

A Joint Model for Extended Semantic Role Labeling

Vivek Srikumar and Dan Roth

The punch line

- 1. Sentences express relations via several surface phenomena
- 2. These interact with each other
- 3. We present a model for joint inference *without* relearning existing state-of-the-art systems

The field goal of Brien changed the game in the fourth quarter.

When did the game change?

The field goal of Brien changed the game in the fourth quarter.

When did the game change?

Let's ask the Semantic Role Labeler

Punyakanok et al 2008, Toutanova et al 2008

The field goal of Brien changed the game in the fourth quarter.

A0: The causer of the transformation A1: The thing changing

AM-TMP: Temporal

When did the game change?

Let's ask the Semantic Role Labeler

Punyakanok et al 2008, Toutanova et al 2008

The field goal of Brien changed the game in the fourth quarter.

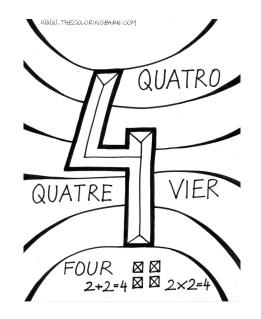
A0: The causer of the transformation A1: The thing changing

AM-TMP: Temporal

When did the game change?

Let's ask the Semantic Role Labeler

Punyakanok et al 2008, Toutanova et al 2008



The field goal of Brien changed the game in the fourth quarter.

A0: The causer of the transformation A1: The thing changing

AM-TMP: Temporal

Who scored the field goal?

The field goal of Brien changed the game in the fourth quarter.

A1: The thing

A0: The causer of the transformation

Who scored the field goal?

The field goal of Brien changed the game in the fourth quarter.

A1: The thing

A0: The causer of the transformation

Who scored the field goal?

Verb SRL doesn't help us here!

The field goal and Brien are connected by the preposition *of*



AM-TMP: Temporal

The field goal of Brien changed the game in the fourth quarter.

A0: The causer of the transformation

Who scored the field goal?

Verb SRL doesn't help us here!

The field goal and Brien are connected by the preposition *of*

Sentences express relations via several linguistic phenomena (not just verbs and nominalizations) Prepositions, compound nouns, commas...

A1: The thing changing

AM-TMP: Temporal

The field goal of Brien changed the game in the fourth quarter.

A0: The causer of the transformation A1: The thing changing

AM-TMP: Temporal

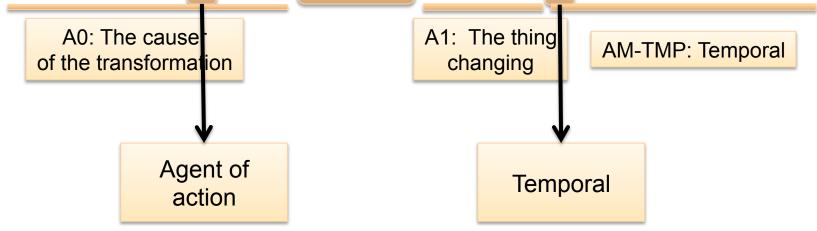
The field goal of Brien changed the game in the fourth quarter.

A0: The causer of the transformation A1: The thing changing

AM-TMP: Temporal

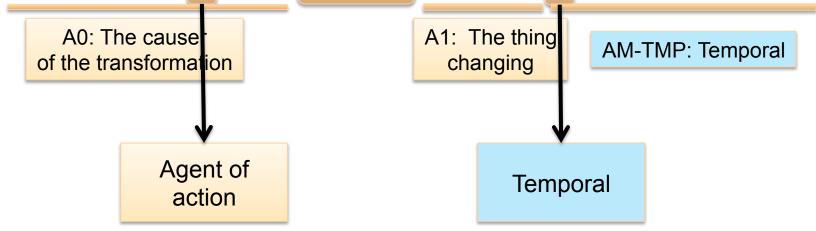
Prepositions indicate semantic relations

The field goal of Brien changed the game in the fourth quarter.



