
Machine Learning

Computational Learning Theory:
Probably Approximately Correct (PAC)

Learning

1Slides based on material from Dan Roth, Avrim Blum, Tom Mitchell and others

Computational Learning Theory

• The Theory of Generalization

• Probably Approximately Correct (PAC) learning

• Positive and negative learnability results

• Agnostic Learning

• Shattering and the VC dimension

2

Where are we?

• The Theory of Generalization

• Probably Approximately Correct (PAC) learning

• Positive and negative learnability results

• Agnostic Learning

• Shattering and the VC dimension
3

This section

1. Define the PAC model of learning

2. Make formal connections to the principle of Occam’s razor

4

This section

1. Define the PAC model of learning

2. Make formal connections to the principle of Occam’s razor

5

Recall: The setup

• Instance Space: 𝑋, the set of examples
• Concept Space: 𝐶, the set of possible target functions: 𝑓 ∈ 𝐶 is the hidden

target function
– Eg: all 𝑛-conjunctions; all 𝑛-dimensional linear functions, …

• Hypothesis Space: 𝐻, the set of possible hypotheses
– This is the set that the learning algorithm explores

• Training instances: 𝑆×{−1,1}: positive and negative examples of the target
concept. (𝑆 is a finite subset of 𝑋)
– Training instances are generated by a fixed unknown probability

distribution 𝐷 over 𝑋
• What we want: A hypothesis h ∈ 𝐻 such that ℎ 𝑥 = 𝑓(𝑥)

– Evaluate h on subsequent examples 𝑥 ∈ 𝑋	drawn according to 𝐷

6

Formulating the theory of prediction

In the general case, we have

7

All the notation we have seen so far on one slide

𝑋 instance space

𝑌 output space = {+1, -1}

𝐷 an unknown distribution over 𝑋
𝑓 an unknown target function X → 𝑌, taken from a concept class 𝐶
ℎ a hypothesis function X → 𝑌 that the learning algorithm selects from

a hypothesis class 𝐻
𝑆 a set of m training examples drawn from 𝐷, labeled with 𝑓

err! ℎ The true error of a hypothesis ℎ
err" ℎ The empirical error or training error or observed error of ℎ

Theoretical questions

• Can we describe or bound the true error (err/) given the
empirical error (err0)?

• Is a concept class 𝐶 learnable?

• Is it possible to learn 𝐶 using only the functions in H using the
supervised protocol?

• How many examples does an algorithm need to guarantee
good performance?

8

Expectations of learning

We cannot expect a learner to learn a concept exactly
– There will generally be multiple concepts consistent with the

available data (which represent a small fraction of the available
instance space)

– Unseen examples could potentially have any label
– Let us “agree” to misclassify uncommon examples that do not

show up in the training set

• We cannot always expect to learn a close approximation
to the target concept
– Sometimes (hopefully only rarely) the training set will not be

representative (will contain uncommon examples)

9

Expectations of learning

We cannot expect a learner to learn a concept exactly
– There will generally be multiple concepts consistent with the

available data (which represent a small fraction of the available
instance space)

– Unseen examples could potentially have any label
– Let us “agree” to misclassify uncommon examples that do not

show up in the training set

We cannot always expect to learn a close approximation to
the target concept

Sometimes (hopefully only rarely) the training set will not be
representative (will contain uncommon examples)

10

Expectations of learning

We cannot expect a learner to learn a concept exactly
– There will generally be multiple concepts consistent with the

available data (which represent a small fraction of the available
instance space)

– Unseen examples could potentially have any label
– Let us “agree” to misclassify uncommon examples that do not

show up in the training set

We cannot always expect to learn a close approximation to
the target concept

Sometimes (hopefully only rarely) the training set will not be
representative (will contain uncommon examples)

11

The only realistic expectation of a good learner is
that with high probability it will learn a close
approximation to the target concept

Probably approximately correctness

The only realistic expectation of a good learner is that with
high probability it will learn a close approximation to the
target concept

• In Probably Approximately Correct (PAC) learning, one
requires that
– given small parameters ² and ±,
– With probability at least 1 - ±, a learner produces a hypothesis

with error at most ²

• The only reason we can hope for this is the consistent
distribution assumption

12

Probably approximately correctness

The only realistic expectation of a good learner is that with
high probability it will learn a close approximation to the
target concept

In Probably Approximately Correct (PAC) learning, one
requires that

– Given small parameters 𝜖 and 𝛿,
– With probability at least 1 − 	𝛿, a learner produces a hypothesis

with error at most 𝜖

The only reason we can hope for this is the consistent
distribution assumption

13

Probably approximately correctness

The only realistic expectation of a good learner is that with
high probability it will learn a close approximation to the
target concept

