Computational Learning Theory:
Positive and negative learnability results

Machine Learning

THE
U UNIVERSITY
OF UTAH

Slides based on material from Dan Roth, Avrim Blum, Tom Mitchell and others

Computational Learning Theory

* The Theory of Generalization

* Probably Approximately Correct (PAC) learning

Positive and negative learnability results

* Agnostic Learning

e Shattering and the VC dimension

This lecture: Computational Learning Theory

The Theory of Generalization

Probably Approximately Correct (PAC) learning

Positive and negative learnability results

* Agnostic Learning

e Shattering and the VC dimension

1 1
m > —(ln(lHI) + ln—)
€)

What can be learned

General conjunctions are PAC learnable

— |H| = Number of conjunctions of n variables = ??

1 1
m > —(ln(lHI) + ln—)
€)

What can be learned

General conjunctions are PAC learnable

— |H| = Number of conjunctions of n variables = 3™
In|H| = nln(3)

1 1
m > —(ln(lHI) + ln—)
€)

What can be learned

General conjunctions are PAC learnable

— |H| = Number of conjunctions of n variables = 3™
In|H| = nln(3)

— Number of examples needed m > E(Tl In(3) + ln%)

> %(ln(lHl) -+ ln%)
What can be learned

General conjunctions are PAC learnable

— |H| = Number of conjunctions of n variables = 3™
In|H| = nln(3)

— Number of examples needed m > (n In(3) + In=)

* If we want to guarantee a 95% chance of learning a hypothesis of at least 90%

(ln(O 05)0+110 1n(3)) — 140

accuracy, with n = 10 Boolean variables, we need m >
examples

> %(ln(lHl) -+ ln%)
What can be learned

General conjunctions are PAC learnable
— |H| = Number of conjunctions of n variables = 3™
In|H| = nln(3)

— Number of examples needed m > (n In(3) + In=)

* If we want to guarantee a 95% chance of learning a hypothesis of at least 90%

(ln(O 05)0+110 1n(3)) — 140

accuracy, with n = 10 Boolean variables, we need m >

examples

e |fn =100, this goes to 1129. (linearly increases with n)

> %(ln(lHl) -+ ln%)
What can be learned

General conjunctions are PAC learnable
— |H| = Number of conjunctions of n variables = 3™
In|H| = nln(3)

— Number of examples needed m > (n In(3) + In=)

* If we want to guarantee a 95% chance of learning a hypothesis of at least 90%

(ln(O 05)(:-110 1n(3)) — 140

accuracy, with n = 10 Boolean variables, we need m >

examples

e |fn =100, this goes to 1129. (linearly increases with n)

These results hold for any consistent learner 9

> %(ln(lHl) -+ ln%)
What can be learned

General conjunctions are PAC learnable

— |H| = Number of conjunctions of n variables = 3™
In|H| = nln(3)

— Number of examples needed m > (n In(3) + In=)

* If we want to guarantee a 95% chance of learning a hypothesis of at least 90%

(ln(O 05)0+110 1n(3)) — 140

accuracy, with n = 10 Boolean variables, we need m >
examples

e |fn =100, this goes to 1129. (linearly increases with n)
* Increasing the confidence to 99% will cost 1145 examples (logarithmic with 6)

These results hold for any consistent learner 10

1 1
m > —(ln(lHI) + ln—)
€)

What can be learned

3-CNF (l11 V2 VIz) Al Vipa Vip3)

Subset of CNFs: Each conjunct can have at most three literals (i.e a variable or its negation)

11

1 1
m > —(ln(lHI) + ln—)
€)

What can be learned

3-CNF (l11 V02 VIz) Al Vipa Vip3)

Subset of CNFs: Each conjunct can have at most three literals (i.e a variable or its negation)

12

1 1
m > —(ln(lHI) + ln—)
€)

What can be learned

3-CNF (lig V0 VIz) Ay Vi Vip3)

Subset of CNFs: Each conjunct can have at most three literals (i.e a variable or its negation)

13

1 1
m > —(ln(lHI) + 1n—>
€)

What can be learned

3-CNF (lig V0 VIz) Ay Vi Vip3)

Subset of CNFs: Each conjunct can have at most three literals (i.e a variable or its negation)

What is the sample complexity?
That is, if we had a consistent learner, how many examples will it
need to guarantee PAC learnability?

