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An one minute version of the talk

What we did

Provide a general recipe for many important NLP problems

Our algorithm: Learning over Constrained Latent Representations

Example NLP problems

Transliteration (Klementiev and Roth 2008),

Textual entailment (RTE) (Dagan, Glickman, and Magnini 2006)

Paraphrase identification (Dolan, Quirk, and Brockett 2004)

Question Answering, and many more!

Problems of Interests

Binary classification tasks that require an intermediate representation
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Example task: Paraphrase Identification

Alan Bob

will said

face Alan

murder will

charges be
, charged

Bob with

said murder

Yes/NO

Q: Are sentence 1 and sentence 2 paraphrases
of each other?

Yes, but why?
They carry the same information!

Justifying the decision requires an
intermediate representation

Just an example; the real intermediate
representation is more complicated

Problem of interests

Binary output problem: y ∈ {−1, 1}
Intermediate representation: h

Some structure that justifies the positive label
The intermediate representation is latent (not present in the data)
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Limitations of existing approaches: two-stage approach

Most systems: a two-stage approach

Stage 1: Generate the intermediate representation

Obtain intermediate representation → Fix it (ignore the second stage) !

X → H

Stage 2: Classification based on the intermediate representation

Extract features using the fixed representation and learn:

Φ(X ,H)→ Y

Problem: the intermediate representation ignores the binary task
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Limitations of existing approaches: inference

Observation: decisions on intermediate representation are
interdependent

Alan Bob

will said

face Alan

murder will

charges be
, charged

Bob with

said murder

Many frameworks use custom designed inference procedures

Difficult to add linguistic intuition/constraints on the intermediate
representation

Difficult to generalize to other tasks
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Learning Constrained Latent Representation (LCLR)

Property 1: Jointly learn intermediate representations and labels

X H Φ(X ,H) Y

feedback

input intermediate rep-
resentation features binary label

Find an intermediate representation that helps the binary task

Property 2: Constraint-based inference for the intermediate representation

Uses integer linear programming on latent variables
Easy to inject constraints on latent variables
Easy to generalize to other tasks
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Outline

1 Motivation and Contribution

2 Property 1: Jointly learn intermediate representations and labels

3 Property 2: Constraint-based inference for the intermediate
representation

4 LCLR: Putting Everything Together

5 Experiments
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The intuition behind the joint approach

Alan Bob

will said

face Alan

murder will

charges be
, charged

Bob with

said murder

Yes/NO

intermediate representation ⇔ {1,−1}
Only positive examples have good
intermediate representations

No negative example has a good intermediate
representation

x: a sentence pair

, weight vector: u

h: an alignment between two sentences
H(x): all possible alignments for x

Pair x1 is positive

There must exist a good explanation that justifies the positive label
∃h, uT Φ(x1, h) ≥ 0

Pair x2 is negative

No explanation is good enough to justify the positive label
∀h, uT Φ(x2, h) ≤ 0
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Geometric interpretation: the case of two examples

Pair x1 is positive
There must exist a good explanation that justifies the positive label

∃h, uT Φ(x1, h) ≥ 0, or maxh uT Φ(x1, h) ≥ 0

Pair x2 is negative
No explanation is good enough to justify the positive label

∀h, uT Φ(x2, h) ≤ 0, or maxh uT Φ(x2, h) ≤ 0

The prediction
function:
maxh uT Φ(x,h)

{Φ(x1,h) | h ∈ H(x1)}

{Φ(x2,h) | h ∈ H(x2)}

u

Φ(x1,h∗1)

Φ(x2,h∗2)
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Integer Linear Programming for LCLR

Declarative Framework

Why is a declarative framework important?

No more custom-designed inference procedures
Easy to generalize to other tasks
Easy to inject constraints and linguistic intuition

Check out the CCM tutorial!

LCLR Declarative Framework
plug in

Paraphrasing

Model input as graphs. Ga: the first sentence. Gb: the second sentence.

Each vertex in Ga can be mapped to at most one vertex in Gb (vice versa)

Each edge in Ga can be mapped to at most one edge in Gb (vice versa)

Edge mapping is active iff the corresponding node mappings are active
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Finding intermediate representation using ILP

Sentence 1 Sentence 2

Alan Bob

will said

face Alan

murder will

charges be
, charged

Bob with

said murder
. .

We need this because of the
formulation. You do not need to
parse the symbols in this page

Γ(x), the set of all “parts” that x can

generate |Γ(x)| = 8x8 = 64

Rewrite h ∈ {0, 1}64 as a binary vector

h = {0, 0, 0, . . . , 1, 0, 0, 1, 1}
A feature vector Φs(x) for every part hs

Inference Problem = ILP formulation (pink box)

max
h∈H

uT Φ(x,h) = max
h∈H

uT
∑

s∈Γ(x)

hsΦs(x)
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LCLR: The objective function

Review: Logistic Regression and
Support Vector Machine

Decision Function: f (x, u) ≥ 0

Objective Function:

min
u

1

2
‖u‖2 + C

lX
i=1

`(−yi f (x, u) )
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LCLR: The objective function

Learning over Constrained Latent Representations

Decision Function (ILP): f (x, u)≥ 0

Objective Function

min
u

1

2
‖u‖2 + C

lX
i=1

`(−yi f (x, u) )

Beyond standard LR/SVM

Solves an inference problem (max) to select h (also affect features)
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Challenges in optimizing the objective function

minu
1
2‖u‖

2 + C
∑l

i=1 `(−yi max
h∈H

uT
∑

s∈Γ(x) hsΦs(x) )

�� ��Not a regular LR/SVM

LCLR has an inference procedure inside the minimization problem

�� ��No shortcut

Find the best representation for all examples

Obtain a new weight vector using a LR/SVM package with the
updated representations.

