Extraction of Entailed Semantic Relations Through Syntax-based Comma Resolution

Vivek Srikumar Roi Reichart Mark Sammons Ari Rappoport Dan Roth

University of Illinois, Urbana-Champaign

Hebrew University of Jerusalem

The City of Chicago's OEMC and IBM launch Advanced Video Surveillance System, part of Operation Virtual Shield.

- . The City of Chicago possesses OEMC.
- . The City of Chicago's OEMC, IBM form a conjunction
- . Advanced Video Surveillance System is part of Operation Virtual Shield.

Motivation

- · Sentences can be decomposed into smaller ones
 - Smaller sentences are easier to process

Syntax gives us cues for decomposition

Along the lines of (Chandrasekar and Srinivas, '96)

Outline

2 Learning to Transform Sentences

Outline

2 Learning to Transform Sentences

- What are we learning from?
- The Learning Procedure

3 Evaluation

- The Comma Data Set
- Experiments

• Authorities have arrested John Smith, a police officer.

 \Rightarrow John Smith is a police officer.

- Authorities have arrested John Smith, a police officer.
 - \Rightarrow John Smith is a police officer.
- Authorities have arrested John Smith, a police officer and his brother today.
 - \Rightarrow John Smith, a police officer, his brother are elements of a list.

- Authorities have arrested John Smith, a police officer.
 - \Rightarrow John Smith is a police officer.
- Authorities have arrested John Smith, a police officer and his brother today.
 - \Rightarrow John Smith, a police officer, his brother are elements of a list.
- They live in Chicago, IL.
 - \Rightarrow Chicago is located in IL.

Commas indicate several syntactic phenomena

- Appositives
- Lists
- Clausal modifiers
- Locations
- Many others...

Each interpretation implies different relationships .

(van Delden and Gomez, 2002) (Bayraktar et al., 1998)

- . SUBSTITUTE
- . ATTRIBUTE
- . LOCATION
- . LIST
- . OTHER

. SUBSTITUTE: An IS-A relation between the arguments

John Smith, a police officer, was arrested.

⇒ John Smith *is* a police officer.
 John Smith was arrested.
 A police officer was arrested.

- . ATTRIBUTE
- . LOCATION
- . LIST
- . OTHER

. SUBSTITUTE

. ATTRIBUTE: One argument is an attribute of the other

John Smith, 61, was arrested. \Rightarrow John Smith *is* 61. John Smith was arrested.

- . LOCATION
- . LIST
- . OTHER

- . SUBSTITUTE
- . ATTRIBUTE
- . LOCATION: A located-in relation

Chicago, Illinois saw some snow today.

 \Rightarrow Chicago *is located in* Illinois.

- . LIST
- . OTHER

- . SUBSTITUTE
- . ATTRIBUTE
- . LOCATION
- . LIST: A list of entities, adjectives, actions, etc.

John, James and Kelly left last week. \Rightarrow { John, James, Kelly } form a group.

. OTHER

- . SUBSTITUTE
- . ATTRIBUTE
- . LOCATION
- . LIST
- . OTHER: Everything else

However, he cheered up quickly.

"So what if I can't spell pesticde," he said.

 \Rightarrow Discourse information, pauses, etc.

- . SUBSTITUTE
- . ATTRIBUTE
- . LOCATION
- . LIST
- . OTHER

Comma Resolution

Given a sentence, Comma resolution consists of:

- Interpreting the type of each comma
- Decomposing the sentence based on the interpretation
 - Meaning is preserved

Why Comma Resolution?

- Shorter sentences can be analyzed better
- Decomposition helps other tasks involving text understanding

Why Comma Resolution?

- Shorter sentences can be analyzed better
- Decomposition helps other tasks involving text understanding

For example, think about textual entailment.

Given a sentence T, is H true?

Outline

2 Learning to Transform Sentences

- What are we learning from?
- The Learning Procedure

3 Evaluation

- The Comma Data Set
- Experiments

Outline

2 Learning to Transform Sentences

- What are we learning from?
- The Learning Procedure

3 Evaluation

- The Comma Data Set
- Experiments

Example:

.

Both are produced by the same company, Macmillan-McGraw-Hill, a joint venture of McGraw-Hill Inc. and Macmillan's parent, Maxwell Communication Corp.

