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Boosting and Ensembles
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Boosting

A general learning approach for constructing a strong 
learner, given a collection of (possibly infinite) weak 
learners

Historically: An answer to a question in the context of 
the PAC theory
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Practically useful

Boosting is a way to create a strong learner using only 
weak learners (also known as “rules of thumb”)

An Ensemble method
– A class of learning algorithms that composes classifiers 

using other classifiers as building blocks
– Boosting has stronger theoretical guarantees than other 

ensemble methods
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Example: How may I help you?

Goal: Automatically categorize type of phone call requested by a 
phone customer
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“I’d like to know my account balance please” → Balances

“When do you open on Monday?” →  Hours

“I am unable to login to my account on the app” →  OnlineServices



Example: How may I help you?

Goal: Automatically categorize type of phone call requested by a 
phone customer

Important observation
• Rules of thumb are often correct

– Eg: If login occurs in the utterance, then predit OnlineServices

• But hard to find a single prediction rule that covers all cases
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“I’d like to know my account balance please” → Balances

“When do you open on Monday?” →  Hours

“I am unable to login to my account on the app” →  OnlineServices



One boosting approach

• Select a small subset of examples
• Derive a rough rule of thumb

• Sample a second subset of examples
• Derive a second rule of thumb

• Repeat T times…

• Combine rules of thumb into a single prediction rule

Boosting: A general method for converting rough rules of 
thumb into accurate classifiers
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Boosting: The formal problem setup

• Strong PAC algorithm
For any distribution over examples,
for every 𝜖 > 0, for every 𝛿 > 0,
given a polynomial number of random examples
finds a hypothesis with error  ≤ 𝜖 with probability ≥ 1 − 𝛿

• Weak PAC algorithm
– Same, but only for 𝜖 > !

"
− 𝛾 for some small 𝛾

• Question [Kearns and Valiant ’88]: 
– Does weak learnability imply strong learnability?
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E.g. if  𝛾 = 0.01, the error 𝜖	should be more than 0.5	 − 0.01 = 0.49

Assuming that the labels are equally possible, this error is only slightly 
better than chance
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Boosting: The formal problem setup

• Strong PAC algorithm
For any distribution over examples,
for every 𝜖 > 0, for every 𝛿 > 0,
given a polynomial number of random examples
finds a hypothesis with error  ≤ 𝜖 with probability ≥ 1 − 𝛿

• Weak PAC algorithm
– Same, but only for 𝜖 > !

"
− 𝛾 for some small 𝛾

• Question [Kearns and Valiant ’88]: 
– Does weak learnability imply strong learnability?
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That is, if we have a weak PAC algorithm for a concept 
class, is the concept class learnable in the strong sense?



History: Early boosting algorithms

• [Schapire ’89]
– First provable boosting algorithm
– Call weak learner three times on three modified distributions 
– Get slight boost in accuracy 
– Apply recursively

• [Freund ’90]
– “Optimal” algorithm that “boosts by majority”

• [Drucker, Schapire & Simard ’92]
– First experiments using boosting
– Limited by practical drawbacks

• [Freund & Schapire ’95]
– Introduced AdaBoost algorithm
– Strong practical advantages over previous boosting algorithms

• AdaBoost was followed by a huge number of papers and practical 
applications 
– And a Gödel prize for Freund and Schapire
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History: Early boosting algorithms

• [Schapire ’89]
– First provable boosting algorithm
– Call weak learner three times on three modified distributions 
– Get slight boost in accuracy 
– Apply recursively

• [Freund ’90]
– “Optimal” algorithm that “boosts by majority”

• [Drucker, Schapire & Simard ’92]
– First experiments using boosting
– Limited by practical drawbacks

• [Freund & Schapire ’95]
– Introduced the AdaBoost algorithm
– Strong practical advantages over previous boosting algorithms

• AdaBoost was followed by a huge number of papers and practical 
applications 
– And a Gödel prize in 2003 for Freund and Schapire
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Boosting and Ensembles

• What is boosting?

