
Machine Learning

Boosting and Ensembles

1
Some slides based on materials by Yoav Freund, Rob Schapire, Dan Roth, Tommi Jakkola and others



Boosting and Ensembles

• What is boosting?

• AdaBoost

• Ensemble methods

2



Boosting and Ensembles

• What is boosting?

• AdaBoost

• Ensemble methods

3



Boosting

A general learning approach for constructing a strong 
learner, given a collection of (possibly infinite) weak 
learners

Historically: An answer to a question in the context of 
the PAC theory

4

1989-90



Practically useful

Boosting is a way to create a strong learner using only 
weak learners (also known as “rules of thumb”)

An Ensemble method
– A class of learning algorithms that composes classifiers 

using other classifiers as building blocks
– Boosting has stronger theoretical guarantees than other 

ensemble methods

5



Example: How may I help you?

Goal: Automatically categorize type of phone call requested by a 
phone customer

6

“I’d like to know my account balance please” → Balances

“When do you open on Monday?” →  Hours

“I am unable to login to my account on the app” →  OnlineServices



Example: How may I help you?

Goal: Automatically categorize type of phone call requested by a 
phone customer

Important observation
• Rules of thumb are often correct

– Eg: If login occurs in the utterance, then predit OnlineServices

• But hard to find a single prediction rule that covers all cases

7

“I’d like to know my account balance please” → Balances

“When do you open on Monday?” →  Hours

“I am unable to login to my account on the app” →  OnlineServices



One boosting approach

• Select a small subset of examples
• Derive a rough rule of thumb

• Sample a second subset of examples
• Derive a second rule of thumb

• Repeat T times…

• Combine rules of thumb into a single prediction rule

Boosting: A general method for converting rough rules of 
thumb into accurate classifiers

8



One boosting approach

• Select a small subset of examples
• Derive a rough rule of thumb

• Sample a second subset of examples
• Derive a second rule of thumb

• Repeat T times…

• Combine rules of thumb into a single prediction rule

Boosting: A general method for converting rough rules of 
thumb into accurate classifiers

9

Need to specify: 
1. How to select these 

subsets?

2. How to combine these 
rules of thumb?



One boosting approach

• Select a small subset of examples
• Derive a rough rule of thumb

• Sample a second subset of examples
• Derive a second rule of thumb

• Repeat T times…

• Combine rules of thumb into a single prediction rule

Boosting: A general method for converting rough rules of 
thumb into accurate classifiers

10

Need to specify: 
1. How to select these 

subsets?

2. How to combine these 
rules of thumb?



Boosting: The formal problem setup

• Strong PAC algorithm
For any distribution over examples,
for every 𝜖 > 0, for every 𝛿 > 0,
given a polynomial number of random examples
finds a hypothesis with error  ≤ 𝜖 with probability ≥ 1 − 𝛿

• Weak PAC algorithm
– Same, but only for 𝜖 > !

"
− 𝛾 for some small 𝛾

• Question [Kearns and Valiant ’88]: 
– Does weak learnability imply strong learnability?

11



Boosting: The formal problem setup

• Strong PAC algorithm
For any distribution over examples,
for every 𝜖 > 0, for every 𝛿 > 0,
given a polynomial number of random examples
finds a hypothesis with error  ≤ 𝜖 with probability ≥ 1 − 𝛿

• Weak PAC algorithm
– Same, but only for 𝜖 > !

"
− 𝛾 for some small 𝛾

• Question [Kearns and Valiant ’88]: 
– Does weak learnability imply strong learnability?

12

error0 11
2



Boosting: The formal problem setup

• Strong PAC algorithm
For any distribution over examples,
for every 𝜖 > 0, for every 𝛿 > 0,
given a polynomial number of random examples
finds a hypothesis with error  ≤ 𝜖 with probability ≥ 1 − 𝛿

• Weak PAC algorithm
– Same, but only for 𝜖 > !

"
− 𝛾 for some small 𝛾

• Question [Kearns and Valiant ’88]: 
– Does weak learnability imply strong learnability?