In Probably Approximately Correct (PAC) learning, one
requires that

– Given small parameters 𝜖 and 𝛿,
– With probability at least 1 − 	𝛿, a learner produces a hypothesis

with error at most 𝜖

The only reason we can hope for this is the consistent
distribution assumption

14

PAC Learnability

Consider a concept class 𝐶 defined over an instance space 𝑋 (containing
instances of length 𝑛), and a learner 𝐿 using a hypothesis space 𝐻

 The concept class 𝐶 is PAC learnable by 𝐿 using 𝐻 if
for all 𝑓 ∈ 𝐶,
for all distribution 𝐷 over 𝑋, and fixed 0 < 𝜖, 𝛿 < 1,
given 𝑚 examples sampled independently according to 𝐷, with
probability at least (1 − 𝛿), the algorithm 𝐿 produces a hypothesis ℎ ∈
𝐻	that has error at most 𝜖,
where 𝑚 is polynomial in ⁄1 𝜖 , ⁄1 𝛿 , 𝑛 and 𝑠𝑖𝑧𝑒(𝐻).

The concept class 𝐶 is efficiently learnable if 𝐿 can produce the hypothesis
in time that is polynomial in ⁄1 𝜖 , ⁄1 𝛿 , 𝑛 and 𝑠𝑖𝑧𝑒(𝐻).

15

recall that ErrD(h) = PrD[f(x) ≠ h(x)]

PAC Learnability

Consider a concept class 𝐶 defined over an instance space 𝑋 (containing
instances of length 𝑛), and a learner 𝐿 using a hypothesis space 𝐻

 The concept class 𝐶 is PAC learnable by 𝐿 using 𝐻 if
for all 𝑓 ∈ 𝐶,
for all distribution 𝐷 over 𝑋, and fixed 0 < 𝜖, 𝛿 < 1,
given 𝑚 examples sampled independently according to 𝐷, with
probability at least (1 − 𝛿), the algorithm 𝐿 produces a hypothesis ℎ ∈
𝐻	that has error at most 𝜖,
where 𝑚 is polynomial in ⁄1 𝜖 , ⁄1 𝛿 , 𝑛 and 𝑠𝑖𝑧𝑒(𝐻).

The concept class 𝐶 is efficiently learnable if 𝐿 can produce the hypothesis
in time that is polynomial in ⁄1 𝜖 , ⁄1 𝛿 , 𝑛 and 𝑠𝑖𝑧𝑒(𝐻).

16

recall that ErrD(h) = PrD[f(x) ≠ h(x)]

PAC Learnability

Consider a concept class 𝐶 defined over an instance space 𝑋 (containing
instances of length 𝑛), and a learner 𝐿 using a hypothesis space 𝐻

 The concept class 𝐶 is PAC learnable by 𝐿 using 𝐻 if
for all 𝑓 ∈ 𝐶,
for all distribution 𝐷 over 𝑋, and fixed 0 < 𝜖, 𝛿 < 1,
given 𝑚 examples sampled independently according to 𝐷, with
probability at least (1 − 𝛿), the algorithm 𝐿 produces a hypothesis ℎ ∈
𝐻	that has error at most 𝜖,
where 𝑚 is polynomial in ⁄1 𝜖 , ⁄1 𝛿 , 𝑛 and 𝑠𝑖𝑧𝑒(𝐻).

The concept class 𝐶 is efficiently learnable if 𝐿 can produce the hypothesis
in time that is polynomial in ⁄1 𝜖 , ⁄1 𝛿 , 𝑛 and 𝑠𝑖𝑧𝑒(𝐻).

17

recall that ErrD(h) = PrD[f(x) ≠ h(x)]

PAC Learnability

Consider a concept class 𝐶 defined over an instance space 𝑋 (containing
instances of length 𝑛), and a learner 𝐿 using a hypothesis space 𝐻

 The concept class 𝐶 is PAC learnable by 𝐿 using 𝐻 if
for all 𝑓 ∈ 𝐶,
for all distribution 𝐷 over 𝑋, and fixed 0 < 𝜖, 𝛿 < 1,
given 𝑚 examples sampled independently according to 𝐷, with
probability at least (1 − 𝛿), the algorithm 𝐿 produces a hypothesis ℎ ∈
𝐻	that has error at most 𝜖,
where 𝑚 is polynomial in ⁄1 𝜖 , ⁄1 𝛿 , 𝑛 and 𝑠𝑖𝑧𝑒(𝐻).

