others. A review of the first line of research is
given in (Say and Akman, 1997).

In (Bayraktar et al., 1998) the WSJ PennTreebank
corpus (Marcus et al., 1993) is analyzed and a very
detailed list of syntactic patterns that correspond to
different roles of commas is created. However, they
do not study the extraction of entailed relations as
a function of the comma’s interpretation. Further-
more, the syntactic patterns they identify are unlexi-
calized and would not support the level of semantic
relations that we show in this paper. Finally, theirs
is a manual process completely dependent on syn-
tactic patterns. While our comma resolution system
uses syntactic parse information as its main source
of features, the approach we have developed focuses
on theentailed relations, and does not limit imple-
mentations to using only syntactic information.

The most directly comparable prior work is that
of (van Delden and Gomez, 2002), who use fi-
nite state automata and a greedy algorithm to learn
comma syntactic roles. However, their approach dif-
fers from ours in a number of critical ways. First,
their comma annotation scheme does not identify
arguments of predicates, and therefore cannot be
used to extract complete relations. Second, for each
comma type they identify, a new Finite State Au-
tomaton must be hand-encoded; the learning com-
ponent of their work simply constrains which FSAs
that accept a given, comma containing, text span
may co-occur. Third, their corpus is preprocessed by
hand to identify specialized phrase types needed by
their FSAs; once our system has been trained, it can
be applied directly to raw text. Fourth, they exclude
from their analysis and evaluation any comma they
deem to have been incorrectly used in the source
text. We include all commas that are present in the

text in our annotation and evaluation.
There is a large body of NLP literature on punctu-

ation. Most of it, however, is concerned with aiding
syntactic analysis of sentences and with developing
comma checkers, much based on (Nunberg, 1990).

Pattern-based relation extraction methods (e.g.,
(Davidov and Rappoport, 2008; Davidov et al.,
2007; Banko et al., 2007; Pasca et al., 2006; Sekine,
2006)) could in theory be used to extract relations
represented by commas. However, the types of
patterns used in web-scale lexical approaches cur-
rently constrain discovered patterns to relatively
short spans of text, so will most likely fail on
structures whose arguments cover large spans (for
example, appositional clauses containing relative
clauses). Relation extraction approaches such as
(Roth and Yih, 2004; Roth and Yih, 2007; Hirano
et al., 2007; Culotta and Sorenson, 2004; Zelenko et
al., 2003) focus on relations between Named Enti-
ties; such approaches miss the more general apposi-
tion and list relations we recognize in this work, as
the arguments in these relations are not confined to
Named Entities.

Paraphrase Acquisition work such as that by (Lin
and Pantel, 2001; Pantel and Pennacchiotti, 2006;
Szpektor et al., 2004) is not constrained to named
entities, and by using dependency trees, avoids the
locality problems of lexical methods. However,
these approaches have so far achieved limited accu-
racy, and are therefore hard to use to augment exist-
ing NLP systems.

4 Corpus Annotation

For our corpus, we selected 1,000 sentences con-
taining at least one comma from the Penn Treebank
(Marcus et al., 1993) WSJ section 00, and manu-
ally annotated them with comma information3. This
annotated corpus served as both training and test
datasets (using cross-validation).

By studying a number of sentences from WSJ (not
among the 1,000 selected), we identified four signif-
icant types of relations expressed through commas:
SUBSTITUTE, ATTRIBUTE, LOCATION, and LIST.
Each of these types can in principle be expressed us-
ing more than a single comma. We define the notion

3The guidelines and annotations are available athttp://
L2R.cs.uiuc.edu/ ˜ cogcomp/data.php .

of acomma structureas a set of one or more commas
that all relate to the same relation in the sentence.