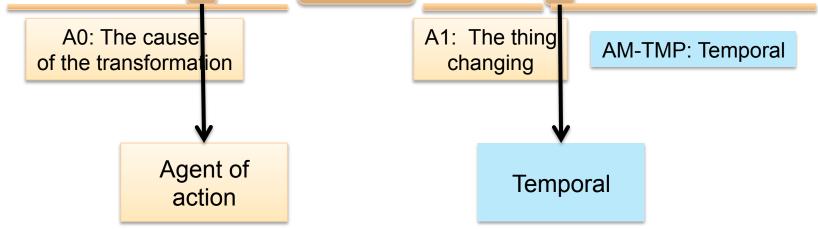
Prepositions indicate semantic relations

The field goal of Brien changed the game in the fourth quarter.



Prepositions indicate semantic relations

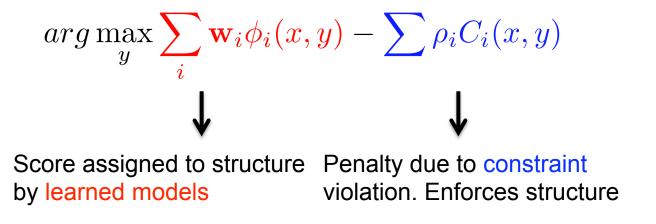
The field goal of Brien changed the game in the fourth quarter.

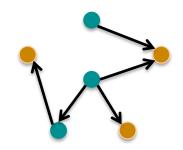


- Prepositions indicate semantic relations
- The different linguistic phenomena interact with each other

The model: A Constrained Conditional Model

[Chang et al 2007, 2008]

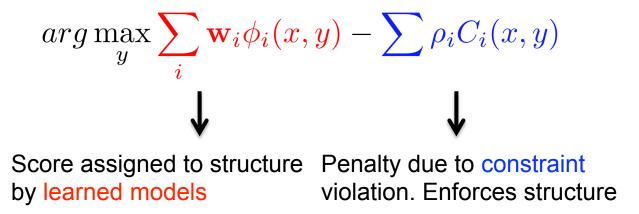


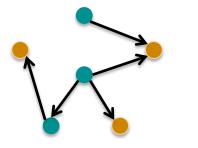


A set of labeled parts

The model: A Constrained Conditional Model

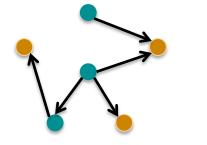
[Chang et al 2007, 2008]

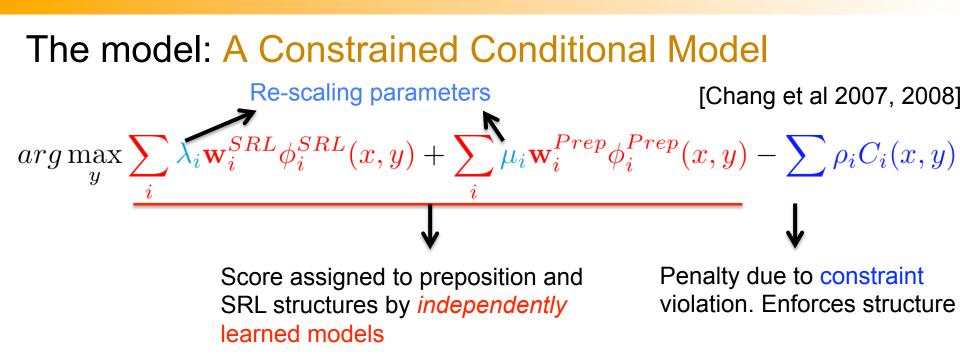


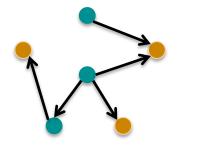


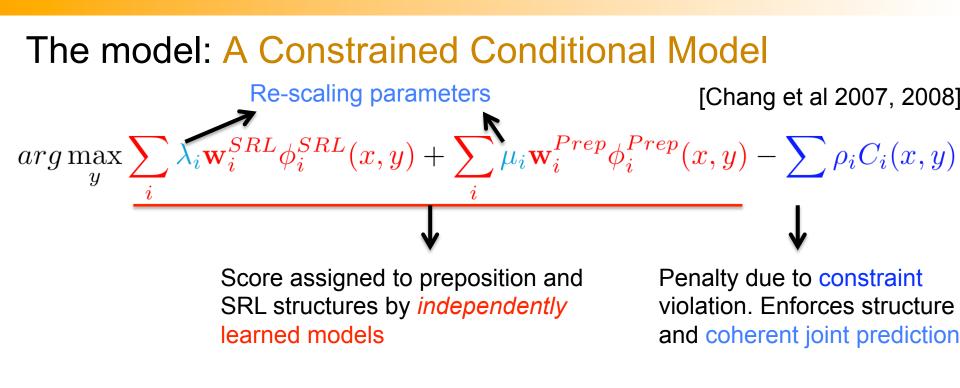
The model: A Constrained Conditional Model

