Computational Learning Theory: Probably Approximately Correct (PAC) Learning

Machine Learning

Slides based on material from Dan Roth, Avrim Blum, Tom Mitchell and others

Computational Learning Theory

- The Theory of Generalization
- Probably Approximately Correct (PAC) learning
- Positive and negative learnability results
- Agnostic Learning
- Shattering and the VC dimension

Where are we?

- The Theory of Generalization
- Probably Approximately Correct (PAC) learning
- Positive and negative learnability results
- Agnostic Learning
- Shattering and the VC dimension

This section

- 1. Define the PAC model of learning
- 2. Make formal connections to the principle of Occam's razor

This section

- 1. Define the PAC model of learning
- 2. Make formal connections to the principle of Occam's razor

Recall: The setup

- Instance Space: *X*, the set of examples
- Concept Space: *C*, the set of possible target functions: *f* ∈ *C* is the hidden target function
 - Eg: all *n*-conjunctions; all *n*-dimensional linear functions, ...
- Hypothesis Space: *H*, the set of possible hypotheses
 - This is the set that the learning algorithm explores
- Training instances: S×{-1,1}: positive and negative examples of the target concept. (S is a finite subset of X)
 - Training instances are generated by a fixed unknown probability distribution D over X
- What we want: A hypothesis $h \in H$ such that h(x) = f(x)
 - Evaluate h on subsequent examples $x \in X$ drawn according to D

Formulating the theory of prediction

All the notation we have seen so far on one slide

In the general case, we have

- X instance space
- Y output space = {+1, -1}
- D an unknown distribution over X
- f an unknown target function $X \rightarrow Y$, taken from a concept class C
- *h* a hypothesis function $X \rightarrow Y$ that the learning algorithm selects from a hypothesis class *H*
- S a set of m training examples drawn from D, labeled with f
- $\operatorname{err}_{\mathrm{D}}(h)$ The true error of a hypothesis h
- $\operatorname{err}_{S}(h)$ The empirical error or training error or observed error of h

Theoretical questions

- Can we describe or bound the true error (err_D) given the empirical error (err_S) ?
- Is a concept class *C* learnable?
- Is it possible to learn *C* using only the functions in H using the supervised protocol?
- How many examples does an algorithm need to guarantee good performance?

Expectations of learning

We cannot expect a learner to learn a concept exactly

- There will generally be multiple concepts consistent with the available data (which represent a small fraction of the available instance space)
- Unseen examples could potentially have any label
- Let us "agree" to misclassify uncommon examples that do not show up in the training set

Expectations of learning

We cannot expect a learner to learn a concept exactly

- There will generally be multiple concepts consistent with the available data (which represent a small fraction of the available instance space)
- Unseen examples could potentially have any label
- Let us "agree" to misclassify uncommon examples that do not show up in the training set

We cannot always expect to learn a close approximation to the target concept

Sometimes (hopefully only rarely) the training set will not be representative (will contain uncommon examples)

Expectations of learning

We cannot expect a learner to learn a concept exactly

 There will generally be multiple concepts consistent with the available data (which represent a small fraction of the available

The only realistic expectation of a good learner is that with high probability it will learn a close approximation to the target concept

We cannot always expect to learn a close approximation to the target concept

Sometimes (hopefully only rarely) the training set will not be representative (will contain uncommon examples)

Probably approximately correctness

The only realistic expectation of a good learner is that with high probability it will learn a close approximation to the target concept

Probably approximately correctness

The only realistic expectation of a good learner is that with high probability it will learn a close approximation to the target concept

In Probably Approximately Correct (PAC) learning, one requires that

- Given small parameters ϵ and δ ,
- With probability at least 1 $\,\delta,$ a learner produces a hypothesis with error at most ϵ

Probably approximately correctness

The only realistic expectation of a good learner is that with high probability it will learn a close approximation to the target concept

In Probably Approximately Correct (PAC) learning, one requires that

- Given small parameters ϵ and δ ,
- With probability at least 1 $\,\delta,$ a learner produces a hypothesis with error at most ϵ

The only reason we can hope for this is the *consistent distribution assumption*

Consider a concept class C defined over an instance space X (containing instances of length n), and a learner L using a hypothesis space H

Consider a concept class C defined over an instance space X (containing instances of length n), and a learner L using a hypothesis space H

The concept class C is PAC learnable by L using H if

Consider a concept class C defined over an instance space X (containing instances of length n), and a learner L using a hypothesis space H

The concept class C is PAC learnable by L using H if for all $f \in C$, for all distribution D over X, and fixed $0 < \epsilon, \delta < 1$,

Consider a concept class C defined over an instance space X (containing instances of length n), and a learner L using a hypothesis space H

The concept class C is PAC learnable by L using H if

for all $f \in C$,

for all distribution *D* over *X*, and fixed $0 < \epsilon, \delta < 1$,

given m examples sampled independently according to D, with probability at least $(1 - \delta)$, the algorithm L produces a hypothesis $h \in H$ that has error at most ϵ ,

where *m* is *polynomial* in $1/\epsilon$, $1/\delta$, *n* and *size*(*H*).