• AdaBoost
– Intuition
– The algorithm
– Why does it work

• Ensemble methods
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A toy example
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Initially all examples are equally important
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ℎ!  = The best classifier on this data
Clearly there are mistakes. Error 𝜖! = 0.3

For the next round, increase the importance of the examples with 
mistakes and down-weight the examples that h1 got correctly
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Dt = Set of weights at round t, one for each example. Think “How much should the weak 
learner care about this example in its choice of the classifier?”



A toy example
h1

+

+

+
+
+

-

- -

-

-

28

Dt = Set of weights at round t, one for each example. Think “How much should the weak 
learner care about this example in its choice of the classifier?”



A toy example

29

Dt = Set of weights at round t, one for each example. Think “How much should the weak 
learner care about this example in its choice of the classifier?”

ℎ! = A classifier learned on this data. Has an error 𝜖/ = 0.21

h1

+

+

+
+
+

-

- -

-

-



A toy example

30

Dt = Set of weights at round t, one for each example. Think “How much should the weak 
learner care about this example in its choice of the classifier?”

ℎ" = A classifier learned on this data. Has an error 𝜖/ = 0.21

Why not 0.3? Because while computing error, we will weight each example xi by its Dt(i)

h1

+

+

+
+
+

-

- -

-

-



A toy example

31

Dt = Set of weights at round t, one for each example. Think “How much should the weak 
learner care about this example in its choice of the classifier?”

ℎ" = A classifier learned on this data. Has an error 𝜖/ = 0.21

Why not 0.3? Because while computing error, we will weight each example xi by its Dt(i)

h1

+

+

+
+
+

-

- -

-

-

Why is this a reasonable definition?

𝜖0 =
1
2
−
1
2

&
123

4

𝐷0 𝑖 𝑦1ℎ(𝑥1)



A toy example

32

h1

+

+

+
+
+

-

- -

-

-

Why is this a reasonable definition?

𝜖0 =
1
2
−
1
2

&
123

4

𝐷0 𝑖 𝑦1ℎ(𝑥1)

Consider two cases
Case 1: When 𝑦 ≠ ℎ(𝑥) 
              

Case 2: When 𝑦 = ℎ(𝑥) 
               



A toy example

33

h1

+

+

+
+
+

-

- -

-

-

Why is this a reasonable definition?

𝜖0 =
1
2
−
1
2

&
123

4

𝐷0 𝑖 𝑦1ℎ(𝑥1)

Consider two cases
Case 1: When 𝑦 ≠ ℎ(𝑥) 
              we have 𝑦#ℎ 𝑥# = −1

Case 2: When 𝑦 = ℎ(𝑥) 
               we have 𝑦#ℎ 𝑥# = +1



A toy example

34

h1

+

+

+
+
+

-

- -

-

-
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𝐷0 𝑖 𝑦1ℎ(𝑥1)

Consider two cases
Case 1: When 𝑦 ≠ ℎ(𝑥) 
              we have 𝑦#ℎ 𝑥# = −1

Case 2: When 𝑦 = ℎ(𝑥) 
               we have 𝑦#ℎ 𝑥# = +1
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	where
;!<= >!

𝐷0 𝑖

Represents the total error, but each 
example only contributes to the 
extent that it is important

Exercise: Show this
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Dt = Set of weights at round t, one for each example. Think “How much should the weak 
learner care about this example in its choice of the classifier?”

ℎ" = A classifier learned on this data. Has an error 𝜖/ = 0.21

For the next round, increase the importance of the mistakes and down-weight the examples 
that ℎ" got correctly
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h2

Dt = Set of weights at round t, one for each example. Think “How much should the weak 
learner care about this example in its choice of the classifier?”



+

+

+
+
+

-

- -
-

-

A toy example
h1

37

h2

Dt = Set of weights at round t, one for each example. Think “How much should the weak 
learner care about this example in its choice of the classifier?”