SUBSTITUTE indicates anIS-A relation. An ex-
ample is ‘John Smith, a Renaissance artist, was fa-
mous’. By removing the relation expressed by the
commas, we can derive three sentences: ‘John Smith
is a Renaissance artist’, ‘John Smith was famous’,
and ‘a Renaissance artist was famous’. Note that in
theory, the third relation will not be valid: one exam-
ple is ‘The brothers, all honest men, testified at the
trial’, which does not entail ‘all honest men testified
at the trial’. However, we encountered no examples
of this kind in the corpus, and leave this refinement
to future work.

ATTRIBUTE indicates a relation where one argu-
ment describes an attribute of the other. For ex-
ample, from ‘John, who loved chocolate, ate with
gusto’, we can derive ‘John loved chocolate’ and
‘John ate with gusto’.

LOCATION indicates aLOCATED-IN relation. For
example, from ‘Chicago, Illinois saw some heavy
snow today’ we can derive ‘Chicago is located in
Illinois’ and ‘Chicago saw some heavy snow today’.

LIST indicates that some predicate or property
is applied to multiple entities. In our annotation,
the list does not generate explicit relations; instead,
the boundaries of the units comprising the list are
marked so that they can be treated as a single unit,
and are considered to be related by the single rela-
tion ‘GROUP’. For example, the derivation of ‘John,
James and Kelly all left last week’ is written as
‘[John, James, and Kelly] [all left last week]’.

Any commas not fitting one of the descriptions
above are designated asOTHER. This does not in-
dicate that the comma signifies no relations, only
that it does not signify a relation of interest in this
work (future work will address relations currently
subsumed by this category). Analysis of120 OTHER

commas show that approximately half signify clause
boundaries, which may occur when sentence con-
stituents are reordered for emphasis, but may also
encode implicit temporal, conditional, and other re-
lation types (for example, ‘Opening the drawer, he
found the gun.’). The remainder comprises mainly
coordination structures (for example, ‘Although he
won, he was sad’) and discourse markers indicating
inter-sentence relations (such as ‘However, he soon
cheered up.’). While we plan to develop an anno-

Rel. Type Avg. Agreement # of Commas # of Rel.s

SUBSTITUTE 0.808 243 729
ATTRIBUTE 0.687 193 386
LOCATION 0.929 71 140
LIST 0.803 230 230
OTHER 0.949 909 0
Combined 0.869 1646 1485

Table 1: Average inter-annotator agreement for identify-
ing relations.

tation scheme for such relations, this is beyond the
scope of the present work.

Four annotators annotated the same 10% of the
WSJ sentences in order to evaluate inter-annotator
agreement. The remaining sentences were divided
among the four annotators. The resulting corpus was
checked by two judges and the annotation corrected
where appropriate; if the two judges disagreed, a
third judge was consulted and consensus reached.
Our annotators were asked to identify comma struc-
tures, and for each structure to write its relation type,
its arguments, and all possible simplified version(s)
of the original sentence in which the relation implied
by the comma has been removed. Arguments must
be contiguous units of the sentence and will be re-
ferred to aschunkshereafter. Agreement statistics
and the number of commas and relations of each
type are shown in Table 4. The Accuracy closely ap-
proximates Kappa score in this case, since the base-
line probability of chance agreement is close to zero.

5 A Sentence Tranformation Rule Learner
(ASTRL)

In this section, we describe a new machine learning
system that learns Sentence Transformation Rules
(STRs) for comma resolution. We first define the
hypothesis space (i.e., STRs) and two operations –
substitution and introduction. We then define the
feature space, motivating the use of Syntactic Parse
annotation to learn STRs. Finally, we describe the
ASTRL algorithm.

5.1 Sentence Transformation Rules

A Sentence Transformation Rule (STR)takes a
parse tree as input and generates new sentences. We
formalize an STR as the pairl → r, wherel is a
tree fragment that can consist of non-terminals, POS
tags and lexical items.r is a set{ri}, each ele-
ment of which is a template that consists of the non-

terminals ofl and, possibly, some new tokens. This
template is used to generate a new sentence, called a
relation.

