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This	lecture:	Computational	Learning	Theory

• The	Theory	of	Generalization

• Probably	Approximately	Correct	(PAC)	learning

• Positive	and	negative	learnability	results

• Agnostic	Learning

• Shattering	and	the	VC	dimension
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Where	are	we?

• The	Theory	of	Generalization
– When	can	be	trust	the	learning	algorithm?
– What	functions	can	be	learned?
– Batch	Learning

• Probably	Approximately	Correct	(PAC)	learning

• Positive	and	negative	learnability	results

• Agnostic	Learning

• Shattering	and	the	VC	dimension
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This	section

1. Analyze	a	simple	algorithm	for	learning	conjunctions

2. Define	the	PAC	model	of	learning

3. Make	formal	connections	to	the	principle	of	Occam’s	razor

4



This	section

1. Analyze	a	simple	algorithm	for	learning	conjunctions

2. Define	the	PAC	model	of	learning

3. Make	formal	connections	to	the	principle	of	Occam’s	razor

5



Learning	Conjunctions

Training	data
– <(1,1,1,1,1,1,…,1,1),	1>
– <(1,1,1,0,0,0,…,0,0),	0>
– <(1,1,1,1,1,0,...0,1,1),	1>
– <(1,0,1,1,1,0,...0,1,1),	0>
– <(1,1,1,1,1,0,...0,0,1),	1>
– <(1,0,1,0,0,0,...0,1,1),	0>
– <(1,1,1,1,1,1,…,0,1),	1>
– <(0,1,0,1,0,0,...0,1,1),	0>

f = x2 ∧ x3∧ x4 ∧ x5∧ x100
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The	true	function
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Positive	examples	eliminate irrelevant	features
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Clearly	this	algorithm	produces	a	conjunction	that	is	consistent	with	the	
data,	that	is	errS(h)	=	0,	if	the	target	function	is	a	monotone	conjunction
Exercise:	Why?



Learning	Conjunctions:	Analysis	

Claim	1:	Any	hypothesis	consistent	with	the	training	data	will	
only	make	mistakes	on	positive	future	examples
Why?
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f = x2 ∧ x3∧ x4 ∧ x5∧ x100 h = x1∧ x2 ∧ x3∧ x4 ∧ x5∧ x100

A	mistake	will	occur	only	if	some	literal	z	(in	our	
example	x1)	is	present	in	h	but	not	in	f

This	mistake	can	cause	a	positive	example	to	be	predicted	as	
negative	by	h

The	reverse	situation	can	never	happen	
For	an	example	to	be	predicted	as	positive	in	the	training	set,	
every	relevant	literal	must	have	been	present

Specifically:	x1 =	0,	x2 =1,	x3=1,	x4=1,	x5=1,	x100=1
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Learning	Conjunctions:	Analysis

Theorem: Suppose	we	are	learning	a	conjunctive	
concept	with	n	dimensional	Boolean	features	using	m	
training	examples.	If	

then,	with	probability	>	1	- ±,	the	error	of	the	learned	
hypothesis	errD(h)	will	be	less	than	².
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If	we	see	these	many	training	examples,	then	the	algorithm	
will	produce	a	conjunction	that,	with	high	probability,	will	

make	few	errors

Poly	in	n,	1/±,	1/²
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Let’s	prove	this	assertion



Proof	Intuition

What	kinds	of	examples	would	drive	a	hypothesis	to	make	a	
mistake?

Positive	examples,	where	x1 is	absent
f would	say	true and	h would	say	false

None	of	these	examples	appeared	during	training
Otherwise	x1 would	have	been	eliminated

If	they	never	appeared	during	training,	maybe	their	
appearance	in	the	future	would	also	be	rare!

Let’s	quantify	our	surprise	at	seeing	such	examples

18

f = x2 ∧ x3∧ x4 ∧ x5∧ x100 h = x1∧ x2 ∧ x3∧ x4 ∧ x5∧ x100
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Learning	Conjunctions:	Analysis

Let	p(z) be	the	probability	that,	in	an	example	drawn	from	D,	the	
feature	z	is	absent	but	the	example	has	a	positive	label

• That	is,	after	training	is	done,	p(z)	is	the	probability	that	in	a	randomly	
drawn	example,	the	literal	z	causes	a	mistake

• For	any	z	in	the	target	function,	p(z)	=	0
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Remember	that	there	will	
only	be	mistakes	on	positive	
examples	for	this	toy	
problem
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f = x2 ∧ x3∧ x4 ∧ x5∧ x100 <(0,1,1,1,1,0,...0,1,1),	1>

p(x1):	Probability	that	this	
situation	occurs

h = x1∧ x2 ∧ x3∧ x4 ∧ x5∧ x100

Remember	that	there	will	
only	be	mistakes	on	positive	
examples	for	this	toy	
problem
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Union	bound
For	a	set	of	events,	
probability	that	at	least	one	
of	them	happens	<		the	sum	
of	the	probabilities	of	the	
individual	events