ℎ" = A classifier learned on this data. Has an error 𝜖?= 0.14
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h2

Dt = Set of weights at round t, one for each example. Think “How much should the weak 
learner care about this example in its choice of the classifier?”

ℎ" = A classifier learned on this data. Has an error 𝜖?= 0.14

Why not 0.3? Because while computing error, we will weight each example xi by its Dt(i)



A toy example

The final hypothesis is a combination of all the ℎ!’s we 
have seen so far
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Hfinal = 

ℎ3 ℎ/ ℎ?

𝛼3 +𝛼/ +𝛼?Sign



A toy example
The final hypothesis is a combination of all the hi’s we 
have seen so far
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Hfinal = 

Think of the 𝛼	values as the vote for each weak classifier and the 
boosting algorithm has to somehow specify them

ℎ3 ℎ/ ℎ?

𝛼3 +𝛼/ +𝛼?Sign



An outline of Boosting

Given a training set 𝑥", 𝑦" , 𝑥#, 𝑦# , ⋯ 𝑥$ , 𝑦$
– Instances 𝑥1 ∈ 𝑋 labeled with y1 ∈ {−1,+1}

• For t = 1, 2, , T: 
– Construct a distribution 𝐷𝑡 on {1, 2,⋯ ,𝑚}
– Find a weak hypothesis (rule of thumb) ℎ0 such that it has 

a small weighted error 𝜖0
• Construct a final output Hfinal

41
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Need to specify these 
two to get a complete 
algorithm



AdaBoost: Constructing Dt

We have m examples

𝐷𝑡 is a set of weights over the examples
   𝐷𝑡 1 , 𝐷𝑡 2 ,⋯ , 𝐷𝑡(𝑚)

At every round, the weak learner looks for hypotheses 
ht that emphasizes examples that have a higher Dt
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AdaBoost: Constructing Dt

Initially (t = 1), use the uniform distribution over all examples
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After t rounds
• What we have

• Dt and the hypothesis ht that was learned
• The 𝜖!of that hypothesis on the training data

• What we want from the (t+1)th round
• Find a hypothesis so that examples that were incorrect in the previous 

round are correctly predicted by the new one
• That is, increase the importance of misclassified examples and decrease 

the importance of correctly predicted ones 
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weak learner produced
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Demote correctly 
predicted examples 
(because, as we will 
see, 𝛼$ > 0)

Promote incorrectly 
predicted examples
(because, as we will 
see, 𝛼$ > 0)
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Zt: A normalization constant. Ensures that the weights Dt+1 add up to 1

The classifier ht gets a 
vote of ®t in the final 
classifier



AdaBoost: Constructing Dt

After t rounds, we have some Dt and a hypothesis ht that the 
weak learner produced
Create Dt+1 as follows:
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Zt: A normalization constant. Ensures that the weights Dt+1 add up to 1

Exercise: How should we compute the value of Zt? 



AdaBoost: Constructing Dt

After t rounds, we have some Dt and a hypothesis ht that the 
weak learner produced
Create Dt+1 as follows:
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Zt: A normalization constant. Ensures that the weights Dt+1 add up to 1

Since 𝜖$ <
!
"
, the value of 𝛼$ > 0



AdaBoost: Constructing Dt

After t rounds, we have some Dt and a hypothesis ht that the 
weak learner produced
Create Dt+1 as follows:
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Zt: A normalization constant. Ensures that the weights Dt+1 add up to 1

Eventually, the classifier ht gets a 
vote of 𝛼$ in the final classifier



An outline of Boosting

Given a training set 𝑥", 𝑦" , 𝑥#, 𝑦# , ⋯ 𝑥$ , 𝑦$
– Instances 𝑥1 ∈ 𝑋 labeled with y1 ∈ {−1,+1}

• For t = 1, 2, , T: 
✓ Construct a distribution 𝐷𝑡 on {1, 2,⋯ ,𝑚}
– Find a weak hypothesis (rule of thumb) ℎ0 such that it has 

a small weighted error 𝜖0
• Construct a final output Hfinal
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Need to specify these 
two to get a complete 
algorithm



The final hypothesis

• After T rounds, we have 
– T weak classifiers h1, h2,  hT

– T values of 𝛼!