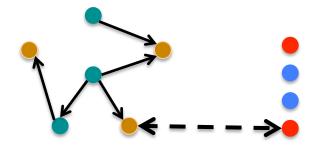
[Chang et al 2007, 2008]











Outline

Tasks and data

The model

Experiments and results

Outline

Tasks and data

The model

Experiments and results

Task 1: Verb Semantic Role Labeling

- Identifying the predicate argument structure of verbs in sentences
- Standard Propbank annotation over PennTreebank
- Formed the basis of CoNLL shared tasks (Carreras and Marques, 2004, 2005)

Our baseline

- Modified version of the Illinois Verb SRL system
 [Koomen, Punyakanok, Roth and Yih, 2005], [Punyakanok, Roth and Yih 2008]
- Consists to two learned models:
 - Argument identifier: Scores argument candidates for whether they are actually arguments
 - Argument classifier: Assigns scores for argument labels for each candidate
 - Null is also a label

Inference:

- Ensures that the output is a well formed structure
- Ensures that the argument identifier and the classifier agree

Total argument

classifier score

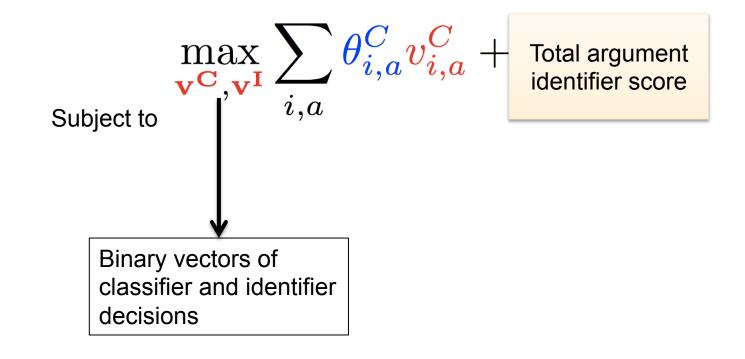
max

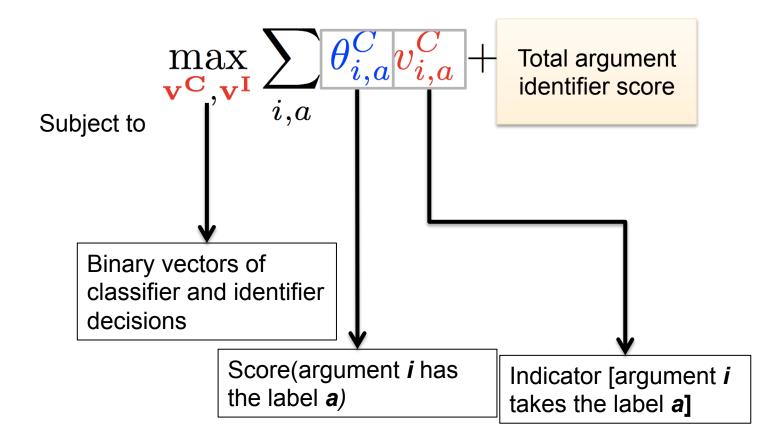
Subject to

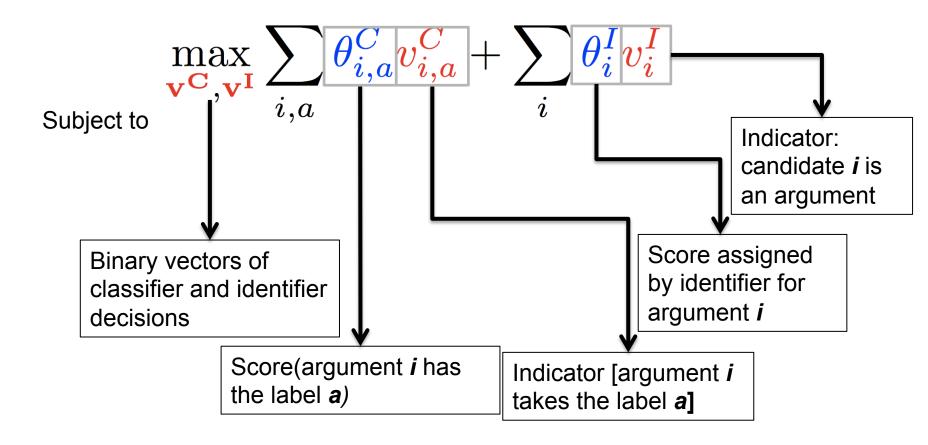
Constraints between output variables

Total argument

identifier score







$$\max_{\mathbf{v}^{\mathbf{C}},\mathbf{v}^{\mathbf{I}}}\sum_{i,a}\frac{\theta_{i,a}^{C}v_{i,a}^{C}}{i} + \sum_{i}\frac{\theta_{i}^{I}v_{i}^{I}}{i}$$

Subject to

Constraints between output variables

$$\max_{\mathbf{v}^{\mathbf{C}},\mathbf{v}^{\mathbf{I}}}\sum_{i,a} \frac{\theta_{i,a}^{C}v_{i,a}^{C}}{i} + \sum_{i} \frac{\theta_{i}^{I}v_{i}^{I}}{i}$$

Subject to

Each candidate can have exactly one label

No duplicate core arguments

No overlapping or embedding arguments

Some argument labels are illegal, depending on the predicate

R-arg and C-arg constraints