Consider a concept class C defined over an instance space X (containing instances of length n), and a learner L using a hypothesis space H

The concept class C is PAC learnable by L using H if

for all $f \in C$,

for all distribution *D* over *X*, and fixed $0 < \epsilon, \delta < 1$,

given m examples sampled independently according to D, with probability at least $(1 - \delta)$, the algorithm L produces a hypothesis $h \in H$ that has error at most ϵ ,

where *m* is *polynomial* in $1/\epsilon$, $1/\delta$, *n* and *size*(*H*).

Given a small enough number of examples

Consider a concept class C defined over an instance space X (containing instances of length n), and a learner L using a hypothesis space H

The concept class C is PAC learnable by L using H if

for all $f \in C$,

for all distribution *D* over *X*, and fixed $0 < \epsilon, \delta < 1$,

given m examples sampled independently according to D, with probability at least $(1 - \delta)$, the algorithm L produces a hypothesis $h \in H$ that has error at most ϵ ,

where *m* is *polynomial* in $1/\epsilon$, $1/\delta$, *n* and *size*(*H*).

Given a small enough number of examples

with high probability

Consider a concept class C defined over an instance space X (containing instances of length n), and a learner L using a hypothesis space H

The concept class C is PAC learnable by L using H if

for all $f \in C$,

for all distribution *D* over *X*, and fixed $0 < \epsilon, \delta < 1$,

given m examples sampled independently according to D, with probability at least $(1 - \delta)$, the algorithm L produces a hypothesis $h \in H$ that has error at most ϵ ,

where *m* is *polynomial* in $1/\epsilon$, $1/\delta$, *n* and *size*(*H*).

Given a small enough number of examples

with high probability

the learner will produce a "good enough" classifier.

Consider a concept class C defined over an instance space X (containing instances of length n), and a learner L using a hypothesis space H

The concept class C is PAC learnable by L using H if

for all $f \in C$,

for all distribution *D* over *X*, and fixed $0 < \epsilon, \delta < 1$,

given m examples sampled independently according to D, with probability at least $(1 - \delta)$, the algorithm L produces a hypothesis $h \in H$ that has error at most ϵ ,

where *m* is *polynomial* in $1/\epsilon$, $1/\delta$, *n* and *size*(*H*).

recall that $Err_D(h) = Pr_{x \sim D}[f(x) \neq h(x)]$

Given a small enough number of examples

with high probability

the learner will produce a "good enough" classifier.

Consider a concept class C defined over an instance space X (containing instances of length n), and a learner L using a hypothesis space H

The concept class C is PAC learnable by L using H if

for all $f \in C$,

for all distribution *D* over *X*, and fixed $0 < \epsilon, \delta < 1$,

given m examples sampled independently according to D, with probability at least $(1 - \delta)$, the algorithm L produces a hypothesis $h \in H$ that has error at most ϵ ,

where *m* is *polynomial* in $1/\epsilon$, $1/\delta$, *n* and *size*(*H*).

The concept class C is *efficiently learnable* if L can produce the hypothesis in time that is polynomial in $1/\epsilon$, $1/\delta$, n and size(H).

We impose two limitations

We impose two limitations

- Polynomial *sample complexity* (information theoretic constraint)
 - Is there enough information in the sample to distinguish a hypothesis h that approximates f ?

We impose two limitations

- Polynomial *sample complexity* (information theoretic constraint)
 - Is there enough information in the sample to distinguish a hypothesis h that approximates f ?
- Polynomial *time complexity* (computational complexity)
 - Is there an efficient algorithm that can process the sample and produce a good hypothesis h ?

We impose two limitations

- Polynomial *sample complexity* (information theoretic constraint)
 - Is there enough information in the sample to distinguish a hypothesis h that approximates f ?
- Polynomial *time complexity* (computational complexity)
 - Is there an efficient algorithm that can process the sample and produce a good hypothesis h ?

To be PAC learnable, there must be a hypothesis $h \in H$ with arbitrary small error for every $f \in C$. We assume $H \supseteq C$. (*Properly* PAC learnable if H=C)

We impose two limitations

- Polynomial *sample complexity* (information theoretic constraint)
 - Is there enough information in the sample to distinguish a hypothesis h that approximates f ?
- Polynomial *time complexity* (computational complexity)
 - Is there an efficient algorithm that can process the sample and produce a good hypothesis h ?

To be PAC learnable, there must be a hypothesis $h \in H$ with arbitrary small error for every $f \in C$. We assume $H \supseteq C$. (*Properly* PAC learnable if H=C)

Worst Case definition: the algorithm must meet its accuracy

- for every distribution (The distribution free assumption)
- for every target function f in the class C