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1 Introduction

This note briefly summarizes the use of Lagrangian relaxation for inference.
Suppose we want to find the solution to the following problem P:

max
x

f(x) (1)

st. x ∈ X, (2)

cTi x = bi; ∀i = 1 · · ·n (3)

Further, suppose that solving the following maximization problem P′ is compu-
tationally easier:

max
x∈X

f(x) (4)

Lagrangian relaxation is a technique that allows us to use the computation-
ally easier P ′ as a sub-routine to solve P.

2 The algorithm

Let λi be the Langrange multipliers corresponding to the constraints 3. Then,
the Lagrangian is

L(λ,x) = f(x) +

n∑
i=1

λi
(
cTi x− bi

)
(5)

This gives us the following dual objective for the problem P:

max
x∈X

L(λ,x) ≡ Θ(λ) (6)

This objective function is a convex function in λ. Note that some of the con-
straints (x ∈ X) are not moved into the Lagrangian, while the “difficult” con-
straints are associated with dual variables. The dual objective gives us an
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optimization problem equivalent to P. Denote the following dual problem as
D:

min
λ∈<n

Θ(λ) (7)

To solve the problem P, we solve the dual D. Suppose f(x) is linear in x,
denoted by aTx. So, we have

L(λ,x) = aTx +

n∑
i=1

λi
(
cTi x− bi

)
(8)

=

(
aT +

∑
i

λic
T
i

)
x−

∑
i

λibi (9)

≡ âTλx− b̂ (10)

Here, we use the notation â to denote a +
∑
i

λici.

The dual objective Θ is defined as the maximum of the Lagrangian over all
x ∈ X. That is, we have

Θ(λ) = max
x∈X

L(λ,x) (11)

= max
x∈X

âTλx− b̂ (12)

= max
x∈X

âTλx (13)

The last step has the same functional form as the problem P′, which is compu-
tationally efficient to solve. Thus, we can compute the dual objective efficiently.

To solve the actual dual D, we employ sub-gradient descent over Θ. The
partial derivative of the function Θ(λ) with respect to λi is given by

∂Θ

∂λi
= cTi x

∗ − bi, (14)

where, x∗ = arg max
x∈X

âTλx (15)

Using this gradient, we can define the algorithm (Algorithm 1) that optimizes
the problem P using the solver for P′ as a sub-routine.

In this algorithm, the λ’s are updated only if at least one constraint is
violated. Otherwise, the algorithm has found the optimal solution for P and
returns the value.

Notes:

1. It is possible that even after T iterations of the gradient descent, the
solution has not yet been found. In such a case, can something be said
about the quality of the solution?
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Algorithm 1 Using Lagrangian relaxation for solving a “hard” inference prob-
lem P using the solver for an “easier” problem P′ as a sub-routine

1: λ(0) ← 0
2: for t = 1 · · ·T do

3: x∗ ← arg maxx∈X

(
a +

∑
i

λici

)T
x

4: if x∗ satisfies all the n constraints then
5: return x∗

6: else
7: for i = 1 · · ·n do
8: λ

(t)
i ← λ

(t−1)
i − α(t)

(
cTi x

∗ − bi
)

9: end for
10: end if
11: end for

2. The overall problem P asks for the solution in the space that is the in-
tersection of the feasible space for P′ and the additional constraints. The
problem P′ could hide the “integer” constraints over the inference vari-
ables. That is, the solution to P′ could be a dynamic program such as
maximum flow.

3. Even though this note considers equality constraints of the form cTi x = bi,
it is easy to extend these to inequality constraints. Doing so will introduce
additional box constraints in the dual which can be dealt with in the
gradient descent using a projection step.
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