The process of applying an STRl → r to a parse
treeT of a sentences begins with finding a match for
l in T . A match is said to be found ifl is a subtree
of T . If matched, the non-terminals of eachri are
instantiated with the terminals that they cover inT .
Instantiation is followed by generation of the output
relations in one of two ways:introductionor sub-
stitution, which is specified by the correspondingri.
If an ri is marked as an introductory one, then the
relation is the terminal sequence obtained by replac-
ing the non-terminals inri with their instantiations.
For substitution, firstly, the non-terminals of theri

are replaced by their instantiations. The instantiated
ri replaces all the terminals ins that are covered by
the l-match. The notions of introduction and substi-
tution were motivated by ideas introduced in (Bar-
Haim et al., 2007).

Figure 1 shows an example of an STR and Figure
2 shows the application of this STR to a sentence. In
the first relation,NP1 andNP2 are instantiated with
the corresponding terminals in the parse tree. In the
second and third relations, the terminals ofNP1 and
NP2 replace the terminals covered byNPp.

LHS: NPp

NP1 , NP2 ,

RHS:

1. NP1 beNP2 (introduction)

2. NP1 (substitution)

3. NP2 (substitution)

Figure 1: Example of a Sentence Transformation Rule. If
the LHS matches a part of a given parse tree, then the
RHS will generate three relations.

5.2 The Feature Space

In Section 2, we discussed the example where there
could be an ambiguity between a list and an apposi-
tion structure in the fragmenttwo former Soviet re-
publics, Russia and China. In addition, simple sur-
face examination of the sentence could also identify
the noun phrases‘Shanghai Co-operation Organi-
zation (SCO)’, ‘the fledgling association that binds

S

NPp

NP1

John Smith

, NP2

a renaissance
artist

,

V P

was
famous

RELATIONS:

1 [John Smith]/NP1 be [a renaissance artist]/NP2

2 [John Smith] /NP1 [was famous]

3 [a renaissance artist]/NP2 [was famous]

Figure 2: Example of application of the STR in Figure 1.
In the first relation, an introduction, we use the verb ‘be’,
without dealing with its inflections.NP1 andNP2 are
both substitutions, each replacingNPp to generate the
last two relations.

two former Soviet Republics’, ‘Russia’and ‘China’
as the four members of a list. To resolve such ambi-
guities, we need a nested representation of the sen-
tence. This motivates the use of syntactic parse trees
as a logical choice of feature space. (Note, however,
that semantic and pragmatic ambiguities might still
remain.)

5.3 Algorithm Overview

In our corpus annotation, the relations and their ar-
gument boundaries (chunks) are explicitly marked.
For each training example, our learning algorithm
first finds the smallest valid STR – the STR with the
smallestLHS in terms of depth. Then it refines the
LHS by specializing it using statistics taken from
the entire data set.

5.4 Generating the Smallest Valid STR
To transform an example into the smallest valid
STR, we utilize the augmented parse tree of the
sentence. For each chunk in the sentence, we find
the lowest node in the parse tree that covers the
chunk and does not cover other chunks (even par-
tially). It may, however, cover words that do not
belong to any chunk. We refer to such a node as
achunk root. We then find the lowest node that cov-
ers all the chunk roots, referring to it as thepat-
tern root. The initial LHS consists of the sub-
tree of the parse tree rooted at the pattern root and
whose leaf nodes are all either chunk roots or nodes
that do not belong to any chunk. All the nodes are
labeled with the corresponding labels in the aug-

mented parse tree. For example, if we consider the
parse tree and relations shown in Figure 2, then do-
ing the above procedure gives us the initialLHS

asS (NPp(NP1, NP2,) V P). The three relations
gives us theRHS with three elements ‘NP1 be
NP2’, ‘ NP1 V P ’ and ‘NP1 V P ’, all three being
introduction.

