
Machine Learning

Computational Learning Theory:
The Theory of Generalization

1Slides based on material from Dan Roth, Avrim Blum, Tom Mitchell and others

Checkpoint: The bigger picture

• Supervised learning: instances, concepts, and hypotheses

• Specific learners
– Decision trees
– Perceptron
– Winnow

• General ML ideas
– Features as high dimensional vectors
– Overfitting
– Mistake-bound: One way of asking “Can my problem be learned?”

Learning
algorithm

Labeled
data

Hypothesis/
Model h

hNew example Prediction

2

Checkpoint: The bigger picture

• Supervised learning: instances, concepts, and hypotheses

• Specific learners
– Decision trees
– Perceptron

• General ML ideas
– Features as high dimensional vectors
– Overfitting
– Mistake-bound: One way of asking “Can my problem be learned?”

Learning
algorithm

Labeled
data

Hypothesis/
Model h

hNew example Prediction

3

Checkpoint: The bigger picture

• Supervised learning: instances, concepts, and hypotheses

• Specific learners
– Decision trees
– Perceptron

• General ML ideas
– Features as high dimensional vectors
– Overfitting
– Mistake-bound: One way of asking “Can my problem be learned?”

Learning
algorithm

Labeled
data

Hypothesis/
Model h

hNew example Prediction

4

Checkpoint: The bigger picture

• Supervised learning: instances, concepts, and hypotheses

• Specific learners
– Decision trees
– Perceptron

• General ML ideas
– Features as high dimensional vectors
– Overfitting
– Mistake-bound: One way of asking “Can my problem be learned?”

Learning
algorithm

Labeled
data

Hypothesis/
Model h

hNew example Prediction

Questions? 5

Computational Learning Theory

• The Theory of Generalization

• Probably Approximately Correct (PAC) learning

• Positive and negative learnability results

• Agnostic Learning

• Shattering and the VC dimension

6

This lecture: Computational Learning Theory

• The Theory of Generalization
– When can be trust the learning algorithm?
– Errors of hypotheses
– Batch Learning

• Probably Approximately Correct (PAC) learning

• Positive and negative learnability results

• Agnostic Learning

• Shattering and the VC dimension

7

Computational Learning Theory

Are there general “laws of nature” related to learnability?

We want theory that can relate
– Probability of successful Learning
– Number of training examples
– Complexity of hypothesis space
– Accuracy to which target concept is approximated
– Manner in which training examples are presented

8

Learning Conjunctions

Teacher (Nature) provides the labels (f(x))
– <(1,1,1,1,1,1,…,1,1), 1>
– <(1,1,1,0,0,0,…,0,0), 0>
– <(1,1,1,1,1,0,...0,1,1), 1>
– <(1,0,1,1,1,0,...0,1,1), 0>
– <(1,1,1,1,1,0,...0,0,1), 1>
– <(1,0,1,0,0,0,...0,1,1), 0>
– <(1,1,1,1,1,1,…,0,1), 1>
– <(0,1,0,1,0,0,...0,1,1), 0>

9

Some random source (nature) provides training examples

Notation: <example, label>

How good is our learning algorithm?

Learning Conjunctions

Teacher (Nature) provides the labels (f(x))
– <(1,1,1,1,1,1,…,1,1), 1>
– <(1,1,1,0,0,0,…,0,0), 0>
– <(1,1,1,1,1,0,...0,1,1), 1>
– <(1,0,1,1,1,0,...0,1,1), 0>
– <(1,1,1,1,1,0,...0,0,1), 1>
– <(1,0,1,0,0,0,...0,1,1), 0>
– <(1,1,1,1,1,1,…,0,1), 1>
– <(0,1,0,1,0,0,...0,1,1), 0>

Some random source (nature) provides training examples

For a reasonable learning algorithm (by
elimination), the final hypothesis will be

How good is our learning algorithm?