13

E.g. if  𝛾 = 0.01, the error 𝜖	should be more than 0.5	 − 0.01 = 0.49

Assuming that the labels are equally possible, this error is only slightly 
better than chance



Boosting: The formal problem setup

• Strong PAC algorithm
For any distribution over examples,
for every 𝜖 > 0, for every 𝛿 > 0,
given a polynomial number of random examples
finds a hypothesis with error  ≤ 𝜖 with probability ≥ 1 − 𝛿

• Weak PAC algorithm
– Same, but only for 𝜖 > !

"
− 𝛾 for some small 𝛾

• Question [Kearns and Valiant ’88]: 
– Does weak learnability imply strong learnability?

14

E.g. if  𝛾 = 0.01, the error 𝜖	should be more than 0.5	 − 0.01 = 0.49

Assuming that the labels are equally possible, this error is only slightly 
better than chance

0 11
2

error



Boosting: The formal problem setup

• Strong PAC algorithm
For any distribution over examples,
for every 𝜖 > 0, for every 𝛿 > 0,
given a polynomial number of random examples
finds a hypothesis with error  ≤ 𝜖 with probability ≥ 1 − 𝛿

• Weak PAC algorithm
– Same, but only for 𝜖 > !

"
− 𝛾 for some small 𝛾

• Question [Kearns and Valiant ’88]: 
– Does weak learnability imply strong learnability?

15
That is, if we have a weak PAC algorithm for a concept 
class, is the concept class learnable in the strong sense?



History: Early boosting algorithms

• [Schapire ’89]
– First provable boosting algorithm
– Call weak learner three times on three modified distributions 
– Get slight boost in accuracy 
– Apply recursively

• [Freund ’90]
– “Optimal” algorithm that “boosts by majority”

• [Drucker, Schapire & Simard ’92]
– First experiments using boosting
– Limited by practical drawbacks

• [Freund & Schapire ’95]
– Introduced AdaBoost algorithm
– Strong practical advantages over previous boosting algorithms

• AdaBoost was followed by a huge number of papers and practical 
applications 
– And a Gödel prize for Freund and Schapire

16



History: Early boosting algorithms

• [Schapire ’89]
– First provable boosting algorithm
– Call weak learner three times on three modified distributions 
– Get slight boost in accuracy 
– Apply recursively

• [Freund ’90]
– “Optimal” algorithm that “boosts by majority”

• [Drucker, Schapire & Simard ’92]
– First experiments using boosting
– Limited by practical drawbacks

• [Freund & Schapire ’95]
– Introduced AdaBoost algorithm
– Strong practical advantages over previous boosting algorithms

• AdaBoost was followed by a huge number of papers and practical 
applications 
– And a Gödel prize for Freund and Schapire

17



History: Early boosting algorithms

• [Schapire ’89]
– First provable boosting algorithm
– Call weak learner three times on three modified distributions 
– Get slight boost in accuracy 
– Apply recursively

• [Freund ’90]
– “Optimal” algorithm that “boosts by majority”

• [Drucker, Schapire & Simard ’92]
– First experiments using boosting
– Limited by practical drawbacks

• [Freund & Schapire ’95]
– Introduced AdaBoost algorithm
– Strong practical advantages over previous boosting algorithms

• AdaBoost was followed by a huge number of papers and practical 
applications 
– And a Gödel prize for Freund and Schapire

18



History: Early boosting algorithms

• [Schapire ’89]
– First provable boosting algorithm
– Call weak learner three times on three modified distributions 
– Get slight boost in accuracy 
– Apply recursively

• [Freund ’90]
– “Optimal” algorithm that “boosts by majority”

• [Drucker, Schapire & Simard ’92]
– First experiments using boosting
– Limited by practical drawbacks

• [Freund & Schapire ’95]
– Introduced AdaBoost algorithm
– Strong practical advantages over previous boosting algorithms

• AdaBoost was followed by a huge number of papers and practical 
applications 
– And a Gödel prize for Freund and Schapire

19



History: Early boosting algorithms

• [Schapire ’89]
– First provable boosting algorithm
– Call weak learner three times on three modified distributions 
– Get slight boost in accuracy 
– Apply recursively