This initialLHS need not be the smallest one that
explains the example. So, we proceed by finding the
lowest node in the initialLHS such that the sub-
tree of theLHS at that node can form a new STR
that covers the example using both introductionand
substitution. In our example, the initialLHS has a
subtree,NPp(NP1, NP2,) that can cover all the re-
lations with theRHS consisting of ‘NP1 beNP2’,
NP1 andNP2. The firstRHS is an introduction,
while the second and the third are both substitutions.
Since no subtree of thisLHS can generate all three
relations even with substitution, this is the required
STR. The final step ensures that we have the small-
est valid STR at this stage.

5.5 Statistical Refinement
The STR generated using the procedure outlined
above explains the relations generated by a single
example. In addition to covering the relations gen-
erated by the example, we wish to ensure that it does
not cover erroneous relations by matching any of the
other comma types in the annotated data.

Algorithm 1 ASTRL : A Sentence Transformation
Rule Learning.
1: for all t: Comma typedo
2: Initialize STRList[t] = ∅
3: p = Set of annotated examples of typet

4: n = Annotated examples of all other types
5: for all x ∈ p do
6: r = Smallest Valid STR that coversx
7: Get fringe ofr.LHS using the parse tree
8: S = Score(r,p,n)
9: Sprev = −∞

10: while S 6= Sprev do
11: if adding some fringe node tor.LHS causes a signifi-

cant change in scorethen
12: Setr = New rule that includes that fringe node
13: Sprev = S

14: S = Score(r,p,n)
15: Recompute new fringe nodes
16: end if
17: end while
18: Add r to STRList[t]
19: Remove all examples fromp that are covered byr
20: end for
21: end for

For this purpose, we specialize theLHS so that it
covers as few examples from the other comma types
as possible, while covering as many examples from
the current comma type as possible. Given the most
general STR, we generate a set of additional, more
detailed, candidate rules. Each of these is obtained
from the original rule by adding a single node to
the tree pattern in the rule’sLHS, and updating the
rule’s RHS accordingly. We then score each of the
candidates (including the original rule). If there is
a clear winner, we continue with it using the same
procedure (i.e., specialize it). If there isn’t a clear
winner, we stop and use the current winner. After
finishing with a rule (line 18), we remove from the
set of positive examples of its comma type all exam-
ples that are covered by it (line 19).

To generate the additional candidate rules that we
add, we define thefringe of a rule as the siblings
and children of the nodes in itsLHS in the original
parse tree. Each fringe node defines an additional
candidate rule, whoseLHS is obtained by adding
the fringe node to the rule’sLHS tree. We refer to
the set of these candidate rules, plus the original one,
as the rule’sfringe rules. We define the score of an
STR as

Score(Rule,p,n) =
Rp

|p|
−

Rn

|n|

wherep andn are the set of positive and negative
examples for this comma type, andRp andRn are
the number of positive and negative examples that
are covered by the STR. For each example, all exam-
ples annotated with the same comma type are pos-
itive while all examples of all other comma types
are negative. The score is used to select the win-
ner among the fringe rules. The complete algorithm
we have used is listed in Algorithm 1. For conve-
nience, the algorithm’s main loop is given in terms
of comma types, although this is not strictly nec-
essary. The stopping criterion in line 11 checks
whether any fringe rule has a significantly better
score than the rule it was derived from, and exits the
specialization loop if there is none.

Since we start with the smallest STR, we only
need to add nodes to it to refine it and never have
to delete any nodes from the tree. Also note that the
algorithm is essentially a greedy algorithm that per-
forms a single pass over the examples; other, more

complex, search strategies could also be used.

6 Evaluation
6.1 Experimental Setup

To evaluate ASTRL, we used the WSJ derived cor-
pus. We experimented with three scenarios; in two
of them we trained using the gold standard trees
and then tested on gold standard parse trees (Gold-
Gold), and text annotated using a state-of-the-art sta-
tistical parser (Charniak and Johnson, 2005) (Gold-
Charniak), respectively. In the third, we trained and
tested on the Charniak Parser (Charniak-Charniak).