Learning Conjunctions

Teacher (Nature) provides the labels (f(x))
– <(1,1,1,1,1,1,…,1,1), 1>
– <(1,1,1,0,0,0,…,0,0), 0>
– <(1,1,1,1,1,0,...0,1,1), 1>
– <(1,0,1,1,1,0,...0,1,1), 0>
– <(1,1,1,1,1,0,...0,0,1), 1>
– <(1,0,1,0,0,0,...0,1,1), 0>
– <(1,1,1,1,1,1,…,0,1), 1>
– <(0,1,0,1,0,0,...0,1,1), 0>

11

Some random source (nature) provides training examples

Whenever the output is 1, x1 is present

For a reasonable learning algorithm (by
elimination), the final hypothesis will be

How good is our learning algorithm?

Learning Conjunctions

Teacher (Nature) provides the labels (f(x))
– <(1,1,1,1,1,1,…,1,1), 1>
– <(1,1,1,0,0,0,…,0,0), 0>
– <(1,1,1,1,1,0,...0,1,1), 1>
– <(1,0,1,1,1,0,...0,1,1), 0>
– <(1,1,1,1,1,0,...0,0,1), 1>
– <(1,0,1,0,0,0,...0,1,1), 0>
– <(1,1,1,1,1,1,…,0,1), 1>
– <(0,1,0,1,0,0,...0,1,1), 0>

12

Some random source (nature) provides training examples

Whenever the output is 1, x1 is present

For a reasonable learning algorithm (by
elimination), the final hypothesis will be

With the given data, we only learned an
approximation to the true concept.

Is it good enough?

How good is our learning algorithm?

Two Directions

• Can analyze the probabilistic intuition
– Never saw x1=0 in positive examples, maybe we’ll never see it
– And if we do, it will be with small probability, so the concepts we learn

may be pretty good
• Pretty good: In terms of performance on future data

– PAC framework

• Mistake Driven Learning algorithms
– Update your hypothesis only when you make mistakes
– Define good in terms of how many mistakes you make before you stop

13

for How good is our learning algorithm?

Two Directions

• Can analyze the probabilistic intuition
– Never saw x1=0 in positive examples, maybe we’ll never see it
– And if we do, it will be with small probability, so the concepts we learn

may be pretty good
• Pretty good: In terms of performance on future data

– PAC framework

• Mistake Driven Learning algorithms
– Update your hypothesis only when you make mistakes
– Define good in terms of how many mistakes you make before you stop

14

for How good is our learning algorithm?

The mistake bound approach

The mistake bound model is a theoretical approach
– We may be able to determine the number of mistakes the

learning algorithm can make before converging

But no answer to “How many examples do you need before
converging to a good hypothesis?”

Because the mistake-bound model makes no assumptions
about the order or distribution of training examples

– Both a strength and a weakness of the mistake bound model

15

PAC learning

A model for batch learning
– Train on a fixed training set
– Then deploy it in the wild

How well will your learning algorithm do on future
instances after it was trained on the fixed training set?

How big should the training set be to learn some concept?

Can we guarantee that learning will succeed?

16

PAC learning

A model for batch learning
– Train on a fixed training set
– Then deploy it in the wild

How well will your learning algorithm do on future
instances after it was trained on the fixed training set?

How big should the training set be to learn some concept?

Can we guarantee that learning will succeed?

17

The setup

• Instance Space: 𝑋, the set of examples
• Concept Space: 𝐶, the set of possible target functions: 𝑓 ∈ 𝐶 is the hidden

target function
– Eg: all 𝑛-conjunctions; all 𝑛-dimensional linear functions, …

• Hypothesis Space: H, the set of possible hypotheses
– This is the set that the learning algorithm explores

• Training instances: S £ {-1,1}: positive and negative examples of the target
concept. (S is a finite subset of X)

• What we want: A hypothesis h Î H such that h(x) = f(x)

– A hypothesis h Î H such that h(x) = f(x) for all x Î S ?
– A hypothesis h Î H such that h(x) = f(x) for all x Î X ?

