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Computational Learning Theory: 
Agnostic Learning

1Slides based on material from Dan Roth, Avrim Blum, Tom Mitchell and others



This lecture: Computational Learning Theory

• The Theory of Generalization

• Probably Approximately Correct (PAC) learning

• Positive and negative learnability results

• Agnostic Learning

• Shattering and the VC dimension
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So far we have seen…

• The general setting for batch learning

• PAC learning and Occam’s Razor

– How good will a classifier that is consistent on a training set be?

• Assumptions so far:
1. Training and test examples come from the same distribution

2. The hypothesis space is finite.

3. For any concept, there is some function in the hypothesis 
space that is consistent with the training set
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Let’s look at the last assumption. Is it reasonable?



What is agnostic learning?

• So far, we have assumed that the learning algorithm 
could find the true concept 

• What if: We are trying to learn a concept f using 
hypotheses in H, but f  H
– That is C is not a subset of H

– This setting is called agnostic learning

– Can we say something about sample complexity?

  More realistic setting than before
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C
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It could even 
look like this



Agnostic Learning

Are we guaranteed that training error will be zero?

– No. There may be no consistent hypothesis in the hypothesis 
space!

We can find a classifier ℎ ∈ 𝐻 that has low training error

err𝑠 ℎ =
𝑓 𝑥 ≠ ℎ 𝑥 : 𝑥 ∈ 𝑆

𝑚

This is the fraction of training examples that are misclassified

11

Learn a concept f using 
hypotheses in H, but f  H 



Agnostic Learning

Are we guaranteed that training error will be zero?

– No. There may be no consistent hypothesis in the hypothesis 
space!

We can find a classifier ℎ ∈ 𝐻 that has low training error

err𝑠 ℎ =
𝑥 ∈ 𝑆 ∶ 𝑓 𝑥 ≠ ℎ 𝑥

𝑚

This is the fraction of training examples that are misclassified

12

Learn a concept f using 
hypotheses in H, but f  H 



Agnostic Learning

We can find a classifier ℎ ∈ 𝐻 that has low training error

err𝑠 ℎ =
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𝑚

What we want: A guarantee that a hypothesis with small 
training error will have a good accuracy on unseen 
examples
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Learn a concept f using 
hypotheses in H, but f  H 

Can the empirical error 
tell us something about 
the generalization error?



We will use Tail bounds for analysis

How far can a random variable get from its mean?
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Bounding probabilities

Law of large numbers: As we collect more samples, the 
empirical average converges to the true expectation

– Suppose we have an unknown coin and we want to estimate its 
bias (i.e. probability of heads)

– Toss the coin 𝑚 times
number of heads

𝑚
 → P heads

 As 𝑚 increases, we  get a better estimate of P heads

What can we say about the gap between these two terms?

17



Bounding probabilities

Law of large numbers: As we collect more samples, the 
empirical average converges to the true expectation

– Suppose we have an unknown coin and we want to estimate its 
bias (i.e. probability of heads)

– Toss the coin 𝑚 times
number of heads

𝑚
 → P heads

 As 𝑚 increases, we  get a better estimate of P heads

What can we say about the gap between these two terms?

18



Bounding probabilities

Markov’s inequality: Bounds the probability that a non-negative 
random variable exceeds a fixed value

𝑃 𝑋 ≥ 𝑎 ≤
𝐸 𝑋

𝑎

Chebyshev’s inequality: Bounds the probability that a random variable 
differs from its expected value by more than a fixed number of 
standard deviations

𝑃 𝑋 − 𝜇 ≥ 𝑘𝜎 ≤
1

𝑘2

What we want: To bound sums of random variables
– Why? Because the training error depends on the number of errors on the 

training set
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Hoeffding’s inequality

Upper bounds on how much the sum of a set of 
random variables differs from its expected value

𝑃 𝑝 > ҧ𝑝 + 𝜖 ≤ 𝑒−2𝑚𝜖2
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Suppose we perform an experiment m times and compute an empirical mean.