• [Freund ’90]
– “Optimal” algorithm that “boosts by majority”

• [Drucker, Schapire & Simard ’92]
– First experiments using boosting
– Limited by practical drawbacks

• [Freund & Schapire ’95]
– Introduced the AdaBoost algorithm
– Strong practical advantages over previous boosting algorithms

• AdaBoost was followed by a huge number of papers and practical 
applications 
– And a Gödel prize for Freund and Schapire

20



History: Early boosting algorithms

• [Schapire ’89]
– First provable boosting algorithm
– Call weak learner three times on three modified distributions 
– Get slight boost in accuracy 
– Apply recursively

• [Freund ’90]
– “Optimal” algorithm that “boosts by majority”

• [Drucker, Schapire & Simard ’92]
– First experiments using boosting
– Limited by practical drawbacks

• [Freund & Schapire ’95]
– Introduced the AdaBoost algorithm
– Strong practical advantages over previous boosting algorithms

• AdaBoost was followed by a huge number of papers and practical 
applications 
– And a Gödel prize in 2003 for Freund and Schapire

21



Boosting and Ensembles

• What is boosting?

• AdaBoost
– Intuition
– The algorithm
– Why does it work

• Ensemble methods

22



A toy example

23

+

+

+
+
+ -

- -

-
-

Initially all examples are equally important

Our weak learner: An axis parallel line

Or



A toy example

24

Initially all examples are equally important

Our weak learner: An axis parallel line

Or

+

+

+
+
+ -

- -

-
-

h1 = The best classifier on this data

h1



A toy example

25

Initially all examples are equally important

Our weak learner: An axis parallel line

Or

+

+

+
+
+ -

- -

-
-

ℎ!  = The best classifier on this data
Clearly there are mistakes. Error 𝜖! = 0.3

h1



A toy example

26

Initially all examples are equally important

+

+

+
+
+ -

- -

-
-

ℎ!  = The best classifier on this data
Clearly there are mistakes. Error 𝜖! = 0.3

For the next round, increase the importance of the examples with 
mistakes and down-weight the examples that h1 got correctly

+

+

+
+
+

-

- -

-

-

h1



A toy example
h1

+

+

+
+
+

-

- -

-

-

27

Dt = Set of weights at round t, one for each example. Think “How much should the weak 
learner care about this example in its choice of the classifier?”



A toy example
h1

+

+

+
+
+

-

- -

-

-

28

Dt = Set of weights at round t, one for each example. Think “How much should the weak 
learner care about this example in its choice of the classifier?”



A toy example

29

Dt = Set of weights at round t, one for each example. Think “How much should the weak 
learner care about this example in its choice of the classifier?”

ℎ! = A classifier learned on this data. Has an error 𝜖/ = 0.21

h1

+

+

+
+
+

-

- -

-

-



A toy example

30

Dt = Set of weights at round t, one for each example. Think “How much should the weak 
learner care about this example in its choice of the classifier?”

ℎ" = A classifier learned on this data. Has an error 𝜖/ = 0.21

Why not 0.3? Because while computing error, we will weight each example xi by its Dt(i)

h1

+

+

+
+
+

-

- -

-

-



A toy example

31

Dt = Set of weights at round t, one for each example. Think “How much should the weak 
learner care about this example in its choice of the classifier?”

ℎ" = A classifier learned on this data. Has an error 𝜖/ = 0.21

Why not 0.3? Because while computing error, we will weight each example xi by its Dt(i)

h1

+

+

+
+
+

-

- -

-

-

Why is this a reasonable definition?

𝜖0 =
1
2
−
1
2

&
123

4

𝐷0 𝑖 𝑦1ℎ(𝑥1)



A toy example

32

h1

+

+

+
+
+

-

- -

-

-

Why is this a reasonable definition?

𝜖0 =
1
2
−
1
2

&
123

4

𝐷0 𝑖 𝑦1ℎ(𝑥1)

Consider two cases
Case 1: When 𝑦 ≠ ℎ(𝑥) 
              

Case 2: When 𝑦 = ℎ(𝑥) 
               



A toy example

33

h1

+

+

+
+
+

-

- -

-

-

Why is this a reasonable definition?