Agreement between identifier and classifier decisions

Task 2: Preposition Role Labeling

- Determining the role of the preposition phrase in relation to its attachment point
 - Prepositions are highly polysemous

Task 2: Preposition Role Labeling

- Determining the role of the preposition phrase in relation to its attachment point
 - Prepositions are highly polysemous

live at Conway Housecame on Sep. 26th priced at 9 poundslook at the watchstopped at the stationstopped at 9 PMdrive at 50 mphthe camp on the islandcooler in evening

Task 2: Preposition Role Labeling

- Determining the role of the preposition phrase in relation to its attachment point
 - Prepositions are highly polysemous

Location	Temporal	Numeric/Level	Object of verb
live at Conway House	came <mark>on</mark> Sep. 26 th	priced <mark>at</mark> 9 pounds	look at the watch
stopped at the station	stopped <mark>at</mark> 9 PM	drive <mark>at</mark> 50 mph	
the camp <mark>on</mark> the island	cooler in evening		

M P A I G N

Preposition Role Labeling

- Related to the preposition sense disambiguation task of SemEval 2007
 - SemEval 2007 [Litkowski and Hargraves, 2007]
 - Penn Treebank (02-04, 23) [Dahlmeier, Ng, Schultz 2009]
- Preposition roles obtained by merging semantically related senses of different prepositions
- Totally 22 preposition labels obtained
 Restricted to at, in, for, of, on, to, with

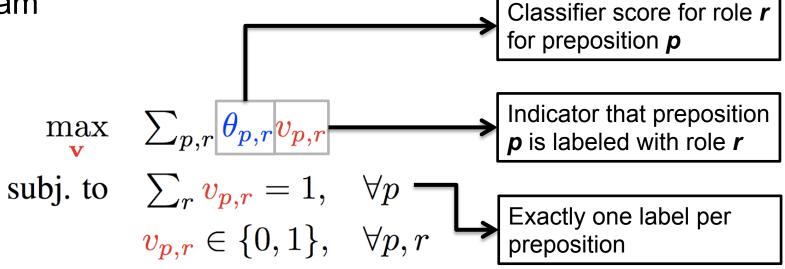
Predicting preposition roles

A multiclass classifier based on state-of-the-art sense disambiguation features of [Hovy et al 2009, 2010]

1(

Predicting preposition roles

- A multiclass classifier based on state-of-the-art sense disambiguation features of [Hovy et al 2009, 2010]
- The prediction can be represented as an integer linear program
 Classifier score for