What is the probability that the true mean is more than 𝜖 away from the 
computed empirical mean?
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over 𝑚 independent trials
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True mean (Eg. For a coin toss, 
the probability of seeing heads)

Empirical mean, computed 
over 𝑚 independent trials

What this tells us: The empirical mean will not be too 
far from the expected mean if there are many samples.

And, it quantifies the convergence rate as well.



Back to agnostic learning

Suppose we consider the true error (a.k.a generalization error) 
𝐸𝑟𝑟𝐷(ℎ) to be a random variable 
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Back to agnostic learning

Suppose we consider the true error (a.k.a generalization error) 
𝐸𝑟𝑟𝐷(ℎ) to be a random variable 

The training error over 𝑚 examples 𝐸𝑟𝑟𝑆(ℎ) is the empirical estimate 
of this true error

We can ask: What is the probability that the true error is more than 𝜖 
away from the empirical error?
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𝐸𝑟𝑟𝐷 ℎ = 𝑃𝑟𝑥~𝐷 𝑓 𝑥 ≠ ℎ 𝑥 𝐸𝑟𝑟𝑆 ℎ =
𝑓 𝑥 ≠ ℎ 𝑥 , 𝑥 ∈ 𝑆

𝑚



Agnostic learning
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The probability that there exists a hypothesis in 𝐻 whose training error 
is 𝜖 away from the true error is bounded above

𝑃 for 𝑠𝑜𝑚𝑒 ℎ ∈ 𝐻,
1

1
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Some hypothesis we are considering has generalization error 
that is much worse than the training error.
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This is an undesirable situation because our learner may end 
up picking this hypothesis. 

Let us see what it takes to make this an improbable situation

Some hypothesis we are considering has generalization error 
that is much worse than the training error.



Agnostic learning

The probability that there exists a hypothesis in 𝐻 whose training error 
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Same game as before: We want this probability to be smaller than 𝛿
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Agnostic learning

The probability that there exists a hypothesis in 𝐻 whose training error 
is 𝜖 away from the true error is bounded above

𝑃 for 𝑠𝑜𝑚𝑒 ℎ ∈ 𝐻,
1

1
we have 𝐸𝑟𝑟𝐷 ℎ > 𝐸𝑟𝑟𝑆 ℎ + 𝜖 ≤ 𝐻 𝑒−2𝑚𝜖2

 

Same game as before: We want this probability to be smaller than 𝛿

𝐻 𝑒−2𝑚𝜖2
≤ 𝛿

Rearranging this gives us

𝑚 ≥
1

2𝜖2
ln 𝐻 + ln

1

𝛿
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Agnostic learning: Interpretations

1. An agnostic learner makes no commitment to whether f is in H and returns the 
hypothesis with least training error over at least m examples.

It can guarantee with probability 1 - ± that the training error is not off by more 
than ² from the training error if 

43

Difference between generalization 
and training errors: How much 
worse will the classifier be in the 
future than it is at training time? Size of the hypothesis class: 

Again an Occam’s razor 
argument – prefer smaller sets 
of functions
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Agnostic learning: Interpretations

1. An agnostic learner makes no commitment to whether f is in H and returns the 
hypothesis with least training error over at least m examples.

It can guarantee with probability 1 − 𝛿 that the true/generalization error is not 
off by more than 𝜖 from the training error if 

 

2. We have a generalization bound: A bound on how much the true error will 
deviate from the training error. If we have more than 𝑚 examples, then with high 
probability (more than 1 − 𝛿),

47

Generalization error Training error



What we have seen so far

Occam’s razor: When the hypothesis space contains the 
true concept

Agnostic learning: When the hypothesis space may not 
contain the true concept

48

Learnability depends on the log of the size of the hypothesis space

Have we solved everything? Eg: What about linear classifiers?
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