𝜖0 =
1
2
−
1
2

&
123

4

𝐷0 𝑖 𝑦1ℎ(𝑥1)

Consider two cases
Case 1: When 𝑦 ≠ ℎ(𝑥) 
              we have 𝑦#ℎ 𝑥# = −1

Case 2: When 𝑦 = ℎ(𝑥) 
               we have 𝑦#ℎ 𝑥# = +1



A toy example

34

h1

+

+

+
+
+

-

- -

-

-

Why is this a reasonable definition?

𝜖0 =
1
2
−
1
2

&
123

4

𝐷0 𝑖 𝑦1ℎ(𝑥1)

Consider two cases
Case 1: When 𝑦 ≠ ℎ(𝑥) 
              we have 𝑦#ℎ 𝑥# = −1

Case 2: When 𝑦 = ℎ(𝑥) 
               we have 𝑦#ℎ 𝑥# = +1

𝜖0 =	 &
1

	where
;!<= >!

𝐷0 𝑖

Represents the total error, but each 
example only contributes to the 
extent that it is important

Exercise: Show this



A toy example

35

h1

+

+

+
+
+

-

- -

-

-

+

+

+
+
+

-

- -
-

-

Dt = Set of weights at round t, one for each example. Think “How much should the weak 
learner care about this example in its choice of the classifier?”

ℎ" = A classifier learned on this data. Has an error 𝜖/ = 0.21

For the next round, increase the importance of the mistakes and down-weight the examples 
that ℎ" got correctly



+

+

+
+
+

-

- -
-

-

A toy example
h1

36

h2

Dt = Set of weights at round t, one for each example. Think “How much should the weak 
learner care about this example in its choice of the classifier?”



+

+

+
+
+

-

- -
-

-

A toy example
h1

37

h2

Dt = Set of weights at round t, one for each example. Think “How much should the weak 
learner care about this example in its choice of the classifier?”

ℎ" = A classifier learned on this data. Has an error 𝜖?= 0.14



+

+

+
+
+

-

- -
-

-

A toy example
h1

38

h2

Dt = Set of weights at round t, one for each example. Think “How much should the weak 
learner care about this example in its choice of the classifier?”

ℎ" = A classifier learned on this data. Has an error 𝜖?= 0.14

Why not 0.3? Because while computing error, we will weight each example xi by its Dt(i)



A toy example

The final hypothesis is a combination of all the ℎ!’s we 
have seen so far

39

Hfinal = 

ℎ3 ℎ/ ℎ?

𝛼3 +𝛼/ +𝛼?Sign



A toy example
The final hypothesis is a combination of all the hi’s we 
have seen so far

40

Hfinal = 

Think of the 𝛼	values as the vote for each weak classifier and the 
boosting algorithm has to somehow specify them

ℎ3 ℎ/ ℎ?

𝛼3 +𝛼/ +𝛼?Sign



An outline of Boosting

Given a training set 𝑥", 𝑦" , 𝑥#, 𝑦# , ⋯ 𝑥$ , 𝑦$
– Instances 𝑥1 ∈ 𝑋 labeled with y1 ∈ {−1,+1}

• For t = 1, 2, , T: 
– Construct a distribution 𝐷𝑡 on {1, 2,⋯ ,𝑚}
– Find a weak hypothesis (rule of thumb) ℎ0 such that it has 

a small weighted error 𝜖0
• Construct a final output Hfinal

41



An outline of Boosting

Given a training set 𝑥", 𝑦" , 𝑥#, 𝑦# , ⋯ 𝑥$ , 𝑦$
– Instances 𝑥1 ∈ 𝑋 labeled with y1 ∈ {−1,+1}

• For t = 1, 2, , T: 
– Construct a distribution 𝐷𝑡 on {1, 2,⋯ ,𝑚}
– Find a weak hypothesis (rule of thumb) ℎ0 such that it has 

a small weighted error 𝜖0
• Construct a final output Hfinal

42

Need to specify these 
two to get a complete 
algorithm



AdaBoost: Constructing Dt

We have m examples

𝐷𝑡 is a set of weights over the examples
   𝐷𝑡 1 , 𝐷𝑡 2 ,⋯ , 𝐷𝑡(𝑚)