• Recall that each weak classifier is takes an example 𝑥 and 
produces a -1 or a +1

• Define the final hypothesis Hfinal as

55



AdaBoost: The full algorithm

1. Initialize 𝐷! 𝑖 = !
%

 for each example indexed by 𝑖 ∈ {1,2,⋯ ,𝑚}
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Given a training set 𝑥!, 𝑦! , 𝑥", 𝑦" , ⋯ 𝑥%, 𝑦%
Instances 𝑥# ∈ 𝑋 labeled with y# ∈ {−1,+1}

T: a parameter 
to the learner
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AdaBoost: The full algorithm

1. Initialize 𝐷! 𝑖 = !
%

 for each example indexed by 𝑖 ∈ {1,2,⋯ ,𝑚}
2. For t = 1, 2,  T:

– Find a classifier ℎ$ whose weighted classification error is better than chance
– Compute its vote 
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1
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– Update the values of the weights for the training examples

𝐷$&! 𝑖 =
𝐷$ 𝑖
𝑍$

⋅ exp −𝛼$ ⋅ 𝑦#ℎ$ 𝑥#

3. Return the final hypothesis that predicts labels as

𝐻'#()* 𝑥 = sgn W
$+!

,

𝛼$ℎ$ 𝑥 	
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Given a training set 𝑥!, 𝑦! , 𝑥", 𝑦" , ⋯ 𝑥%, 𝑦%
Instances 𝑥# ∈ 𝑋 labeled with y# ∈ {−1,+1}

T: a parameter 
to the learner



Back to the toy example
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Back to the toy example
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Analyzing the training error

Theorem: 
• Run AdaBoost for T rounds

• Let 𝜖' =
"
#
− 𝛾'  

• Let 0 < 𝛾' ≤ 𝛾 for all t
• Then, 

   Training	error 𝐻(!)*+ ≤ 𝑒,#-!.

63



Analyzing the training error

Theorem: 
• Run AdaBoost for T rounds

• Let 𝜖' =
"
#
− 𝛾'  

• Let 0 < 𝛾' ≤ 𝛾 for all t
• Then, 

   Training	error 𝐻(!)*+ ≤ 𝑒,#-!.

64

We have a weak learner



Analyzing the training error

Theorem: 
• Run AdaBoost for T rounds

• Let 𝜖' =
"
#
− 𝛾'  

• Let 0 < 𝛾' ≤ 𝛾 for all t
• Then, 

   Training	error 𝐻(!)*+ ≤ 𝑒,#-!.

65

As T increases, the training 
error drops exponentially
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Analyzing the training error

Theorem: 
• Run AdaBoost for T rounds

• Let 𝜖' =
"
#
− 𝛾'  

• Let 0 < 𝛾' ≤ 𝛾 for all t
• Then, 

   Training	error 𝐻(!)*+ ≤ 𝑒,#-!.
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Proof is simple, see pointer on website Is it sufficient to upper 
bound the training error?

As T increases, the training 
error drops exponentially

We have a weak learner



Adaboost: Training error

The training error of the combined classifier decreases 
exponentially fast if the errors of the weak classifiers 
(the 𝜖') are strictly better than chance 
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Adaboost: Training error

The training error of the combined classifier decreases 
exponentially fast if the errors of the weak classifiers 
(the 𝜖') are strictly better than chance 
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The individual classifier 
errors (𝜖$) tend to 
increase



What about the test error?
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What the theory tells us:

Training error will keep decreasing or reach zero (the AdaBoost theorem)

Test error will increase after the Hfinal becomes too “complex”
• Think about Occam’s razor and overfitting