><><><)(,,...)(,,)(, 2211 nn xfxxfxxfx

18

The setup

• Instance Space: 𝑋, the set of examples
• Concept Space: 𝐶, the set of possible target functions: 𝑓 ∈ 𝐶 is the hidden

target function
– Eg: all 𝑛-conjunctions; all 𝑛-dimensional linear functions, …

• Hypothesis Space: 𝐻, the set of possible hypotheses
– This is the set that the learning algorithm explores

• Training instances: 𝑆×{−1,1} : positive and negative examples of the
target concept. (𝑆 is a finite subset of 𝑋)

𝑥!, 𝑓 𝑥! , 𝑥", 𝑓 𝑥" , ⋯ , 𝑥#, 𝑓 𝑥#
• What we want: A hypothesis h ∈ 𝐻 such that ℎ 𝑥 = 𝑓(𝑥)

– A hypothesis h ∈ 𝐻 such that ℎ 𝑥 = 𝑓(𝑥) for all 𝑥 ∈ 𝑆?
– A hypothesis h ∈ 𝐻 such that ℎ 𝑥 = 𝑓(𝑥) for all 𝑥 ∈ 𝑋?

><><><)(,,...)(,,)(, 2211 nn xfxxfxxfx

19

The setup

• Instance Space: 𝑋, the set of examples
• Concept Space: 𝐶, the set of possible target functions: 𝑓 ∈ 𝐶 is the hidden

target function
– Eg: all 𝑛-conjunctions; all 𝑛-dimensional linear functions, …

• Hypothesis Space: 𝐻, the set of possible hypotheses
– This is the set that the learning algorithm explores

• Training instances: 𝑆×{−1,1} : positive and negative examples of the
target concept. (𝑆 is a finite subset of 𝑋)

𝑥!, 𝑓 𝑥! , 𝑥", 𝑓 𝑥" , ⋯ , 𝑥#, 𝑓 𝑥#
• What we want: A hypothesis h ∈ 𝐻 such that ℎ 𝑥 = 𝑓(𝑥)

– A hypothesis h ∈ 𝐻 such that ℎ 𝑥 = 𝑓(𝑥) for all 𝑥 ∈ 𝑆?
– A hypothesis h ∈ 𝐻 such that ℎ 𝑥 = 𝑓(𝑥) for all 𝑥 ∈ 𝑋?

><><><)(,,...)(,,)(, 2211 nn xfxxfxxfx

20

The setup

• Instance Space: 𝑋, the set of examples
• Concept Space: 𝐶, the set of possible target functions: 𝑓 ∈ 𝐶 is the hidden

target function
– Eg: all 𝑛-conjunctions; all 𝑛-dimensional linear functions, …

• Hypothesis Space: 𝐻, the set of possible hypotheses
– This is the set that the learning algorithm explores

• Training instances: 𝑆×{−1,1}: positive and negative examples of the target
concept. (𝑆 is a finite subset of 𝑋)

𝑥!, 𝑓 𝑥! , 𝑥", 𝑓 𝑥" , ⋯ , 𝑥#, 𝑓 𝑥#
• What we want: A hypothesis h ∈ 𝐻 such that ℎ 𝑥 = 𝑓(𝑥)

– A hypothesis h ∈ 𝐻 such that ℎ 𝑥 = 𝑓(𝑥) for all 𝑥 ∈ 𝑆?
– A hypothesis h ∈ 𝐻 such that ℎ 𝑥 = 𝑓(𝑥) for all 𝑥 ∈ 𝑋?

21

The setup

• Instance Space: 𝑋, the set of examples
• Concept Space: 𝐶, the set of possible target functions: 𝑓 ∈ 𝐶 is the hidden

target function
– Eg: all 𝑛-conjunctions; all 𝑛-dimensional linear functions, …

• Hypothesis Space: 𝐻, the set of possible hypotheses
– This is the set that the learning algorithm explores

• Training instances: 𝑆×{−1,1}: positive and negative examples of the target
concept. (𝑆 is a finite subset of 𝑋)

𝑥!, 𝑓 𝑥! , 𝑥", 𝑓 𝑥" , ⋯ , 𝑥#, 𝑓 𝑥#
• What we want: A hypothesis h ∈ 𝐻 such that ℎ 𝑥 = 𝑓(𝑥)

22

The setup

• Instance Space: 𝑋, the set of examples
• Concept Space: 𝐶, the set of possible target functions: 𝑓 ∈ 𝐶 is the hidden

target function
– Eg: all 𝑛-conjunctions; all 𝑛-dimensional linear functions, …

• Hypothesis Space: 𝐻, the set of possible hypotheses
– This is the set that the learning algorithm explores

• Training instances: 𝑆×{−1,1}: positive and negative examples of the target
concept. (𝑆 is a finite subset of 𝑋)

𝑥!, 𝑓 𝑥! , 𝑥", 𝑓 𝑥" , ⋯ , 𝑥#, 𝑓 𝑥#
• What we want: A hypothesis h ∈ 𝐻 such that ℎ 𝑥 = 𝑓(𝑥)

…for all 𝑥 ∈ 𝑆? Or …for all 𝑥 ∈ 𝑋?