In gold standard parse trees the syntactic cate-
gories are annotated with functional tags. Since cur-
rent statistical parsers do not annotate sentences with
such tags, we augment the syntactic trees with the
output of a Named Entity tagger. For the Named
Entity information, we used a publicly available NE
Recognizer capable of recognizing a range of cat-
egories including Person, Location and Organiza-
tion. On the CoNLL-03 shared task, its f-score is
about 90%4. We evaluate our system from different
points of view, as described below. For all the eval-
uation methods, we performed five-fold cross vali-
dation and report the average precision, recall and
f-scores.

6.2 Relation Extraction Performance

Firstly, we present the evaluation of the performance
of ASTRL from the point of view of relation ex-
traction. After learning the STRs for the different
comma types using the gold standard parses, we
generated relations by applying the STRs on the test
set once. Table 2 shows the precision, recall and
f-score of the relations, without accounting for the
comma type of the STR that was used to generate
them. This metric, called theRelation metricin fur-
ther discussion, is the most relevant one from the
point of view of the TE task. Since a list does not
generate any relations in our annotation scheme, we
use the commas to identify the list elements. Treat-
ing each list in a sentence as a single relation, we
score the list with the fraction of its correctly identi-
fied elements.

In addition to the Gold-Gold and Gold-Charniak

4A web demo of the NER is athttp://L2R.cs.uiuc.
edu/ ˜ cogcomp/demos.php .

settings described above, for this metric, we also
present the results of the Charniak-Charniak setting,
where both the train and test sets were annotated
with the output of the Charniak parser. The improve-
ment in recall in this setting over the Gold-Charniak
case indicates that the parser makes systematic er-
rors with respect to the phenomena considered.

Setting P R F
Gold-Gold 86.1 75.4 80.2

Gold-Charniak 77.3 60.1 68.1
Charniak-Charniak 77.2 64.8 70.4

Table 2: ASTRL performance (precision, recall and f-
score) for relation extraction. The comma types were
used only to learn the rules. During evaluation, only the
relations were scored.

6.3 Comma Resolution Performance

We present a detailed analysis of the performance of
the algorithm for comma resolution. Since this paper
is the first one that deals with the task, we could not
compare our results to previous work. Also, there
is no clear baseline to use. We tried a variant of
the most frequent baseline common in other disam-
biguation tasks, in which we labeled all commas as
OTHER (the most frequent type) except when there
are list indicators likeand, or and but in adjacent
chunks (which are obtained using a shallow parser),
in which case the commas are labeledLIST. This
gives an average precision 0.85 and an average recall
of 0.36 for identifying the comma type. However,
this baseline does not help in identifying relations.

We use the following approach to evaluate the
comma type resolutionand relation extraction per-
formance – a relation extracted by the system is con-
sidered correct only if both the relation and the type
of the comma structure that generated it are correctly
identified. We call this metric theRelation-Type
metric. Another way of measuring the performance
of comma resolution is to measure the correctness of
the relations per comma type. In both cases, lists are
scored as in the Relation metric. The performance of
our system with respect to these two metrics are pre-
sented in Table 3. In this table, we also compare the
performance of the STRs learned by ASTRL with
the smallest valid STRs without further specializa-
tion (i.e., using just the procedure outlined in Sec-
tion 5.4).