At every round, the weak learner looks for hypotheses 
ht that emphasizes examples that have a higher Dt

43



AdaBoost: Constructing Dt

Initially (t = 1), use the uniform distribution over all examples

44



AdaBoost: Constructing Dt

Initially (t = 1), use the uniform distribution over all examples

45

After t rounds
• What we have

• Dt and the hypothesis ht that was learned
• The 𝜖!of that hypothesis on the training data

• What we want from the (t+1)th round
• Find a hypothesis so that examples that were incorrect in the previous 

round are correctly predicted by the new one
• That is, increase the importance of misclassified examples and decrease 

the importance of correctly predicted ones 



AdaBoost: Constructing Dt

Initially (t = 1), use the uniform distribution over all examples

46

After t rounds
• What we have

• Dt and the hypothesis ht that was learned
• The 𝜖!of that hypothesis on the training data

• What we want from the (t+1)th round
• Find a hypothesis so that examples that were incorrect in the previous 

round are correctly predicted by the new one
• That is, increase the importance of misclassified examples and decrease 

the importance of correctly predicted ones 



AdaBoost: Constructing Dt

Initially (t = 1), use the uniform distribution over all examples

After t rounds, we have some Dt and a hypothesis ht that the 
weak learner produced
Create Dt+1 as follows:

47



AdaBoost: Constructing Dt

Initially (t = 1), use the uniform distribution over all examples

After t rounds, we have some Dt and a hypothesis ht that the 
weak learner produced
Create Dt+1 as follows:

48

Demote correctly 
predicted examples 
(because, as we will 
see, 𝛼$ > 0)

Promote incorrectly 
predicted examples
(because, as we will 
see, 𝛼$ > 0)



AdaBoost: Constructing Dt

Initially (t = 1), use the uniform distribution over all examples

After t rounds, we have some Dt and a hypothesis ht that the 
weak learner produced
Create Dt+1 as follows:

49



AdaBoost: Constructing Dt

After t rounds, we have some Dt and a hypothesis ht that the 
weak learner produced
Create Dt+1 as follows:

50

Zt: A normalization constant. Ensures that the weights Dt+1 add up to 1

The classifier ht gets a 
vote of ®t in the final 
classifier



AdaBoost: Constructing Dt

After t rounds, we have some Dt and a hypothesis ht that the 
weak learner produced
Create Dt+1 as follows:

51

Zt: A normalization constant. Ensures that the weights Dt+1 add up to 1

Exercise: How should we compute the value of Zt? 



AdaBoost: Constructing Dt

After t rounds, we have some Dt and a hypothesis ht that the 
weak learner produced
Create Dt+1 as follows:

52

Zt: A normalization constant. Ensures that the weights Dt+1 add up to 1

Since 𝜖$ <
!
"
, the value of 𝛼$ > 0



AdaBoost: Constructing Dt

After t rounds, we have some Dt and a hypothesis ht that the 
weak learner produced
Create Dt+1 as follows:

53

Zt: A normalization constant. Ensures that the weights Dt+1 add up to 1

Eventually, the classifier ht gets a 
vote of 𝛼$ in the final classifier



An outline of Boosting

Given a training set 𝑥", 𝑦" , 𝑥#, 𝑦# , ⋯ 𝑥$ , 𝑦$
– Instances 𝑥1 ∈ 𝑋 labeled with y1 ∈ {−1,+1}

• For t = 1, 2, , T: 
✓ Construct a distribution 𝐷𝑡 on {1, 2,⋯ ,𝑚}
– Find a weak hypothesis (rule of thumb) ℎ0 such that it has 

a small weighted error 𝜖0
• Construct a final output Hfinal

54

Need to specify these 
two to get a complete 
algorithm



The final hypothesis

• After T rounds, we have 
– T weak classifiers h1, h2,  hT

– T values of 𝛼!