14

1 1
m > —(ln(lHI) + ln—)
€)

What can be learned

3-CNF (lig V0 VIz) Ay Vi Vip3)

Subset of CNFs: Each conjunct can have at most three literals (i.e a variable or its negation)

What is the sample complexity?
That is, if we had a consistent learner, how many examples will it
need to guarantee PAC learnability?

We need the size of the hypothesis space. How many 3CNFs are there?

15

1 1
m > —(ln(lHI) + ln—)
€)

What can be learned

3-CNF (lig V0 VIz) Ay Vi Vip3)

Subset of CNFs: Each conjunct can have at most three literals (i.e a variable or its negation)

What is the sample complexity?
That is, if we had a consistent learner, how many examples will it
need to guarantee PAC learnability?

We need the size of the hypothesis space. How many 3CNFs are there?
* Number of conjuncts = 0((2n)3)

16

1 1
m > —(ln(lHI) + ln—)
€)

What can be learned

3-CNF (lig V0 VIz) Ay Vi Vip3)

Subset of CNFs: Each conjunct can have at most three literals (i.e a variable or its negation)

What is the sample complexity?
That is, if we had a consistent learner, how many examples will it
need to guarantee PAC learnability?

We need the size of the hypothesis space. How many 3CNFs are there?

* Number of conjuncts = 0((2n)3)
e A 3-CNF is a conjunction with these many variables.

17

1 1
m > —(ln(lHI) + ln—)
€)

What can be learned

3-CNF (lig V0 VIz) Ay Vi Vip3)

Subset of CNFs: Each conjunct can have at most three literals (i.e a variable or its negation)

What is the sample complexity?
That is, if we had a consistent learner, how many examples will it
need to guarantee PAC learnability?

We need the size of the hypothesis space. How many 3CNFs are there?

* Number of conjuncts = 0((2n)3)
A 3-CNFis a conjunction with these many variables.

 |H|=Number of 3-CNFs = 0(2(2")3)

18

1 1
m > —(ln(lHI) + ln—)
€)

What can be learned

3-CNF (lig V0 VIz) Ay Vi Vip3)

Subset of CNFs: Each conjunct can have at most three literals (i.e a variable or its negation)

What is the sample complexity?
That is, if we had a consistent learner, how many examples will it
need to guarantee PAC learnability?

We need the size of the hypothesis space. How many 3CNFs are there?

* Number of conjuncts = 0((2n)3)
A 3-CNFis a conjunction with these many variables.

 |H|=Number of 3-CNFs = 0(2(2")3)

+ log(|H]) = 0(n°)

19

1 1
m > —(ln(lHI) + ln—)
€)

What can be learned

3-CNF (lig V0 VIz) Ay Vi Vip3)

Subset of CNFs: Each conjunct can have at most three literals (i.e a variable or its negation)

What is the sample complexity?
That is, if we had a consistent learner, how many examples will it
need to guarantee PAC learnability?

We need the size of the hypothesis space. How many 3CNFs are there?

* Number of conjuncts = 0((2n)3)
A 3-CNFis a conjunction with these many variables.

 |H|=Number of 3-CNFs = 0(2(2")3)

+ log(|H]) = 0(n°)

log (|H]) is polynomial in n
= the sample complexity is also polynomial in n

20

1 1
m > —(ln(lHI) + ln—)
€)

What can be learned

3-CNF (lig V0 VIz) Ay Vi Vip3)

Subset of CNFs: Each conjunct can have at most three literals (i.e a variable or its negation)

What is the sample complexity?
That is, if we had a consistent learner, how many examples will it
need to guarantee PAC learnability?

We need the size of the hypothesis space. How many 3CNFs are there?

* Number of conjuncts = 0((2n)3)
A 3-CNFis a conjunction with these many variables.

3
* |H|=Number of 3-CNFs = O(Z(Zn)) For PAC learnability, we still
3 need an efficient algorithm
« log(|H|) = 0(n°) that will find a consistent
hypothesis.

log (|H]) is polynomial in n

o . Exercise: Find one
= the sample complexity is also polynomial inn

21

1 1
m > —(ln(lHI) + ln—)
€)

What can be learned

General Boolean functions

* How many Boolean functions exist with n variables?

22

1 1
m > —(ln(lHI) + ln—)
€)

What can be learned

General Boolean functions

» How many Boolean functions exist with n variables? 22

23

1 1
m > —(ln(lHI) + ln—)
€)

What can be learned

General Boolean functions

* How many Boolean functions exist with n variables? 22"
So log(|H|) is exponential.
e General Boolean functions are not PAC learnable

24

Sample Complexity

* k-CNF: Conjunctions of any number of clauses where each disjunctive
clause has at most k literals.