Example:

Both are produced by the same company, Macmillan-McGraw-Hill,

a joint venture of McGraw-Hill Inc. and Macmillan's parent,

Maxwell Communication Corp.

. Macmillan-McGraw-Hill is a joint venture of ...

Example:

Both are produced by the same company, Macmillan-McGraw-Hill,

a joint venture of McGraw-Hill Inc. and Macmillan's parent,

Maxwell Communication Corp.

- . Macmillan-McGraw-Hill is a joint venture of ...
- . Macmillan's parent is Maxwell Communication Corp.

Example: Both are produced by the same company, Macmillan-McGraw-Hill, a joint venture of McGraw-Hill Inc. and Macmillan's parent, Maxwell Communication Corp.

- . Macmillan-McGraw-Hill is a joint venture of ...
- . Macmillan's parent is Maxwell Communication Corp.
- Relations might be nested
- We need hierarchical information.
- Parse trees encode this

Sentence Transformation Rules

We want to do two things -

- Look for a pattern in the parse tree of a sentence
- If we find the pattern, then we generate new sentences using the matched parts.

A Sentence Transformation Rule (STR) does these.

More on STRs later ···

Outline

2 Learning to Transform Sentences

- What are we learning from?
- The Learning Procedure

3 Evaluation

- The Comma Data Set
- Experiments

For every example -

- Learn a Sentence Transformation Rule from the example
- Refine it with statistics taken over the entire dataset
- Remove all covered examples

For every example -

- Learn the most general STR from the example
- Refine it with statistics taken over the entire dataset
- Remove all covered examples

For every example -

- Learn the most general STR from the example
- Specialize it with statistics taken over the entire dataset
- Remove all covered examples

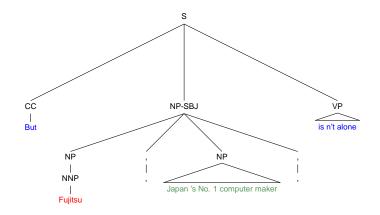
For every example -

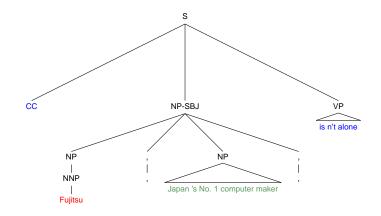
- Learn the most general STR from the example
- Specialize it with statistics taken over the entire dataset
- Remove all covered examples

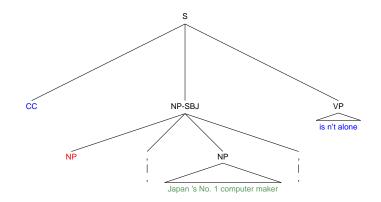
This is A Sentence Transformation Rule Learner (ASTRL)

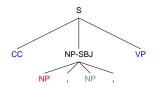
- . But Fujitsu is n't alone.
- . But Japan 's No. 1 computer maker is n't alone.
- . Fujitsu is Japan 's No. 1 computer maker.

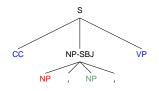
- . But Fujitsu is n't alone.
- . But Japan 's No. 1 computer maker is n't alone.
- . Fujitsu is Japan 's No. 1 computer maker.



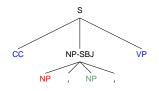




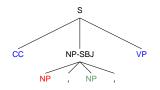




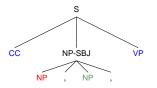
- . But Fujitsu is n't alone.
- . But Japan 's No. 1 computer maker is n't alone.
- . Fujitsu is Japan 's No. 1 computer maker.



- . CC NP VP.
- . But Japan 's No. 1 computer maker is n't alone.
- . Fujitsu is Japan 's No. 1 computer maker.

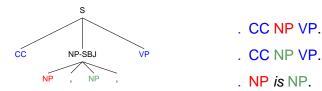


- . CC NP VP.
- . CC NP VP.
- . NP is NP.



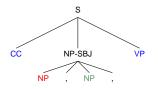
- . CC NP VP.
- . CC NP VP.
- . NP is NP.

But Fujitsu, Japan 's No. 1 computer maker, is n't alone.

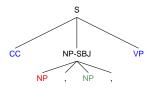


Abstracted away some details from parse tree.