23

The setup

• Instance Space: 𝑋, the set of examples
• Concept Space: 𝐶, the set of possible target functions: 𝑓 ∈ 𝐶 is the hidden

target function
– Eg: all 𝑛-conjunctions; all 𝑛-dimensional linear functions, …

• Hypothesis Space: 𝐻, the set of possible hypotheses
– This is the set that the learning algorithm explores

• Training instances: 𝑆×{−1,1}: positive and negative examples of the target
concept. (𝑆 is a finite subset of 𝑋)
– Training instances are generated by a fixed unknown probability

distribution 𝐷 over 𝑋
• What we want: A hypothesis h ∈ 𝐻 such that ℎ 𝑥 = 𝑓(𝑥)

– Evaluate h on subsequent examples 𝑥 ∈ 𝑋	drawn according to 𝐷

24

Distribution over the instance space

25

Consider a two dimensional instance space

Not all points in the space are equally likely to
exist as instances.

For example, not every sequence of
words is an email, not every sequence of
letters is a name

Distribution over the instance space

26

Consider a two dimensional instance space

Not all points in the space are equally likely to
exist as instances.

For example, not every sequence of
words is an email, not every sequence of
letters is a name

That is, there is a some probability that a point
in the space of instances is an instance

Distribution over the instance space

27

Consider a two dimensional instance space

Not all points in the space are equally likely to
exist as instances.

For example, not every sequence of
words is an email, not every sequence of
letters is a name

That is, there is a some probability that a point
in the space of instances is an instance

Distribution over the instance space

28

Consider a two dimensional instance space

Not all points in the space are equally likely to
exist as instances.

For example, not every sequence of
words is an email, not every sequence of
letters is a name

That is, there is a some probability that a point
in the space of instances is an instance

Or as a contour plot

Distribution over the instance space

29

Consider a two dimensional instance space

Not all points in the space are equally likely to
exist as instances.

For example, not every sequence of
words is an email, not every sequence of
letters is a name

That is, there is a some probability that a point
in the space of instances is an instance

Or as a contour plot

We assume that any finite set of examples is
drawn i.i.d from this distribution.

Distribution over the instance space

30

Consider a two dimensional instance space

Not all points in the space are equally likely to
exist as instances.

For example, not every sequence of
words is an email, not every sequence of
letters is a name

That is, there is a some probability that a point
in the space of instances is an instance

Or as a contour plot

We assume that any finite set of examples is
drawn i.i.d. from this distribution.

We may not know what the distribution is,
but we assume one exists and is fixed

PAC Learning – Intuition

The assumption of fixed distribution is important for two
reasons:

1. Gives us hope that what we learn on the training data will be
meaningful on future examples

2. Also gives a well-defined notion of the error of a hypothesis
according to the target function

• “The future will be like the past”: We have seen many
examples (drawn according to the distribution D)
– Since in all the positive examples x1 was active, it is very likely that it

will be active in future positive examples
– If not, in any case, x1 is active only in a small percentage of the

examples so our error will be small

31

PAC Learning – Intuition

The assumption of fixed distribution is important for two
reasons:

1. Gives us hope that what we learn on the training data will be
meaningful on future examples

2. Also gives a well-defined notion of the error of a hypothesis
according to the target function

“The future will be like the past”: We have seen many examples
(drawn according to the distribution 𝐷)

– Since in all the positive examples 𝑥! was active, it is very likely that it
will be active in future positive examples

– If not, in any case, 𝑥! is active only in a small percentage of the
examples so our error will be small

32

Error of a hypothesis

Definition
Given a distribution 𝐷 over examples, the error of a
hypothesis ℎ with respect to a target concept 𝑓 is

err6 ℎ = Pr7~6[ℎ 𝑥 ≠ 𝑓 𝑥]