• Recall that each weak classifier is takes an example 𝑥 and 
produces a -1 or a +1

• Define the final hypothesis Hfinal as

55



AdaBoost: The full algorithm

1. Initialize 𝐷! 𝑖 = !
%

 for each example indexed by 𝑖 ∈ {1,2,⋯ ,𝑚}

56

Given a training set 𝑥!, 𝑦! , 𝑥", 𝑦" , ⋯ 𝑥%, 𝑦%
Instances 𝑥# ∈ 𝑋 labeled with y# ∈ {−1,+1}

T: a parameter 
to the learner



AdaBoost: The full algorithm

1. Initialize 𝐷! 𝑖 = !
%

 for each example indexed by 𝑖 ∈ {1,2,⋯ ,𝑚}
2. For t = 1, 2,  T:

– Find a classifier ℎ$ whose weighted classification error is better than chance

57

Given a training set 𝑥!, 𝑦! , 𝑥", 𝑦" , ⋯ 𝑥%, 𝑦%
Instances 𝑥# ∈ 𝑋 labeled with y# ∈ {−1,+1}

T: a parameter 
to the learner



AdaBoost: The full algorithm

1. Initialize 𝐷! 𝑖 = !
%

 for each example indexed by 𝑖 ∈ {1,2,⋯ ,𝑚}
2. For t = 1, 2,  T:

– Find a classifier ℎ$ whose weighted classification error is better than chance
– Compute its vote 

𝛼$ =
1
2 ln

1 − 𝜖$
𝜖$

	

58

Given a training set 𝑥!, 𝑦! , 𝑥", 𝑦" , ⋯ 𝑥%, 𝑦%
Instances 𝑥# ∈ 𝑋 labeled with y# ∈ {−1,+1}

T: a parameter 
to the learner



AdaBoost: The full algorithm

1. Initialize 𝐷! 𝑖 = !
%

 for each example indexed by 𝑖 ∈ {1,2,⋯ ,𝑚}
2. For t = 1, 2,  T:

– Find a classifier ℎ$ whose weighted classification error is better than chance
– Compute its vote 

𝛼$ =
1
2 ln

1 − 𝜖$
𝜖$

	

– Update the values of the weights for the training examples

𝐷$&! 𝑖 =
𝐷$ 𝑖
𝑍$

⋅ exp −𝛼$ ⋅ 𝑦#ℎ$ 𝑥#

59

Given a training set 𝑥!, 𝑦! , 𝑥", 𝑦" , ⋯ 𝑥%, 𝑦%
Instances 𝑥# ∈ 𝑋 labeled with y# ∈ {−1,+1}

T: a parameter 
to the learner



AdaBoost: The full algorithm

1. Initialize 𝐷! 𝑖 = !
%

 for each example indexed by 𝑖 ∈ {1,2,⋯ ,𝑚}
2. For t = 1, 2,  T:

– Find a classifier ℎ$ whose weighted classification error is better than chance
– Compute its vote 

𝛼$ =
1
2 ln

1 − 𝜖$
𝜖$

	

– Update the values of the weights for the training examples

𝐷$&! 𝑖 =
𝐷$ 𝑖
𝑍$

⋅ exp −𝛼$ ⋅ 𝑦#ℎ$ 𝑥#

3. Return the final hypothesis that predicts labels as

𝐻'#()* 𝑥 = sgn W
$+!

,

𝛼$ℎ$ 𝑥 	

60

Given a training set 𝑥!, 𝑦! , 𝑥", 𝑦" , ⋯ 𝑥%, 𝑦%
Instances 𝑥# ∈ 𝑋 labeled with y# ∈ {−1,+1}

T: a parameter 
to the learner



Back to the toy example

61

ℎ3 ℎ/ ℎ?

𝛼3 +𝛼/ +𝛼?Sign



Back to the toy example

62

+

+

+
+
+ -

- -

-
-

ℎ3 ℎ/ ℎ?

𝛼3 +𝛼/ +𝛼?Sign



Analyzing the training error

Theorem: 
• Run AdaBoost for T rounds

• Let 𝜖' =
"
#
− 𝛾'  

• Let 0 < 𝛾' ≤ 𝛾 for all t
• Then, 

   Training	error 𝐻(!)*+ ≤ 𝑒,#-!.