Type Gold-Gold Setting Gold-Charniak Setting
Relation-Type metric

Smallest Valid STRs ASTRL Smallest Valid STRs ASTRL
P R F P R F P R F P R F

Total 66.2 76.1 70.7 81.8 73.9 77.6 61.0 58.4 59.5 72.2 59.5 65.1

Relations Metric, Per Comma Type
ATTRIBUTE 40.4 68.2 50.4 70.6 59.4 64.1 35.5 39.7 36.2 56.6 37.7 44.9
SUBSTITUTE 80.0 84.3 81.9 87.9 84.8 86.1 75.8 72.9 74.3 78.0 76.1 76.9
LIST 70.9 58.1 63.5 76.2 57.8 65.5 58.7 53.4 55.6 65.2 53.3 58.5
LOCATION 93.8 86.4 89.1 93.8 86.4 89.1 70.3 37.2 47.2 70.3 37.2 47.2

Table 3: Performance of STRs learned by ASTRL and the smallest valid STRs in identifying comma typesand
generating relations.

There is an important difference between the Re-
lation metric (Table 2) and the Relation-type met-
ric (top part of Table 3) that depends on the seman-
tic interpretation of the comma types. For example,
consider the sentence ‘John Smith, 59, went home.’
If the system labels the commas in this as bothAT-
TRIBUTE and SUBSTITUTE, then, both will gener-
ate the relation ‘John Smith is 59.’ According to
the Relation metric, there is no difference between
them. However, there is a semantic difference be-
tween the two sentences – theATTRIBUTE relation
says that being 59 is an attribute of John Smith while
theSUBSTITUTErelation says that John Smith is the
number 59. This difference is accounted for by the
Relation-Type metric.

From this standpoint, we can see that the special-
ization step performed in the full ASTRL algorithm
greatly helps in disambiguating between theAT-
TRIBUTE andSUBSTITUTE types and consequently,
the Relation-Type metric shows an error reduction
of 23.5% and 13.8% in the Gold-Gold and Gold-
Charniak settings respectively. In the Gold-Gold
scenario the performance of ASTRL is much better
than in the Gold-Charniak scenario. This reflects the
non-perfect performance of the parser in annotating
these sentences (parser F-score of 90%).

Another key evaluation question is the per-
formance of the method in identification of the
OTHER category. A comma is judged to be as
OTHER if no STR in the system applies to it.
The performance of ASTRL in this aspect is pre-
sented in Table 4. The categorization of this cate-
gory is important if we wish to further classify the
OTHER commas into finer categories.

Setting P R F
Gold-Gold 78.9 92.8 85.2

Gold-Charniak 72.5 92.2 81.2

Table 4: ASTRL performance (precision, recall and f-
score) forOTHER identification.

7 Conclusions

We defined the task of comma resolution, and devel-
oped a novel machine learning algorithm that learns
Sentence Transformation Rules to perform this task.
We experimented with both gold standard and parser
annotated sentences, and established a performance
level that seems good for a task of this complexity,
and which will provide a useful measure of future
systems developed for this task. When given au-
tomatically parsed sentences, performance degrades
but is still much higher than random, in both sce-
narios. We designed a comma annotation scheme,
where each comma unit is assigned one of four types
and an inference rule mapping the patterns of the
unit with the entailed relations. We created anno-
tated datasets which will be made available over the
web to facilitate further research.

Future work will investigate four main directions:
(i) studying the effects of inclusion of our approach
on the performance of Textual Entailment systems;
(ii) using features other than those derivable from
syntactic parse and named entity annotation of the
input sentence; (iii) recognizing a wider range of im-
plicit relations, represented by commas and in other
ways; (iv) adaptation to other domains.

Acknowledgement

The UIUC authors were supported by NSF grant
ITR IIS-0428472, DARPA funding under the Boot-
strap Learning Program and a grant from Boeing.

References

M. Banko, M. Cafarella, M. Soderland, M. Broadhead,
and O. Etzioni. 2007. Open information extraction
from the web. InProc. of IJCAI, pages 2670–2676.

R. Bar-Haim, I. Dagan, I. Greental, and E. Shnarch.
2007. Semantic inference at the lexical-syntactic level.
In Proc. of AAAI, pages 871–876.