33

Error of a hypothesis

Definition
Given a distribution 𝐷 over examples, the error of a
hypothesis ℎ with respect to a target concept 𝑓 is

err6 ℎ = Pr7~6[ℎ 𝑥 ≠ 𝑓 𝑥]

34

Instance space 𝑋

Error of a hypothesis

Definition
Given a distribution 𝐷 over examples, the error of a
hypothesis ℎ with respect to a target concept 𝑓 is

err6 ℎ = Pr7~6[ℎ 𝑥 ≠ 𝑓 𝑥]

35

Instance space 𝑋

Target concept
𝑓 labels all
these points
as +ve

Error of a hypothesis

Definition
Given a distribution 𝐷 over examples, the error of a
hypothesis ℎ with respect to a target concept 𝑓 is

err6 ℎ = Pr7~6[ℎ 𝑥 ≠ 𝑓 𝑥]

36

Instance space 𝑋

Target concept
𝑓 labels all
these points
as +ve

A hypothesis h
labels all these
points as +ve

Error of a hypothesis

Definition
Given a distribution 𝐷 over examples, the error of a
hypothesis ℎ with respect to a target concept 𝑓 is

err6 ℎ = Pr7~6[ℎ 𝑥 ≠ 𝑓 𝑥]

37

Instance space 𝑋

Target concept
𝑓 labels all
these points
as +ve

A hypothesis h
labels all these
points as +ve

Error: 𝑓 and ℎ disagree

Empirical error

Contrast true error against the empirical error

For a target concept 𝑓, the empirical error of a hypothesis ℎ is
defined for a training set 𝑆 as the fraction of examples 𝑥 in 𝑆 for
which the functions 𝑓 and ℎ disagree. That is, ℎ 𝑥 ≠ 𝑓 𝑥

Denoted by err' ℎ

Overfitting: When the empirical error on the training set err' ℎ
is substantially lower than err(ℎ

38

The goal of batch learning

To devise good learning algorithms that avoid
overfitting

Not fooled by functions that only appear to be good because
they explain the training set very well

39

Online learning vs. Batch learning

Online learning
• No assumptions about the

distribution of examples

• Learning is a sequence of trials
– Learner sees a single example,

makes a prediction
– If mistake, update hypothesis

• Goal: To bound the total
number of mistakes over time

Batch learning
• Examples are drawn from a

fixed (perhaps unknown)
probability distribution D over
the instance space

• Learning uses a training set S,
drawn i.i.d from the
distribution D

• Goal: To find a hypothesis that
has low chance of making a
mistake on a new example
from D

40

Online learning vs. Batch learning

Online learning

• No assumptions about the
distribution of examples

• Learning is a sequence of trials
– Learner sees a single example,

makes a prediction
– If mistake, update hypothesis

• Goal: To bound the total
number of mistakes over time
(for mistake-bound learning)

Batch learning
• Examples are drawn from a

fixed (perhaps unknown)
probability distribution D over
the instance space

• Learning uses a training set S,
drawn i.i.d from the
distribution D

• Goal: To find a hypothesis that
has low chance of making a
mistake on a new example
from D

41

Online learning vs. Batch learning

Online learning

• No assumptions about the
distribution of examples

• Learning is a sequence of trials
– Learner sees a single example,

makes a prediction
– If mistake, update hypothesis

• Goal: To bound the total
number of mistakes over time
(for mistake-bound learning)

Batch learning
• Examples are drawn from a

fixed (perhaps unknown)
probability distribution D over
the instance space

• Learning uses a training set S,
drawn i.i.d from the
distribution D

• Goal: To find a hypothesis that
has low chance of making a
mistake on a new example
from D

42

Online learning vs. Batch learning

Online learning

• No assumptions about the
distribution of examples

• Learning is a sequence of trials
– Learner sees a single example,

makes a prediction
– If mistake, update hypothesis

• Goal: To bound the total
number of mistakes over time
(for mistake-bound learning)

Batch learning
• Examples are drawn from a

fixed (perhaps unknown)
probability distribution D over
the instance space

• Learning uses a training set S,
drawn i.i.d from the
distribution D

• Goal: To find a hypothesis that
has low chance of making a
mistake on a new example
from D

43