* k-clause-CNF: Conjunctions of at most k disjunctive clauses.

f=C,ACyA-ACy In(|k-clause-CNF|) = 0(kn)
Ci == 11Vl2VVlm

25

Sample Complexity

k-CNF: Conjunctions of any number of clauses where each disjunctive
clause has at most k literals.

k-clause-CNF: Conjunctions of at most k disjunctive clauses.

f=C,ACyA-ACy In(|k-clause-CNF|) = 0(kn)
Ci == 11Vl2VVlm
k-DNF: Disjunctions of any number of terms where each conjunctive

term has at most k literals.
f: T1VT2V”'VTm

Ci == ll/\lz/\/\lk
k-term-DNF: Disjunctions of at most k conjunctive terms.

26

Sample Complexity

k-CNF: Conjunctions of any number of clauses where each disjunctive
clause has at most k literals.

k-clause-CNF: Conjunctions of at most k disjunctive clauses.
f=C,ACyA-ACy In(|k-clause-CNF|) = 0(kn)
Ci == 11Vl2VVlm

k-DNF: Disjunctions of any number of terms where each conjunctive

term has at most k literals.
f:T1VT2V"'VTm
Ci = ll/\lz/\/\lk

k-term-DNF: Disjunctions of at most k conjunctive terms.

All these classes can be learned using a polynomial size sample

Exercise: Prove that the above four classes of
functions have polynomial sample complexity

27

Sample Complexity

k-CNF: Conjunctions of any number of clauses where each disjunctive
clause has at most k literals.

k-clause-CNF: Conjunctions of at most k disjunctive clauses.
f=C,ACyA-ACy In(|k-clause-CNF|) = 0(kn)
Ci == 11Vl2VVlm

k-DNF: Disjunctions of any number of terms where each conjunctive

term has at most k literals.
f: T1VT2V”'VTm

Ci == ll/\lz/\/\lk
k-term-DNF: Disjunctions of at most k conjunctive terms.

All these classes can be learned using a polynomial size sample

Suppose we want to learn a 2-term-DNF
What should our hypothesis class be?

28

Computational Complexity

Suppose we want to learn a 2-term-DNF

Though sample complexity is polynomial, the computational
complexity is prohibitive in this case

29

Computational Complexity

Suppose we want to learn a 2-term-DNF

 Though sample complexity is polynomial, the computational

complexity is prohibitive in this case
— Determining whether there is a 2-term DNF consistent with a set of training

data is NP-hard
— That s, the class of k-term-DNF is not efficiently PAC learnable due to

computational complexity

30

Computational Complexity

Suppose we want to learn a 2-term-DNF

 Though sample complexity is polynomial, the computational
complexity is prohibitive in this case
— Determining whether there is a 2-term DNF consistent with a set of training
data is NP-hard

— That s, the class of k-term-DNF is not efficiently PAC learnable due to

computational complexity

F (It was an exercise

e But, we have seen an algorithm for learning k-CN .
a few slides back.)

31

Computational Complexity

Suppose we want to learn a 2-term-DNF

 Though sample complexity is polynomial, the computational
complexity is prohibitive in this case

— Determining whether there is a 2-term DNF consistent with a set of training
data is NP-hard

— That s, the class of k-term-DNF is not efficiently PAC learnable due to
computational complexity

* But, we have seen an algorithm for learning k-CNF
— And, k-CNF is a superset of k-term-DNF

(That is, every k-term-DNF can be written as a k-CNF)

T1VT2VT3= /\ xVyVZ

x€T;,y€T,,z€T3

32

Computational Complexity

Suppose we want to learn a 2-term-DNF

 Though sample complexity is polynomial, the computational
complexity is prohibitive in this case

— Determining whether there is a 2-term DNF consistent with a set of training
data is NP-hard

— That s, the class of k-term-DNF is not efficiently PAC learnable due to
computational complexity

* But, we have seen an algorithm for learning k-CNF
— And, k-CNF is a superset of k-term-DNF

(That is, every k-term-DNF can be written as a k-CNF)
T1VT2VT3= /\ xVyVZ
x€T;,y€T,,z€T3

Example:
(anbnrc)v(dnenf)=(@vd)A(ave)A(aV)ANDVA)A--A(cVS)