In practice
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In practice
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Strange observation: Test error may decrease even after training error has hit zero! 
Why? (One possible explanation in [Schapire, Freund, Bartlett, Lee, 1997])



AdaBoost: Summary

• What is good about it
– Simple, fast and only one additional parameter to tune (T)
– Use it with any weak learning algorithm

• Which means that we only need to look for classifiers that are slightly better 
than chance

• Caveats
– Performance often depends on dataset and the weak learners
– Can fail if the weak learners are too complex (overfitting)
– Can fail if the weak learners are too weak (underfitting)

• Empirical evidence [Caruana and Niculescu-Mizil, 2006] that boosted 
decision stumps are the best approach to try if you have a small 
number of features (no more than hundreds)
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Boosting and Ensembles

• What is boosting?

• AdaBoost

• Ensemble methods
– Boosting, Bagging and Random Forests
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Ensemble methods

• In general, meta algorithms that combine the output 
of multiple classifiers

• Often tend to be empirically robust

• Eg: The winner of the $1 million Netflix prize in 2009 
was a giant ensemble
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Boosting
• Initialization:
– Weigh all training samples equally

• Iteration Step:
– Train model on weighted train set
– Compute weighted error of model on train set
– Increase weights on training cases model gets wrong

• Typically requires 100’s to 1000’s of iterations
• Return final model: 
– Carefully weighted prediction of each model
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Boosting: Different Perspectives

• Boosting is a maximum-margin method (Schapire et al. 1998, Rosset et al. 2004)

– Trades lower margin on easy cases for higher margin on harder cases

• Boosting is an additive logistic regression model (Friedman, Hastie and Tibshirani 
2000)
– Tries to fit the logit of the true conditional probabilities

• Boosting is an equalizer (Breiman 1998, Friedman, Hastie, Tibshirani 2000)

– Weighted proportion of the number of times an example is misclassified by 
base learners tends to be the same for all training cases

• Boosting is a linear classifier, but does not give well calibrated probability 
estimate.
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Bagging

• Given a training set with m examples
• Repeat t = 1, 2, , m:
– Draw m’ (< m) samples with replacement from the training 

set
– Train a classifier (any classifier) Ci

• Construct final classifier by taking votes from each Ci
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Short for Bootstrap aggregating [Breiman, 1994]



Bagging

• A method for generating multiple versions of a predictor and using these to 
get an aggregated predictor.
– Averages over the versions when predicting a numerical outcome  (regression)
– Does a plurality vote when predicting a class (classification)

• The multiple versions are constructed by making bootstrap replicates of the 
learning set and using these as training sets
– That is, use samples of the data, with repetition

• Tests on real and simulated data sets using classification and regression trees 
and subset selection in linear regression show that bagging can give 
substantial gains in accuracy

• Instability of the prediction method: If perturbing the training set can cause 
significant changes in the learned classifier then bagging can improve accuracy
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Short for Bootstrap aggregating



Example: Bagged Decision Trees

• Draw T bootstrap samples of data
• Train trees on each sample to produce T trees
• Average prediction of trees on out-of-bag samples
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…

Average prediction

0.23	 + 	0.19	 + 	0.34	 + 	0.22	 + 	0.26	 +	…	+ 	0.31
number	of	trees = 0.24



Random Forests (Bagged Trees++)

• Draw T (possibly 1000s) bootstrap samples of data
• Draw sample of available attributes at each split
• Train trees on each sample+attribute set to produce T trees
• Average prediction of trees on out-of-bag samples
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…

Average prediction

0.23	 + 	0.19	 + 	0.34	 + 	0.22	 + 	0.26	 +	…	+ 	0.31
number	of	trees = 0.24



Boosting and Ensembles: What have we seen?

• What is boosting?
– Does weak learnability imply strong learnability?

• AdaBoost
– Intuition
– The algorithm
– Why does it work

• Ensemble methods
– Boosting, Bagging and Random Forests
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