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This lecture: Computational Learning Theory

• The Theory of Generalization

• Probably Approximately Correct (PAC) learning

• Positive and negative learnability results

• Agnostic Learning

• Shattering and the VC dimension
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This section

1. Define the PAC model of learning

2. Make formal connections to the principle of Occam’s razor
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Occam’s Razor

Named after William of Occam
– AD 1300s

Prefer simpler explanations over more 
complex ones

“Numquam ponenda est pluralitas sine necessitate”

Historically, a widely prevalent idea across 
different schools of philosophy
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(Never posit plurality without necessity.)



Why would a consistent learner fail?

Consistent learner: Suppose we have a learner that produces a 
hypothesis that is consistent with a training set...

… but the training set is not a representative sample of the 
instance space.

Then the hypothesis we learned could be bad even if it is 
consistent with the entire training set.

We can try to 
1. quantify the probability of such a bad situation occurring 

and,
2. then, bound the probability to be low.
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Why would a consistent learner fail?

Consistent learner: Suppose we have a learner that produces a 
hypothesis that is consistent with a training set...

… but the training set is not a representative sample of the 
instance space.

Then the hypothesis we learned could be bad even if it is 
consistent with the entire training set.

We can try to 
1. quantify the probability of such a bad situation occurring 

and,
2. then, ask: What will it take for this probability to be low?
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Towards formalizing Occam’s Razor

Claim: The probability that there is a hypothesis ℎ ∈ 𝐻 that:
1. is Consistent with 𝑚 examples, and 
2. has 𝐸𝑟𝑟! ℎ > 𝜖
   is less than 𝐻 1 − 𝜖 "

Proof: Let ℎ be such a bad hypothesis that has an error > 𝜖
Probability that ℎ is consistent with one example is Pr 𝑓 𝑥 = ℎ 𝑥 < 1 − 𝜖

The training set consists of 𝑚 examples drawn independently 
So, probability that ℎ is consistent with 𝑚 examples  < 1 − 𝜖 "

Probability that some bad hypothesis in 𝐻 is consistent with 𝑚 examples is 
less than 𝐻 1 − 𝜖 "
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Recall that 𝐸𝑟𝑟! ℎ = Pr[𝑓 𝑥 ≠ ℎ 𝑥 ]
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(Assuming consistency)

That is, consistent yet bad

Union bound
For a set of events, the probability that at least one of them 
happens <  the sum of the probabilities of the individual events



Occam’s Razor for consistent hypotheses

The probability that there is a hypothesis ℎ ∈ 𝐻 that:
1. is Consistent with 𝑚 examples, and 
2. has 𝐸𝑟𝑟! ℎ > 𝜖
   is less than 𝐻 1 − 𝜖 "

We want to make this probability small, say smaller than 𝛿
𝐻 1 − 𝜖 " < 𝛿

log 𝐻 +𝑚 log 1 − 𝜖 < log 𝛿

We know that 𝑒#$ = 1 − 𝑥 + $!

%
− $"

&
… > 1	 − 𝑥        

Let’s use log 1 − 𝜖 < −𝜖 to get a safer 𝛿
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This situation is a bad one. Let us 
try to see what we need to do to 
ensure that this situation is rare.
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If 𝛿 is small, then the probability that there is a consistent, yet 
bad hypothesis would also be small (because of this inequality)

This situation is a bad one. Let us 
try to see what we need to do to 
ensure that this situation is rare.
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That is, if 𝑚 > '
(
ln 𝐻 + ln '

)
	 then, the probability of getting a bad hypothesis is small
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That is, if 𝑚 > '
(
ln 𝐻 + ln '

)
	 then, the probability of getting a bad hypothesis is small

If this is true

Then, this holds

Then, this is improbable



Occam’s Razor for consistent hypotheses

Let 𝐻 be any hypothesis space.
With probability  1 − 	𝛿, a hypothesis ℎ ∈ 𝐻	that is consistent with a training 
set of size 𝑚 will have an error < 𝜖 on future examples if 

𝑚 >
1
𝜖
ln 𝐻 + ln

1
𝛿
	

This is called the Occam’s Razor because it expresses a preference towards 
smaller hypothesis spaces.

Shows when a m-consistent hypothesis generalizes well (i.e., error < 𝜖).

Complicated/larger hypothesis spaces are not necessarily bad. But simpler 
ones are unlikely to fool us by being consistent with many examples!
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(i.e more examples needed for 
the guarantee)
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harder (i.e higher sample 
complexity)
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Consistent Learners and Occam’s Razor

From the definition, we get the following general scheme for PAC 
learning, given a set of 𝑚 training examples

• Find some ℎ ∈ 𝐻	that is consistent with all m examples
– If 𝑚 is large enough, a consistent hypothesis must be close enough to 𝑓 

– Check that 𝑚 does not have to be too large (i.e., polynomial in the 
relevant parameters): we showed that the “closeness” guarantee requires 
that 

𝑚 >
1
𝜖 ln 𝐻 + ln

1
𝛿	

• Show that the consistent hypothesis ℎ ∈ 𝐻	can be computed 
efficiently
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Exercises

1. We have seen the decision tree learning algorithm. 
Suppose our problem has 𝑛 binary features. What is 
the size of the hypothesis space?

2. Are decision trees efficiently PAC learnable?

3. Are conjunctions PAC learnable? Can you think of a 
a PAC algorithm for monotone conjunctions?
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