M. Bayraktar, B. Say, and V. Akman. 1998. An analysis
of english punctuation: The special case of comma.
International Journal of Corpus Linguistics, 3(1):33–
57.

E. Charniak and M. Johnson. 2005. Coarse-to-fine n-best
parsing and maxent discriminative reranking. InProc.
of the Annual Meeting of the ACL, pages 173–180.

A. Culotta and J. Sorenson. 2004. Dependency tree ker-
nels for relation extraction. InProc. of the Annual
Meeting of the ACL, pages 423–429.

I. Dagan, O. Glickman, and B. Magnini, editors. 2006.
The PASCAL Recognising Textual Entailment Chal-
lenge., volume 3944. Springer-Verlag, Berlin.

D. Davidov and A. Rappoport. 2008. Unsupervised dis-
covery of generic relationships using pattern clusters
and its evaluation by automatically generated sat anal-
ogy questions. InProc. of the Annual Meeting of the
ACL.

D. Davidov, A. Rappoport, and M. Koppel. 2007. Fully
unsupervised discovery of concept-specific relation-
ships by web mining. InProc. of the Annual Meeting
of the ACL, pages 232–239.

R. de Salvo Braz, R. Girju, V. Punyakanok, D. Roth, and
M. Sammons. 2005. An inference model for seman-
tic entailment in natural language. InProc. of AAAI,
pages 1678–1679.

T. Hirano, Y. Matsuo, and G. Kikui. 2007. Detecting
semantic relations between named entities in text using
contextual features. InProc. of the Annual Meeting of
the ACL, pages 157–160.

D. Lin and P. Pantel. 2001. DIRT: discovery of inference
rules from text. InProc. of ACM SIGKDD Confer-
ence on Knowledge Discovery and Data Mining 2001,
pages 323–328.

M. P. Marcus, B. Santorini, and M. Marcinkiewicz.
1993. Building a large annotated corpus of En-
glish: The Penn Treebank.Computational Linguistics,
19(2):313–330.

G. Nunberg. 1990.CSLI Lecture Notes 18: The Lin-
guistics of Punctuation. CSLI Publications, Stanford,
CA.

P. Pantel and M. Pennacchiotti. 2006. Espresso: Lever-
aging generic patterns for automatically harvesting se-
mantic relations. InProc. of the Annual Meeting of the
ACL, pages 113–120.

M. Pasca, D. Lin, J. Bigham, A. Lifchits, and A. Jain.
2006. Names and similarities on the web: Fact extrac-
tion in the fast lane. InProc. of the Annual Meeting of
the ACL, pages 809–816.

D. Roth and W. Yih. 2004. A linear programming formu-
lation for global inference in natural language tasks. In
Hwee Tou Ng and Ellen Riloff, editors,Proc. of the
Annual Conference on Computational Natural Lan-
guage Learning (CoNLL), pages 1–8. Association for
Computational Linguistics.

D. Roth and W. Yih. 2007. Global inference for en-
tity and relation identification via a linear program-
ming formulation. In Lise Getoor and Ben Taskar, ed-
itors, Introduction to Statistical Relational Learning.
MIT Press.

B. Say and V. Akman. 1997. Current approaches to
punctuation in computational linguistics.Computers
and the Humanities, 30(6):457–469.

S. Sekine. 2006. On-demand information extraction. In
Proc. of the Annual Meeting of the ACL, pages 731–
738.

I. Szpektor, H. Tanev, I. Dagan, and B. Coppola. 2004.
Scaling web-based of entailment relations. InProc. of
EMNLP, pages 49–56.

S. van Delden and F. Gomez. 2002. Combining finite
state automata and a greedy learning algorithm to de-
termine the syntactic roles of commas. InProc. of IC-
TAI, pages 293–300.

D. Zelenko, C. Aone, and A. Richardella. 2003. Kernel
methods for relation extraction.Journal of Machine
Learning Research, 3:1083–1106.