Outline

Tasks and data

The model

Experiments and results

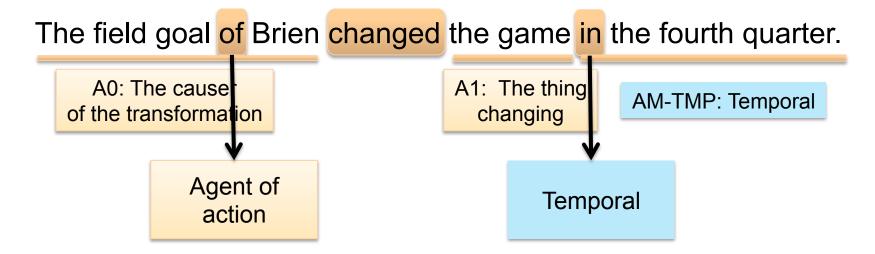
Overview of the model

Key intuition

The correct interpretation of a sentence is the one that gives a consistent analysis across all the linguistic phenomena expressed in it

We have two tasks each with their own datasets and learned models

The ideal joint model



- 1. Should account for dependencies between linguistic phenomena
- 2. Should be extensible to allow for easy addition of new phenomena
- 3. Should be able to use existing state of the art models
- 4. Should minimize use of expensive jointly labeled data

Dependencies between tasks

Joint constraints linking the two tasks. For example,

□ If a verb argument that starts with in is labeled **AM-TMP**, then the preposition should be labeled **Temporal**

If a verb attached preposition is labeled **Temporal**, then there should be some verb argument that starts with that preposition and is labeled **AM-TMP**

Note: These constraints are universally quantified over verb argument candidates that start with a preposition.

Maximize overall score

Subject to

Phenomena specific constraints

and

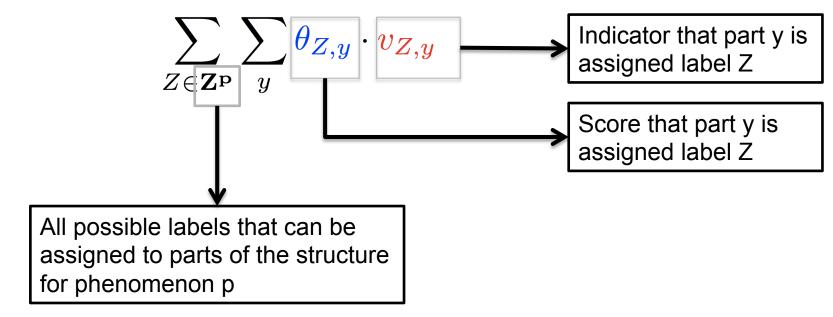
Joint constraints

Maximize overall score

For a single phenomenon p, the score is given by:

$$\sum_{Z \in \mathbf{Z}^{\mathbf{p}}} \sum_{y} \theta_{Z,y} \cdot v_{Z,y}$$

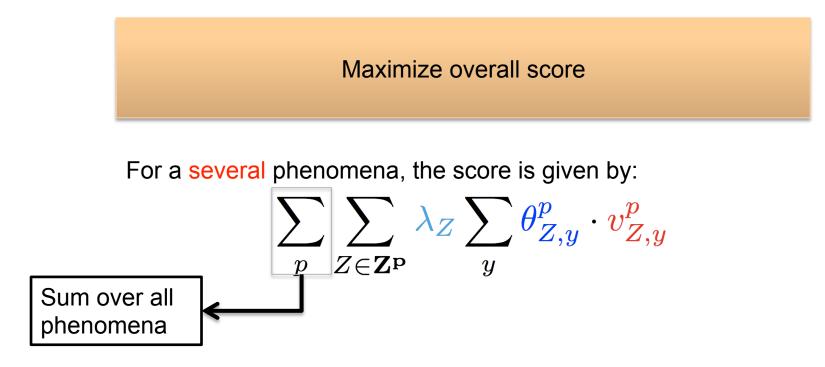
For a single phenomenon p, the score is given by:



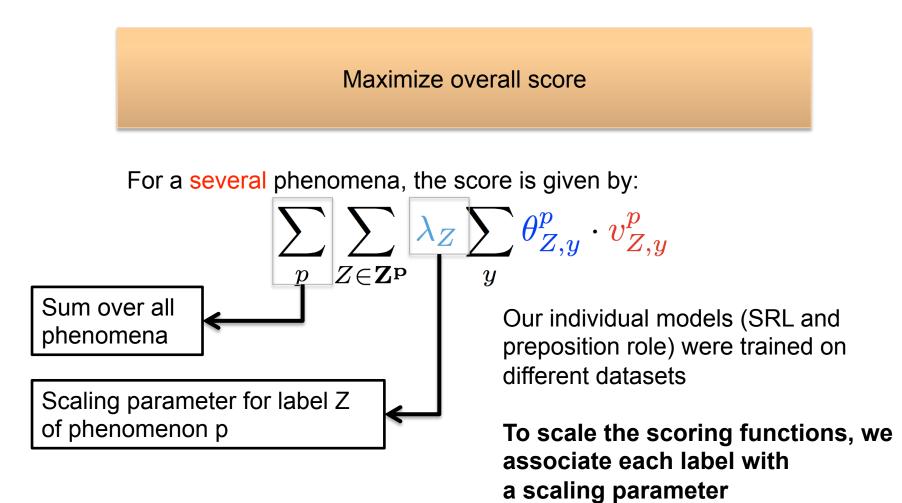
Maximize overall score

For a several phenomena, the score is given by:

$$\sum_p \sum_{Z \in \mathbf{Z}^{\mathbf{p}}} \lambda_Z \sum_y oldsymbol{ heta}_{Z,y}^p \cdot v_{Z,y}^p$$



Joint inference



COMPUTATION GROUP

Maximize overall score

Subject to

Phenomena specific constraints

and

Joint constraints

Joint inference

 $\max_{\mathbf{v}} \sum_{p} \sum_{Z \in \mathbf{Z}^{\mathbf{p}}} \lambda_{Z} \sum_{y} \theta_{Z,y}^{p} \cdot v_{Z,y}^{p}$

Subject to

Phenomena specific constraints

and

Joint constraints

Learning to scale

The joint model only requires re-scaling parameters
 One parameter per label

 Trained with Structure Perceptron on a very small jointly labeled corpus

An ideal joint model

- 1. Should account for dependencies between linguistic phenomena
- 2. Should be extensible to allow for easy addition of new phenomena
- 3. Should be able to use existing state of the art models with minimal use of expensive jointly labeled data

An ideal joint model

1. Should account for dependencies between linguistic phenomena

Joint constraints

- 2. Should be extensible to allow for easy addition of new phenomena As easy as adding new terms to the inference
- 3. Should be able to use existing state of the art models with minimal use of expensive jointly labeled data

Only rescales label scores

Outline

Tasks and data

The model

Experiments and results

Constraints: Background knowledge

- A combination of hand written and automatically extracted constraints
 - Hand written constraints
 - Each verb attached preposition that is labeled as **Temporal** should correspond to the start of some **AM-TMP**
 - For verb attached prepositions, some roles should correspond to an non-null argument label
- Extracted constraints for arguments that start with a preposition using Treebank data
 - Set of allowed verb argument labels for each role and vice versa
 Included only those constraints that had a support of ten

Settings and data

- Trained on Penn Treebank data
 - Verb SRL: All sections
 - Preposition role: Sections 2-4
- Test performance on Section 23
- First 500 sentences of Section 02 held out for training rescaling weights
- Inference is done with an ILP solver using a cutting plane solver

Comparisons

Comparison with baselines and pipeline

Baseline: Existing Verb SRL and preposition role classifiers

- Pipelines:
 - Verb → Preposition role: SRL prediction added to the preposition's feature set if an argument started with the preposition
 - Preposition
 → Verb SRL: Preposition role prediction added to the verb argument candidate's features if the candidate started with the preposition