Can we get a smaller pattern?



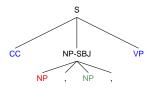
But Fujitsu, Japan 's No. 1 computer maker, is n't alone.



Leaves of this pattern tree: CC NP , NP , VP

- . CC NP VP
- . CC NP VP
- . NP is NP

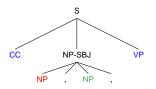
But Fujitsu, Japan 's No. 1 computer maker, is n't alone.



Leaves of this pattern tree: CC NP , NP , VP

CC NP VP

But Fujitsu, Japan 's No. 1 computer maker, is n't alone.



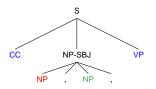
Leaves of this pattern tree:

CC NP, NP, VP

CC NP VP

NP has substituted NP, NP,

But Fujitsu, Japan 's No. 1 computer maker, is n't alone.



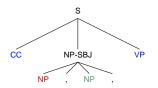
Leaves of this pattern tree:

CC NP, NP, VP

CC NP VP

NP has substituted NP-SBJ

But Fujitsu, Japan 's No. 1 computer maker, is n't alone.

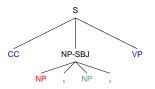


Leaves of this pattern tree:

CC NP , NP , VP CC NP VP But Fujitsu is n't alone

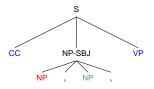
NP has substituted NP-SBJ

Fujitsu has substituted Fujitsu, Japan 's No. 1 computer maker,



- . CC NP VP.
- . CC NP VP.
- . NP is NP.

But Fujitsu, Japan 's No. 1 computer maker, is n't alone.



- . CC NP VP.
- . CC NP VP.

- . NP (Substitute)
- . NP (Substitute)
- . NP is NP. (Introduce)

. NP is NP.

Substitute: NP substitutes root of pattern (NP-SBJ) Introduce: The relation is independent of the context in which the pattern is found.

$$L \rightarrow R$$

 $L \to R$

• L: A tree fragment (think part of a parse tree)

 $L \rightarrow R$

• L: A tree fragment (think part of a parse tree)



- *R*: Set of combinations of nodes of *L*, possibly with new tokens
 - . NP
 - . NP
 - . NP *is* NP.

 $L \rightarrow R$

• L: A tree fragment (think part of a parse tree)

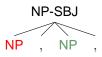
- *R*: Set of combinations of nodes of *L*, possibly with new tokens
 - . NP (Substitute)
 - . NP (Substitute)
 - . NP is NP. (Introduce)
- Each relation is marked as Introduce or Substitute

Sentence Transformation Rules

Applying $L \rightarrow R$ to a sentence, whose parse tree is p

- 1 Look for matches of L in p
- 2 For every match:

Generate new sentences, as specified by R



- . NP (Substitute)
- . NP (Substitute)
- . NP is NP. (Introduce)

- This is the smallest pattern tree that is possible.
 Easy to check
- This is the most general STR for the example.

An Algorithm Outline

For every example -

- Learn the most general STR from the example
- Specialize it with statistics taken over the entire dataset
- Remove all covered examples

This is A Sentence Transformation Rule Learner (ASTRL)

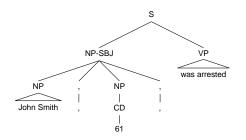
An Algorithm Outline

For every example -

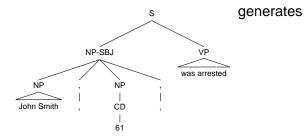
- ✓ Learn the most general STR from the example
 - Specialize it with statistics taken over the entire dataset
 - Remove all covered examples

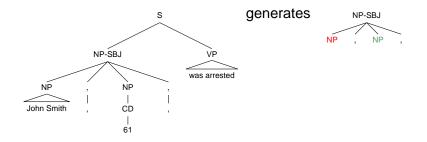
This is A Sentence Transformation Rule Learner (ASTRL)

John Smith, 61, was arrested.

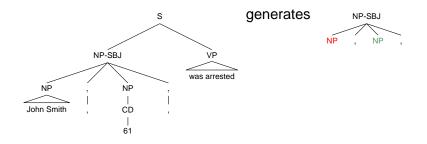


John Smith, 61, was arrested.