The concept class 𝐶 is efficiently learnable if 𝐿 can produce the hypothesis
in time that is polynomial in ⁄1 𝜖 , ⁄1 𝛿 , 𝑛 and 𝑠𝑖𝑧𝑒(𝐻).

18

recall that ErrD(h) = PrD[f(x) ≠ h(x)]

PAC Learnability

Consider a concept class 𝐶 defined over an instance space 𝑋 (containing
instances of length 𝑛), and a learner 𝐿 using a hypothesis space 𝐻

 The concept class 𝐶 is PAC learnable by 𝐿 using 𝐻 if
for all 𝑓 ∈ 𝐶,
for all distribution 𝐷 over 𝑋, and fixed 0 < 𝜖, 𝛿 < 1,
given 𝑚 examples sampled independently according to 𝐷, with
probability at least (1 − 𝛿), the algorithm 𝐿 produces a hypothesis ℎ ∈
𝐻	that has error at most 𝜖,
where 𝑚 is polynomial in ⁄1 𝜖 , ⁄1 𝛿 , 𝑛 and 𝑠𝑖𝑧𝑒(𝐻).

The concept class 𝐶 is efficiently learnable if 𝐿 can produce the hypothesis
in time that is polynomial in ⁄1 𝜖 , ⁄1 𝛿 , 𝑛 and 𝑠𝑖𝑧𝑒(𝐻).

19

recall that ErrD(h) = PrD[f(x) ≠ h(x)]
Given a small enough number of examples

PAC Learnability

Consider a concept class 𝐶 defined over an instance space 𝑋 (containing
instances of length 𝑛), and a learner 𝐿 using a hypothesis space 𝐻

 The concept class 𝐶 is PAC learnable by 𝐿 using 𝐻 if
for all 𝑓 ∈ 𝐶,
for all distribution 𝐷 over 𝑋, and fixed 0 < 𝜖, 𝛿 < 1,
given 𝑚 examples sampled independently according to 𝐷, with
probability at least (1 − 𝛿), the algorithm 𝐿 produces a hypothesis ℎ ∈
𝐻	that has error at most 𝜖,
where 𝑚 is polynomial in ⁄1 𝜖 , ⁄1 𝛿 , 𝑛 and 𝑠𝑖𝑧𝑒(𝐻).

The concept class 𝐶 is efficiently learnable if 𝐿 can produce the hypothesis
in time that is polynomial in ⁄1 𝜖 , ⁄1 𝛿 , 𝑛 and 𝑠𝑖𝑧𝑒(𝐻).

20

recall that ErrD(h) = PrD[f(x) ≠ h(x)]
Given a small enough number of examples

with high probability

PAC Learnability

Consider a concept class 𝐶 defined over an instance space 𝑋 (containing
instances of length 𝑛), and a learner 𝐿 using a hypothesis space 𝐻

 The concept class 𝐶 is PAC learnable by 𝐿 using 𝐻 if
for all 𝑓 ∈ 𝐶,
for all distribution 𝐷 over 𝑋, and fixed 0 < 𝜖, 𝛿 < 1,
given 𝑚 examples sampled independently according to 𝐷, with
probability at least (1 − 𝛿), the algorithm 𝐿 produces a hypothesis ℎ ∈
𝐻	that has error at most 𝜖,
where 𝑚 is polynomial in ⁄1 𝜖 , ⁄1 𝛿 , 𝑛 and 𝑠𝑖𝑧𝑒(𝐻).

The concept class 𝐶 is efficiently learnable if 𝐿 can produce the hypothesis
in time that is polynomial in ⁄1 𝜖 , ⁄1 𝛿 , 𝑛 and 𝑠𝑖𝑧𝑒(𝐻).

21

recall that ErrD(h) = PrD[f(x) ≠ h(x)]
Given a small enough number of examples

the learner will produce a “good enough” classifier.

with high probability

PAC Learnability

Consider a concept class 𝐶 defined over an instance space 𝑋 (containing
instances of length 𝑛), and a learner 𝐿 using a hypothesis space 𝐻

 The concept class 𝐶 is PAC learnable by 𝐿 using 𝐻 if
for all 𝑓 ∈ 𝐶,
for all distribution 𝐷 over 𝑋, and fixed 0 < 𝜖, 𝛿 < 1,
given 𝑚 examples sampled independently according to 𝐷, with
probability at least (1 − 𝛿), the algorithm 𝐿 produces a hypothesis ℎ ∈
𝐻	that has error at most 𝜖,
where 𝑚 is polynomial in ⁄1 𝜖 , ⁄1 𝛿 , 𝑛 and 𝑠𝑖𝑧𝑒(𝐻).