63



Analyzing the training error

Theorem: 
• Run AdaBoost for T rounds

• Let 𝜖' =
"
#
− 𝛾'  

• Let 0 < 𝛾' ≤ 𝛾 for all t
• Then, 

   Training	error 𝐻(!)*+ ≤ 𝑒,#-!.

64

We have a weak learner



Analyzing the training error

Theorem: 
• Run AdaBoost for T rounds

• Let 𝜖' =
"
#
− 𝛾'  

• Let 0 < 𝛾' ≤ 𝛾 for all t
• Then, 

   Training	error 𝐻(!)*+ ≤ 𝑒,#-!.

65

As T increases, the training 
error drops exponentially

We have a weak learner



Analyzing the training error

Theorem: 
• Run AdaBoost for T rounds

• Let 𝜖' =
"
#
− 𝛾'  

• Let 0 < 𝛾' ≤ 𝛾 for all t
• Then, 

   Training	error 𝐻(!)*+ ≤ 𝑒,#-!.

66

Proof is simple, see pointer on website

We have a weak learner

As T increases, the training 
error drops exponentially



Analyzing the training error

Theorem: 
• Run AdaBoost for T rounds

• Let 𝜖' =
"
#
− 𝛾'  

• Let 0 < 𝛾' ≤ 𝛾 for all t
• Then, 

   Training	error 𝐻(!)*+ ≤ 𝑒,#-!.

67

Proof is simple, see pointer on website Is it sufficient to upper 
bound the training error?

As T increases, the training 
error drops exponentially

We have a weak learner



Adaboost: Training error

The training error of the combined classifier decreases 
exponentially fast if the errors of the weak classifiers 
(the 𝜖') are strictly better than chance 

68



Adaboost: Training error

The training error of the combined classifier decreases 
exponentially fast if the errors of the weak classifiers 
(the 𝜖') are strictly better than chance 

69

The individual classifier 
errors (𝜖$) tend to 
increase



What about the test error?

70

What the theory tells us:

Training error will keep decreasing or reach zero (the AdaBoost theorem)

Test error will increase after the Hfinal becomes too “complex”
• Think about Occam’s razor and overfitting



In practice

71



In practice

72

Strange observation: Test error may decrease even after training error has hit zero! 
Why? (One possible explanation in [Schapire, Freund, Bartlett, Lee, 1997])



AdaBoost: Summary

• What is good about it
– Simple, fast and only one additional parameter to tune (T)
– Use it with any weak learning algorithm

• Which means that we only need to look for classifiers that are slightly better 
than chance

• Caveats
– Performance often depends on dataset and the weak learners
– Can fail if the weak learners are too complex (overfitting)
– Can fail if the weak learners are too weak (underfitting)

• Empirical evidence [Caruana and Niculescu-Mizil, 2006] that boosted 
decision stumps are the best approach to try if you have a small 
number of features (no more than hundreds)

73



Boosting and Ensembles

• What is boosting?

• AdaBoost

• Ensemble methods
– Boosting, Bagging and Random Forests

74



Ensemble methods

• In general, meta algorithms that combine the output 
of multiple classifiers

• Often tend to be empirically robust

• Eg: The winner of the $1 million Netflix prize in 2009 
was a giant ensemble

75



Boosting
• Initialization:
– Weigh all training samples equally

• Iteration Step:
– Train model on weighted train set
– Compute weighted error of model on train set
– Increase weights on training cases model gets wrong

• Typically requires 100’s to 1000’s of iterations
• Return final model: 
– Carefully weighted prediction of each model

76



Boosting: Different Perspectives

• Boosting is a maximum-margin method (Schapire et al. 1998, Rosset et al. 2004)

– Trades lower margin on easy cases for higher margin on harder cases

• Boosting is an additive logistic regression model (Friedman, Hastie and Tibshirani 
2000)
– Tries to fit the logit of the true conditional probabilities

• Boosting is an equalizer (Breiman 1998, Friedman, Hastie, Tibshirani 2000)

– Weighted proportion of the number of times an example is misclassified by 
base learners tends to be the same for all training cases

• Boosting is a linear classifier, but does not give well calibrated probability 
estimate.