Repeat.

Does not minimize the objective function
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LCLR: optimization procedure

Algorithm

1: Find the best intermediate representations for positive examples

2: Find the weight vector with this intermediate representation

Still need to do inference for negative examples
Not a regular SVM problem even in this step!

3: Repeat!

This algorithm converges when ` is monotonically increasing and convex.

Properties of the algorithm: Asymmetric nature

Asymmetry between positive and negative examples

Converting a non-convex problem into a series of smaller convex
problems
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Comparison to other latent variable frameworks

Inference procedure

Other frameworks often use application-specific inference.

LCLR allows you to add constraints and generalize to other tasks.

Learning

Not only for SVM. Many different loss functions can be used.

Dual coordinate descent methods and cutting plane method

Fewer parameters to tune. Allows parallel inference procedure.

CRF-like latent variable framework

LCLR can use logistic regression and have a probabilistic
interpretation

LCLR solves the “max” problem. CRF-like models solves the “sum”
problem. “Max” enables adding constraints. Jump
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Experimental setting

Tasks

Transliteration: Is named entity B a transliteration of A?

Textual Entailment: Can sentence A entail sentence B?

Paraphrase Identification

Goal of experiments

Determine if a joint approach be better than a two-stage approach?

Two-stage approach versus LCLR

Exactly the same features and definition of latent structures

Our two-stage approach uses a domain-dependent heuristic to find
an intermediate representation
LCLR finds the intermediate representation automatically

Initialization of LCLR: two-stage
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Experimental results

Transliteration System Joint ILP Acc MRR
(Goldwasser and Roth 2008) ?

N/A 89.4

Our two-stage ?

80.0 85.7

Our LCLR ? ?

92.3 95.4

Entailment System Joint ILP Acc
Median of TAC 2009 systems

61.5

Our two-stage ?

65.0

Our LCLR ? ?

66.8
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Paraphrase Identification

Paraphrase System Joint ILP Acc
Experiments using (Dolan, Quirk, and Brockett 2004)

(Qiu, Kan, and Chua 2006) 72.00
(Das and Smith 2009) ? 73.86
(Wan, Dras, Dale, and Paris 2006) 75.60
Our two-stage ?

76.23

Our LCLR ? ?

76.41
Experiments using Noisy data set

Our two-stage ?

72.00

Our LCLR ? ?

72.75
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Conclusions

LCLR = Constraint-based Inference + Large Margin Learning

Contributions

LCLR joint approach is better than two-stage approaches

LCLR allows the use of constraints on latent variables

A novel learning framework

Bonus: Learning Structures with Indirect Supervision

Easy to get binary labeled data can be used to improve learning
structures!

Check out our ICML paper this year!
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Thank you!

Thank you!!

Our learning code is available: the JLIS package

http://l2r.cs.uiuc.edu/~cogcomp/software.php
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Main Idea: Learning with indirect supervision

machine
learning
model

labeled
structures

testing data
training testing

unlabeled
examples

training

indirect supervision

training

Indirect supervision: the supervision form that does not tell you the
target output directly

Advantage of using indirect supervision

Can directly use human/domain knowledge to improve the model

Allow us to use supervision signals that are a lot easier to obtain
than labeling structures

Use existing labeled data for the related tasks

Indirect supervision greatly reduce the supervision effort!
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Compared to CRF-like latent variable framework

CRF-like latent variable framework

P(y = 1|x) =
∑

h

P(y = 1,h|x) =

∑
h exp(uTφ(x,h, y = 1))∑

h,y exp(uTφ(x,h, y))

LCLR with logistic loss

P(y = 1|x) =
maxh exp(uTφ(x,h))

1 + maxh exp(uTφ(x,h))

Difference 1: LCLR only models the “goodness”

This is important for many NLP problems, where only positive
examples have good representations.

Difference 2: LCLR only need to solve the max inference

Sometimes calculating sum is a lot harder!!

Jump back
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Paraphrase Identification: Revisited

Sentence 1 Sentence 2

Alan Bob

will said

face Alan

murder will

charges be
, charged

Bob with

said murder
. .

Left: The intermediate representation is
not expressive enough

For example, “word ordering” is a
problem

The real setting

Input: two word sequence → two
graphs.
We used Stanford Parser to construct
dependency parse trees for each
sentence

Integer Linear Programming to solve the graph matching problem

Four types of sub-structure: node matching, node-deletion, edge
matching, edge-deletion

Add constraints to enforce consistency

edge matching if and only if the corresponding nodes are matched

Jump Back
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