33

Computational Complexity

Suppose we want to learn a 2-term-DNF

 Though sample complexity is polynomial, the computational
complexity is prohibitive in this case

— Determining whether there is a 2-term DNF consistent with a set of training
data is NP-hard

— That s, the class of k-term-DNF is not efficiently PAC learnable due to
computational complexity

* But, we have seen an algorithm for learning k-CNF
— And, k-CNF is a superset of k-term-DNF

(That is, every k-term-DNF can be written as a k-CNF)

That is, the concept class C = k-term-DNF can be learned
using H = k-CNF as the hypothesis space

34

Computational Complexity

Suppose we want to learn a 2-term-DNF

 Though sample complexity is polynomial, the computational
complexity is prohibitive in this case

— Determining whether there is a 2-term DNF consistent with a set of training
data is NP-hard

— That s, the class of k-term-DNF is not efficiently PAC learnable due to
computational complexity

* But, we have seen an algorithm for learning k-CNF
— And, k-CNF is a superset of k-term-DNF

(That is, every k-term-DNF can be written as a k-CNF)

That is, the concept class C = k-term-DNF can be learned
using H = k-CNF as the hypothesis space

35

Computational Complexity

Suppose we want to learn a 2-term-DNF

 Though sample complexity is polynomial, the computational
complexity is prohibitive in this case

— Determining whether there is a 2-term DNF consistent with a set of training
data is NP-hard

— That s, the class of k-term-DNF is not efficiently PAC learnable due fo
computational complexity

* But, we have seen an algorithm for learning k-CNF
— And, k-CNF is a superset of k-term-DNF

(That is, every k-term-DNF can be written as a k-CNF)

That is, the concept class C = k-term-DNF can be learned
using H = k-CNF as the hypothesis space

36

Computational Complexity

Suppose we want to learn a 2-term-DNF

 Though sample complexity is polynomial, the computational

complexity is prohibitive in this case
— Determining whether there is a 2-term DNF consistent with a set of training

data is NP-hard
— That s, the class of k-term-DNF is not efficiently PAC learnable due to

computational complexity
* But, we have seen an algorithm for learning k-CNF

— And, k-CNF is a superset of k-term-DNF
(That is, every k-term-DNF can be written as a k-CNF)

The lesson: Importance of representation Concepts that cannot be
learned using one representation can sometimes be learned using a

different, more expressive, representation

37

Computational Complexity

Suppose we want to learn a 2-term-DNF

 Though sample complexity is polynomial, the computational

complexity is prohibitive in this case
— Determining whether there is a 2-term DNF consistent with a set of training

data is NP-hard
— That s, the class of k-term-DNF is not efficiently PAC learnable due to

computational complexity
* But, we have seen an algorithm for learning k-CNF

— And, k-CNF is a superset of k-term-DNF
(That is, every k-term-DNF can be written as a k-CNF)

The lesson: Importance of representation Concepts that cannot be
learned using one representation can sometimes be learned using a

different, more expressive, representation

We have seen this idea before: Linear classifiers for conjunctions
38

Negative Results — Examples

Two types of non-learnability results

39

Negative Results — Examples

Two types of non-learnability results

1. Complexity Theoretic (computational complexity bad)

— Showing that various concepts classes cannot be learned, based on well-
accepted assumptions from computational complexity theory

— Takes the form “A concept class C cannot be learned unless P=NP”

40

Negative Results — Examples

Two types of non-learnability results

1. Complexity Theoretic (computational complexity bad)

— Showing that various concepts classes cannot be learned, based on well-
accepted assumptions from computational complexity theory

— Takes the form “A concept class C cannot be learned unless P=NP”

2. Information Theoretic (sample complexity bad)

— The concept class is sufficiently rich that a polynomial number of examples
may not be sufficient to distinguish a particular target concept

— The proof typically shows that a given class cannot be learned by algorithms
using hypotheses from the same class. (Is this always a problem?)

41

Negative Results for Learning

Complexity Theoretic
— k-term DNF, for k>1 (k-clause CNF, k>1)

— Neural Networks of fixed architecture: 2-layer, 3-nodes, n inputs,
threshold activations. (Blum and Rivest, 1988)

— “read-once” Boolean formulas (pitt and Valiant, 1988)
— Quantified conjunctive concepts

Information Theoretic
— Arbitrary Boolean functions (DNF Formulas or CNF Formulas)
— Deterministic Finite Automata
— Context Free Grammars

42