77



Bagging

• Given a training set with m examples
• Repeat t = 1, 2, , m:
– Draw m’ (< m) samples with replacement from the training 

set
– Train a classifier (any classifier) Ci

• Construct final classifier by taking votes from each Ci

78

Short for Bootstrap aggregating [Breiman, 1994]



Bagging

• A method for generating multiple versions of a predictor and using these to 
get an aggregated predictor.
– Averages over the versions when predicting a numerical outcome  (regression)
– Does a plurality vote when predicting a class (classification)

• The multiple versions are constructed by making bootstrap replicates of the 
learning set and using these as training sets
– That is, use samples of the data, with repetition

• Tests on real and simulated data sets using classification and regression trees 
and subset selection in linear regression show that bagging can give 
substantial gains in accuracy

• Instability of the prediction method: If perturbing the training set can cause 
significant changes in the learned classifier then bagging can improve accuracy

79

Short for Bootstrap aggregating



Bagging

• A method for generating multiple versions of a predictor and using these to 
get an aggregated predictor.
– Averages over the versions when predicting a numerical outcome  (regression)
– Does a plurality vote when predicting a class (classification)

• The multiple versions are constructed by making bootstrap replicates of the 
learning set and using these as training sets
– That is, use samples of the data, with replacement 

• Tests on real and simulated data sets using classification and regression trees 
and subset selection in linear regression show that bagging can give 
substantial gains in accuracy

• Instability of the prediction method: If perturbing the training set can cause 
significant changes in the learned classifier then bagging can improve accuracy

80

Short for Bootstrap aggregating



Bagging

• A method for generating multiple versions of a predictor and using these to 
get an aggregated predictor.
– Averages over the versions when predicting a numerical outcome  (regression)
– Does a plurality vote when predicting a class (classification)

• The multiple versions are constructed by making bootstrap replicates of the 
learning set and using these as training sets
– That is, use samples of the data, with replacement 

• Tests on real and simulated data sets using classification and regression trees 
and subset selection in linear regression show that bagging can give 
substantial gains in accuracy

• Instability of the prediction method: If perturbing the training set can cause 
significant changes in the learned classifier then bagging can improve accuracy

81

Short for Bootstrap aggregating



Bagging

• A method for generating multiple versions of a predictor and using these to 
get an aggregated predictor.
– Averages over the versions when predicting a numerical outcome  (regression)
– Does a plurality vote when predicting a class (classification)

• The multiple versions are constructed by making bootstrap replicates of the 
learning set and using these as training sets
– That is, use samples of the data, with replacement 

• Tests on real and simulated data sets using classification and regression trees 
and subset selection in linear regression show that bagging can give 
substantial gains in accuracy

• Instability of the prediction method: If perturbing the training set can cause 
significant changes in the learned classifier then bagging can improve accuracy

82

Short for Bootstrap aggregating



Example: Bagged Decision Trees

• Draw T bootstrap samples of data
• Train trees on each sample to produce T trees
• Average prediction of trees on out-of-bag samples

83

…

Average prediction

0.23	 + 	0.19	 + 	0.34	 + 	0.22	 + 	0.26	 +	…	+ 	0.31
number	of	trees = 0.24



Random Forests (Bagged Trees++)

• Draw T (possibly 1000s) bootstrap samples of data
• Draw sample of available attributes at each split
• Train trees on each sample+attribute set to produce T trees
• Average prediction of trees on out-of-bag samples

84

…

Average prediction

0.23	 + 	0.19	 + 	0.34	 + 	0.22	 + 	0.26	 +	…	+ 	0.31
number	of	trees = 0.24



Boosting and Ensembles: What have we seen?

• What is boosting?
– Does weak learnability imply strong learnability?

• AdaBoost
– Intuition
– The algorithm
– Why does it work

• Ensemble methods
– Boosting, Bagging and Random Forests

85


