
Machine Learning

Computational Learning Theory: 
The Theory of Generalization

1Slides based on material from Dan Roth, Avrim Blum, Tom Mitchell and others



Checkpoint: The bigger picture

• Supervised learning: instances, concepts, and hypotheses

• Specific learners
– Decision trees 
– Perceptron
– Winnow

• General ML ideas
– Features as high dimensional vectors
– Overfitting
– Mistake-bound: One way of asking “Can my problem be learned?”
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Computational Learning Theory

• The Theory of Generalization

• Probably Approximately Correct (PAC) learning

• Positive and negative learnability results

• Agnostic Learning

• Shattering and the VC dimension
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This lecture: Computational Learning Theory

• The Theory of Generalization
– When can be trust the learning algorithm?
– Errors of hypotheses
– Batch Learning

• Probably Approximately Correct (PAC) learning

• Positive and negative learnability results

• Agnostic Learning

• Shattering and the VC dimension
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Computational Learning Theory

Are there general “laws of nature” related to learnability?

We want theory that can relate
– Probability of successful Learning
– Number of training examples
– Complexity of hypothesis space
– Accuracy to which target concept is approximated
– Manner in which training examples are presented
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Learning Conjunctions

Teacher (Nature) provides the labels (f(x)) 
– <(1,1,1,1,1,1,…,1,1), 1>
– <(1,1,1,0,0,0,…,0,0), 0>
– <(1,1,1,1,1,0,...0,1,1), 1>
– <(1,0,1,1,1,0,...0,1,1), 0>
– <(1,1,1,1,1,0,...0,0,1), 1>
– <(1,0,1,0,0,0,...0,1,1), 0>
– <(1,1,1,1,1,1,…,0,1), 1>
– <(0,1,0,1,0,0,...0,1,1), 0>
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Some random source (nature) provides training examples

Notation: <example, label>

How good is our learning algorithm?
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Some random source (nature) provides training examples

Whenever the output is 1, x1 is present

For a reasonable learning algorithm (by 
elimination), the final hypothesis will be

With the given data, we only learned an 
approximation to the true concept. 

Is it good enough?

How good is our learning algorithm?



Two Directions

• Can analyze the probabilistic intuition
– Never saw x1=0 in positive examples, maybe we’ll never see it
– And if we do, it will be with small probability, so the concepts we learn 

may be pretty good
• Pretty good: In terms of performance on future data

– PAC framework

• Mistake Driven Learning algorithms
– Update your hypothesis only when you make mistakes
– Define good in terms of how many mistakes you make before you stop 
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The mistake bound approach

The mistake bound model is a theoretical approach
– We may be able to determine the number of mistakes the 

learning algorithm can make before converging

But no answer to “How many examples do you need before 
converging to a good hypothesis?”

Because the mistake-bound model makes no assumptions 
about the order or distribution of training examples

– Both a strength and a weakness of the mistake bound model
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PAC learning

A model for batch learning
– Train on a fixed training set
– Then deploy it in the wild

How well will your learning algorithm do on future 
instances after it was trained on the fixed training set?

How big should the training set be to learn some concept?

Can we guarantee that learning will succeed?
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The setup

• Instance Space: 𝑋, the set of examples
• Concept Space: 𝐶, the set of possible target functions: 𝑓 ∈ 𝐶 is the hidden 

target function
– Eg: all 𝑛-conjunctions; all 𝑛-dimensional linear functions, …

• Hypothesis Space: H, the set of possible hypotheses
– This is the set that the learning algorithm explores

• Training instances: S £ {-1,1}: positive and negative examples of the target 
concept. (S is a finite subset of X)

 
• What we want: A hypothesis h Î H such that h(x) = f(x)

– A hypothesis h Î H such that h(x) = f(x) for all x Î S ?
– A hypothesis h Î H such that h(x) = f(x) for all x Î X ? 

><><>< )(,,...)(,,)(, 2211 nn xfxxfxxfx
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The setup

• Instance Space: 𝑋, the set of examples
• Concept Space: 𝐶, the set of possible target functions: 𝑓 ∈ 𝐶 is the hidden 

target function
– Eg: all 𝑛-conjunctions; all 𝑛-dimensional linear functions, …

• Hypothesis Space: 𝐻, the set of possible hypotheses
– This is the set that the learning algorithm explores

• Training instances: 𝑆×{−1,1}: positive and negative examples of the target 
concept. (𝑆 is a finite subset of 𝑋)
– Training instances are generated by a fixed unknown probability 

distribution 𝐷 over 𝑋
• What we want: A hypothesis h ∈ 𝐻 such that ℎ 𝑥 = 𝑓(𝑥)

– Evaluate h on subsequent examples 𝑥 ∈ 𝑋	drawn according to 𝐷
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Distribution over the instance space
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exist as instances. 

For example, not every sequence of 
words is an email, not every sequence of 
letters is a name
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Consider a two dimensional instance space

Not all points in the space are equally likely to 
exist as instances. 

For example, not every sequence of 
words is an email, not every sequence of 
letters is a name

That is, there is a some probability that a point 
in the space of instances is an instance

Or as a contour plot

We assume that any finite set of examples is 
drawn i.i.d. from this distribution.

We may not know what the distribution is, 
but we assume one exists and is fixed



PAC Learning – Intuition 

The assumption of fixed distribution is important for two 
reasons:

1. Gives us hope that what we learn on the training data will be 
meaningful on future examples

2. Also gives a well-defined notion of the error of a hypothesis 
according to the target function

• “The future will be like the past”: We have seen many 
examples (drawn according to the distribution D)
– Since in all the positive examples x1  was active,  it is very likely  that it 

will be active in future positive examples 
– If not, in any case, x1  is active only in a small percentage of the 

examples so our error will be small 
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– If not, in any case, 𝑥! is active only in a small percentage of the 
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Error of a hypothesis

Definition
Given a distribution 𝐷 over examples, the error of a 
hypothesis ℎ with respect to a target concept 𝑓 is 

err6 ℎ = Pr7~6[ℎ 𝑥 ≠ 𝑓 𝑥 ]
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Error of a hypothesis

Definition
Given a distribution 𝐷 over examples, the error of a 
hypothesis ℎ with respect to a target concept 𝑓 is 

err6 ℎ = Pr7~6[ℎ 𝑥 ≠ 𝑓 𝑥 ]
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Instance space 𝑋

Target concept 
𝑓 labels all 
these points 
as +ve

A hypothesis h 
labels all these 
points as +ve

Error: 𝑓 and ℎ disagree



Empirical error

Contrast true error against the empirical error

For a target concept 𝑓, the empirical error of a hypothesis ℎ is 
defined for a training set 𝑆 as the fraction of examples 𝑥 in 𝑆 for 
which the functions 𝑓 and ℎ disagree. That is, ℎ 𝑥 ≠ 𝑓 𝑥

Denoted by err' ℎ

Overfitting: When the empirical error on the training set err' ℎ  
is substantially lower than err( ℎ
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The goal of batch learning

To devise good learning algorithms that avoid 
overfitting

Not fooled by functions that only appear to be good because 
they explain the training set very well
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Online learning vs. Batch learning

Online learning
• No assumptions about the 

distribution of examples

• Learning is a sequence of trials
– Learner sees a single example, 

makes a prediction
– If mistake, update hypothesis

• Goal: To bound the total 
number of mistakes over time

Batch learning
• Examples are drawn from a 

fixed (perhaps unknown) 
probability distribution D over 
the instance space

• Learning uses a training set S, 
drawn i.i.d from the 
distribution D

• Goal: To find a hypothesis that 
has low chance of making a 
mistake on a new example 
from D
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