Verb SRL

Independent

Prep. Role -> SRL

Joint inference

Preposition Role

Independent SRL-> Prep. Role Joint inference

Accuracy

Verb SRL

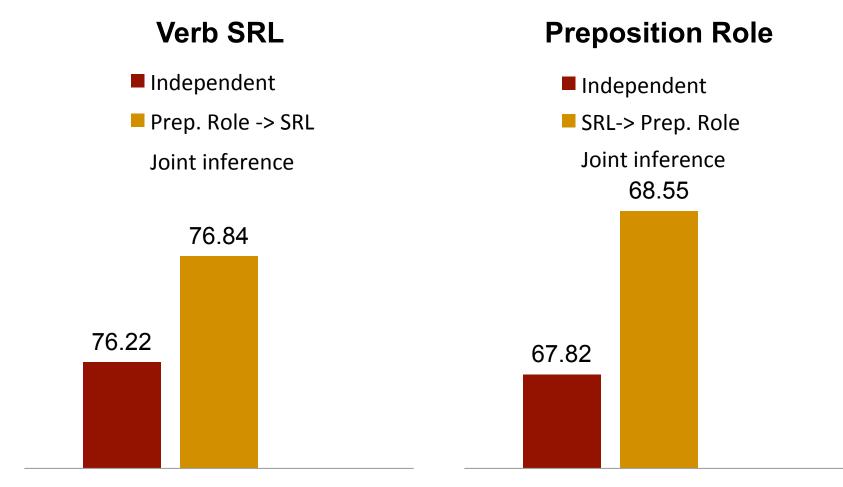
Independent

Prep. Role -> SRL

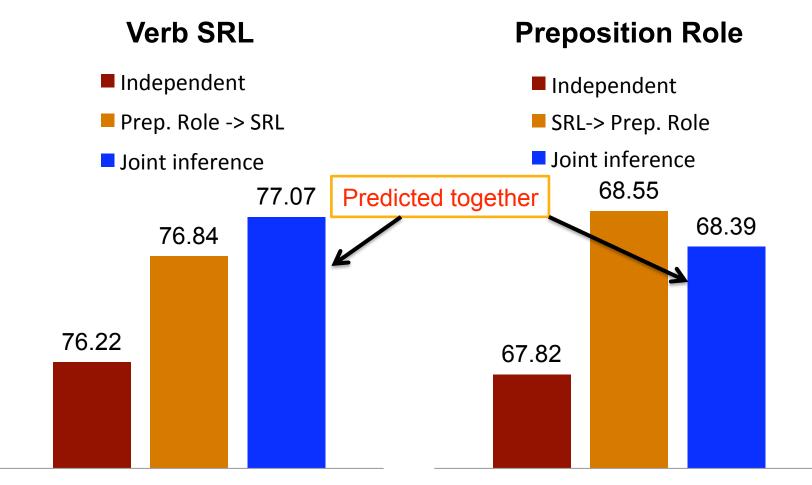
Joint inference

Preposition Role

Independent SRL-> Prep. Role Joint inference



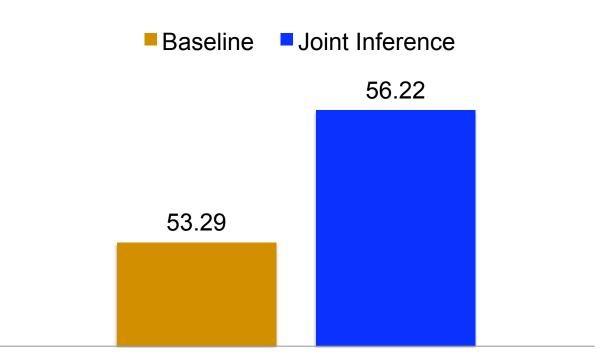
Accuracy



Accuracy

Adaptation

 Replaced preposition classifier with one trained on SemEval data



Accuracy

Conclusion

- 1. Sentences express relations via several linguistic phenomena, which interact with each other
- 2. A model for joint inference without re-learning existing state-of-the-art systems to improve them
- 3. Easily extensible to include other tasks

Conclusion

- 1. Sentences express relations via several linguistic phenomena, which interact with each other
- 2. A model for joint inference without re-learning existing state-of-the-art systems to improve them
- 3. Easily extensible to include other tasks

See http://cogcomp.cs.illinois.edu

Questions?

Preposition Roles

Role	Train	Test
ACTIVITY	57	23
Attribute	119	51
BENEFICIARY	78	17
CAUSE	255	116
CONCOMITANT	156	74
ENDCONDITION	88	66
Experiencer	88	42
Instrument	37	19
LOCATION	1141	414
MEDIUMOFCOMMUNICATION	39	30
NUMERIC/LEVEL	301	174
ObjectOfVerb	365	112
OTHER	65	49
PartWhole	485	133
PARTICIPANT/ACCOMPANIER	122	58
PHYSICALSUPPORT	32	18
Possessor	195	56
PROFESSIONALASPECT	24	10
Recipient	150	70
Species	240	58
Temporal	582	270
Τορις	148	54

Table 3: Preposition role data statistics for the Penn Treebank preposition dataset.