The concept class 𝐶 is efficiently learnable if 𝐿 can produce the hypothesis
in time that is polynomial in ⁄1 𝜖 , ⁄1 𝛿 , 𝑛 and 𝑠𝑖𝑧𝑒(𝐻).

22

recall that 𝐸𝑟𝑟! ℎ = 𝑃𝑟"~![𝑓 𝑥 ≠ ℎ 𝑥]
Given a small enough number of examples

with high probability

the learner will produce a “good enough” classifier.

PAC Learnability

Consider a concept class 𝐶 defined over an instance space 𝑋 (containing
instances of length 𝑛), and a learner 𝐿 using a hypothesis space 𝐻

 The concept class 𝐶 is PAC learnable by 𝐿 using 𝐻 if
for all 𝑓 ∈ 𝐶,
for all distribution 𝐷 over 𝑋, and fixed 0 < 𝜖, 𝛿 < 1,
given 𝑚 examples sampled independently according to 𝐷, with
probability at least (1 − 𝛿), the algorithm 𝐿 produces a hypothesis ℎ ∈
𝐻	that has error at most 𝜖,
where 𝑚 is polynomial in ⁄1 𝜖 , ⁄1 𝛿 , 𝑛 and 𝑠𝑖𝑧𝑒(𝐻).

The concept class 𝐶 is efficiently learnable if 𝐿 can produce the hypothesis
in time that is polynomial in ⁄1 𝜖 , ⁄1 𝛿 , 𝑛 and 𝑠𝑖𝑧𝑒(𝐻).

23

PAC Learnability

We impose two limitations
• Polynomial sample complexity (information theoretic constraint)

– Is there enough information in the sample to distinguish a hypothesis h that
approximate f ?

• Polynomial time complexity (computational complexity)
– Is there an efficient algorithm that can process the sample and produce a

good hypothesis h ?

To be PAC learnable, there must be a hypothesis h Î H with arbitrary small
error for every f Î C. We assume H Ê C. (Properly PAC learnable if H=C)

Worst Case definition: the algorithm must meet its accuracy
– for every distribution (The distribution free assumption)
– for every target function f in the class C

24

PAC Learnability

We impose two limitations
• Polynomial sample complexity (information theoretic constraint)

– Is there enough information in the sample to distinguish a hypothesis h that
approximates f ?

• Polynomial time complexity (computational complexity)
– Is there an efficient algorithm that can process the sample and produce a

good hypothesis h ?

To be PAC learnable, there must be a hypothesis h Î H with arbitrary small
error for every f Î C. We assume H Ê C. (Properly PAC learnable if H=C)

Worst Case definition: the algorithm must meet its accuracy
– for every distribution (The distribution free assumption)
– for every target function f in the class C

25

PAC Learnability

We impose two limitations
• Polynomial sample complexity (information theoretic constraint)

– Is there enough information in the sample to distinguish a hypothesis h that
approximates f ?

• Polynomial time complexity (computational complexity)
– Is there an efficient algorithm that can process the sample and produce a

good hypothesis h ?

To be PAC learnable, there must be a hypothesis h Î H with arbitrary small
error for every f Î C. We assume H Ê C. (Properly PAC learnable if H=C)

Worst Case definition: the algorithm must meet its accuracy
– for every distribution (The distribution free assumption)
– for every target function f in the class C

26

PAC Learnability

We impose two limitations
• Polynomial sample complexity (information theoretic constraint)

– Is there enough information in the sample to distinguish a hypothesis h that
approximates f ?

• Polynomial time complexity (computational complexity)
– Is there an efficient algorithm that can process the sample and produce a

good hypothesis h ?

To be PAC learnable, there must be a hypothesis h Î H with arbitrary small
error for every f Î C. We assume H Ê C. (Properly PAC learnable if H=C)

Worst Case definition: the algorithm must meet its accuracy
– for every distribution (The distribution free assumption)
– for every target function f in the class C

27

PAC Learnability

We impose two limitations
• Polynomial sample complexity (information theoretic constraint)

– Is there enough information in the sample to distinguish a hypothesis h that
approximates f ?

• Polynomial time complexity (computational complexity)
– Is there an efficient algorithm that can process the sample and produce a

good hypothesis h ?

To be PAC learnable, there must be a hypothesis h Î H with arbitrary small
error for every f Î C. We assume H Ê C. (Properly PAC learnable if H=C)

Worst Case definition: the algorithm must meet its accuracy
– for every distribution (The distribution free assumption)
– for every target function f in the class C

28