Learning	Conjunctions:	Analysis

• Call	a	literal	z bad if
• Intuitively,	a	bad	literal	is	one	that	has	a	significant	probability	of	

not	appearing	with	a	positive	example
– (And,	if	it	appears	in	all	positive	training	examples,	it	can	cause	errors)

If	there	are	no	bad	literals,	then	errD(h)	<	²
– Why?	Because

31

n	=	dimensionality

Let	us	try	to	see	when	this	will	not	happen
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Learning	Conjunctions:	Analysis

• Call	a	literal	z bad if
• Intuitively,	a	bad	literal	is	one	that	has	a	significant	probability	of	

not	appearing	with	a	positive	example
– (And,	if	it	appears	in	all	positive	training	examples,	it	can	cause	errors)

If	there	are	no	bad	literals,	then	errD(h)	<	²
– Why?	Because

33

n	=	dimensionality

Let	us	try	to	see	when	this	will	not	happen



Learning	Conjunctions:	Analysis

• Call	a	literal	z bad if
• Intuitively,	a	bad	literal	is	one	that	has	a	significant	probability	of	

not	appearing	with	a	positive	example
– (And,	if	it	appears	in	all	positive	training	examples,	it	can	cause	errors)

What	if	there	are	bad	literals?
Let	z	be	a	bad	literal
What	is	the	probability	that	it	will	not	be	eliminated	by	one	training	
example?

34

n	=	dimensionality



Learning	Conjunctions:	Analysis

• Call	a	literal	z bad if
• Intuitively,	a	bad	literal	is	one	that	has	a	significant	probability	of	

not	appearing	with	a	positive	example
– (And,	if	it	appears	in	all	positive	training	examples,	it	can	cause	errors)

What	if	there	are	bad	literals?
Let	z	be	a	bad	literal
What	is	the	probability	that	it	will	not	be	eliminated	by	one	training	
example?

35

n	=	dimensionality



Learning	Conjunctions:	Analysis

• Call	a	literal	z bad if
• Intuitively,	a	bad	literal	is	one	that	has	a	significant	probability	of	

not	appearing	with	a	positive	example
– (And,	if	it	appears	in	all	positive	training	examples,	it	can	cause	errors)

What	if	there	are	bad	literals?
Let	z	be	a	bad	literal
What	is	the	probability	that	it	will	not	be	eliminated	by	one	training	
example?

36

n	=	dimensionality



Learning	Conjunctions:	Analysis

• Call	a	literal	z bad if
• Intuitively,	a	bad	literal	is	one	that	has	a	significant	probability	of	

not	appearing	with	a	positive	example
– (And,	if	it	appears	in	all	positive	training	examples,	it	can	cause	errors)

What	if	there	are	bad	literals?
Let	z	be	a	bad	literal
What	is	the	probability	that	it	will	not	be	eliminated	by	one	training	
example?

37

n	=	dimensionality

<(1,1,1,1,1,0,...0,1,1),	1>
There	was	one	example	of	this	kind



Learning	Conjunctions:	Analysis

What	we	know	so	far:

But	say	we	have	m	training	examples.	Then

There	are	at	most	n	bad	literals.	So

38
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Learning	Conjunctions:	Analysis

We	want	this	probability	to	be	small

Why?	So	that	we	can	choose	enough	training	examples	so	that	the	probability	
that	any	z	survives	all	of	them	is	less	than	some	±

That	is,	we	want

We	know	that	1	– x <	e-x.	So	it	is	sufficient	to	require

41
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Learning	Conjunctions:	Analysis

To	guarantee	a	probability	of	failure	(i.e,	error	>	²)	that	is	less	than	±,	the	
number	of	examples	we	need	is

That	is,	if	m	has	this	property,	then
• With	probability	1	- ±,	there	will	be	no	bad	literals,
• Or	equivalently,	with	probability	1	- ±,	we	will	have	errD(h)	<	²

What	does	this	mean:
• If	² =	0.1	and	± =	0.1,	then	for	n	=	100,	we	need	6908	training	examples
• If	² =	0.1	and	± =	0.1,	then	for	n	=	10,	we	need	only	461	examples
• If	² =	0.1	and	± =	0.01,	then	for	n	=	10,	we	need	691	examples
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Learning	Conjunctions:	Analysis

To	guarantee	a	probability	of	failure	(i.e,	error	>	²)	that	is	less	than	±,	the	
number	of	examples	we	need	is

That	is,	if	m	has	this	property,	then
• With	probability	1	- ±,	there	will	be	no	bad	literals,
• Or	equivalently,	with	probability	1	- ±,	we	will	have	errD(h)	<	²

How	to	use	this:
• If	² =	0.1	and	± =	0.1,	then	for	n	=	100,	we	need	6908	training	examples
• If	² =	0.1	and	± =	0.1,	then	for	n	=	10,	we	need	only	461	examples
• If	² =	0.1	and	± =	0.01,	then	for	n	=	10,	we	need	691	examples
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What	we	have	here	is	a	PAC	guarantee

Our	algorithm	is	Probably	Approximately	Correct


