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Computational Learning Theory

• The Theory of Generalization

• Probably Approximately Correct (PAC) learning

• Positive and negative learnability results

• Agnostic Learning

• Shattering and the VC dimension
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This section

1. Define the PAC model of learning

2. Make formal connections to the principle of Occam’s razor
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Recall: The setup

• Instance Space: 𝑋, the set of examples
• Concept Space: 𝐶, the set of possible target functions: 𝑓 ∈ 𝐶 is the hidden 

target function
– Eg: all 𝑛-conjunctions; all 𝑛-dimensional linear functions, …

• Hypothesis Space: 𝐻, the set of possible hypotheses
– This is the set that the learning algorithm explores

• Training instances: 𝑆×{−1,1}: positive and negative examples of the target 
concept. (𝑆 is a finite subset of 𝑋)
– Training instances are generated by a fixed unknown probability 

distribution 𝐷 over 𝑋
• What we want: A hypothesis h ∈ 𝐻 such that ℎ 𝑥 = 𝑓(𝑥)

– Evaluate h on subsequent examples 𝑥 ∈ 𝑋	drawn according to 𝐷
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Formulating the theory of prediction

In the general case, we have 
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All the notation we have seen so far on one slide

𝑋 instance space

𝑌 output space = {+1, -1}

𝐷 an unknown distribution over 𝑋
𝑓 an unknown target function X → 𝑌, taken from a concept class 𝐶
ℎ a hypothesis function X → 𝑌 that the learning algorithm selects from 

a hypothesis class 𝐻
𝑆 a set of m training examples drawn from 𝐷, labeled with 𝑓

err! ℎ  The true error of a hypothesis ℎ
err" ℎ  The empirical error or training error or observed error of ℎ



Theoretical questions

• Can we describe or bound the true error (err/) given the 
empirical error (err0)?

• Is a concept class 𝐶 learnable?

• Is it possible to learn 𝐶 using only the functions in H using the 
supervised protocol?

• How many examples does an algorithm need to guarantee 
good performance?
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Expectations of learning

We cannot expect a learner to learn a concept exactly
– There will generally be multiple concepts consistent with the 

available data (which represent a small fraction of the available 
instance space)

– Unseen examples could potentially have any label    
– Let us “agree” to misclassify uncommon examples that do not 

show up in the training set

• We cannot always expect to learn a close approximation 
to the target concept
– Sometimes (hopefully only rarely) the training set will not be 

representative (will contain uncommon examples) 
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The only realistic expectation of a good learner is 
that with high probability it will learn a close 
approximation to the target concept



Probably approximately correctness

The only realistic expectation of a good learner is that with 
high probability it will learn a close approximation to the 
target concept

• In Probably Approximately Correct (PAC) learning, one 
requires that 
– given small parameters ² and ±, 
– With probability at least 1 - ±, a learner produces a hypothesis 

with error at most ² 

• The only reason we can hope for this is the consistent 
distribution assumption
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PAC Learnability

Consider a  concept class 𝐶 defined over an instance space 𝑋 (containing 
instances of length 𝑛),  and a learner 𝐿 using a hypothesis space 𝐻

    The concept class 𝐶 is PAC learnable by 𝐿 using 𝐻 if
for all 𝑓 ∈ 𝐶,
for all distribution 𝐷 over 𝑋, and fixed 0 < 𝜖, 𝛿 < 1, 
given 𝑚 examples sampled independently according to 𝐷, with 
probability at least (1 − 𝛿), the algorithm 𝐿 produces a hypothesis ℎ ∈
𝐻	that has error at most 𝜖, 
where 𝑚 is polynomial in ⁄1 𝜖 , ⁄1 𝛿 , 𝑛 and 𝑠𝑖𝑧𝑒(𝐻).

The concept class 𝐶 is efficiently learnable if 𝐿 can produce the hypothesis 
in time that is polynomial in ⁄1 𝜖 , ⁄1 𝛿 , 𝑛 and 𝑠𝑖𝑧𝑒(𝐻).
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recall that ErrD(h) = PrD[f(x) ≠ h(x)]
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PAC Learnability

We impose two limitations
• Polynomial sample complexity  (information theoretic constraint)

– Is there enough information in the sample to distinguish a hypothesis h that 
approximate f ?  

• Polynomial time complexity (computational complexity)
– Is there an efficient algorithm that can process the sample and produce a 

good hypothesis h ? 

To be PAC learnable, there must be a hypothesis h Î H with arbitrary small 
error for every f Î C. We assume H Ê C. (Properly PAC learnable if H=C) 

Worst Case definition: the algorithm must meet its accuracy 
– for every distribution (The distribution free assumption)
– for every target function f in the class C 
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