But this is not an apposition. CD will help disambiguate.



But this is not an apposition. CD will help disambiguate.

Problem:

- The most general STR is generated from a single example
- It might cover other phenomena too

i.e. it might be too general

Solution:

Specialize the STR to maximize performance over the entire dataset.

For a given comma type *t*:

1 p = All examples of type t

For a given comma type *t*:

- **1** p = All examples of type t
- 2 For each example in p:

1 r = Most general STR that covers this example

For a given comma type t:

- **1** p = All examples of type t
- 2 For each example in p:
 - 1 r = Most general STR that covers this example
 - 2 Compute score of r

Score = fraction of positive examples covered - fraction of negative examples covered

For a given comma type t:

- **1** p = All examples of type t
- 2 For each example in p:
 - 1 r = Most general STR that covers this example
 - 2 Compute score of r
 - 3 Get all neighbors of the pattern from the parse tree

For a given comma type t:

- **1** p = All examples of type t
- 2 For each example in p:
 - 1 r = Most general STR that covers this example
 - 2 Compute score of r
 - 3 Get all neighbors of the pattern from the parse tree
 - 4 For every neighbor
 - Add it to the pattern and recompute score
 - 2 If the score is better, keep it and recalculate the neighbors

For a given comma type t:

- **1** p = All examples of type t
- 2 For each example in p:
 - 1 r = Most general STR that covers this example
 - 2 Compute score of r
 - 3 Get all neighbors of the pattern from the parse tree
 - 4 For every neighbor
 - Add it to the pattern and recompute score
 - 2 If the score is better, keep it and recalculate the neighbors
 - 5 Add r to list of STRs
 - 6 Remove all covered examples from p

Outline

Learning to Transform Sentences

- What are we learning from?
- The Learning Procedure

- The Comma Data Set
- Experiments

Outline

Learning to Transform Sentences

- What are we learning from?
- The Learning Procedure

- The Comma Data Set
- Experiments

Data Set

- 1000 sentences from WSJ corpus, all with commas
- Manually annotated with comma type and transformed sentences
 - Four annotators, high agreement

Data available for download at http://L2R.cs.uiuc.edu/~cogcomp/data.php

Data: Example Annotation

But Fujitsu [1], Japan's No. 1 computer maker [1], isn't alone.

[1] SUBSTITUTE

- . But Fujitsu is n't alone.
- . But Japan 's No. 1 computer maker is n't alone.
- . Fujitsu is Japan 's No. 1 computer maker.

Data: Comma types

- . SUBSTITUTE: An IS-A relation between the arguments John Smith, a police officer, was arrested.
- . ATTRIBUTE: One argument is an attribute of the other John Smith, 61, was arrested.
- . LOCATION: A located-in relation

Chicago, Illinois saw some snow today.

. LIST: A list of entities, adjectives, actions, etc.

John, James and Kelly left last week.

. OTHER: Everything else

However, he cheered up soon.

Outline

Learning to Transform Sentences

- What are we learning from?
- The Learning Procedure

- The Comma Data Set
- Experiments

Experimental Setup

1 GOLD-GOLD

Train and test using gold standard trees

2 GOLD-CHARNIAK

Train with gold standard trees and test with trees generated by a statistical parser (Charniak and Johnson, 2005)

3 Charniak-Charniak

Train and test using generated parses

Results: Extracted Sentences

- Most relevant for entailment applications
- Different comma types used for learning STRs
- Only relations scored during evaluation, irrespective of type.

Setting	Р	R	F
Gold-Gold	86.1	75.4	80.2
Gold-Charniak	77.3	60.1	68.1
Charniak-Charniak	77.2	64.8	70.4

Results

• Performance of ASTRL is close to human agreement

• Even the most general STR is often quite good

Specialization disambiguates <code>SUBSTITUTE</code> and <code>ATTRIBUTE</code>. ATTRIBUTE F-score gain of \approx 14 %

- F-score for identifying <code>OTHER</code> $\approx 80\%$

Conclusion

- Defined Comma Resolution
 - Extracting relations based on commas
- Developed an annotation scheme and released an annotated dataset
- Developed an efficient learning algorithm
 - Uses syntax to learn and generate relations
- Same technique could be used to draw inferences from other other phenomena (like possessives)