
Machine Learning

Computational Learning Theory: 
Positive and negative learnability results
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What can be learned

General conjunctions are PAC learnable
– 𝐻  = Number of conjunctions of 𝑛 variables = ??

  

4

𝑚 >
1
𝜖
ln 𝐻 + ln

1
𝛿



What can be learned

General conjunctions are PAC learnable
– 𝐻  = Number of conjunctions of 𝑛 variables = 3*

ln 𝐻 = 𝑛 ln(3)

  

5

𝑚 >
1
𝜖
ln 𝐻 + ln

1
𝛿



What can be learned

General conjunctions are PAC learnable
– 𝐻  = Number of conjunctions of 𝑛 variables = 3*

ln 𝐻 = 𝑛 ln(3)

– Number of examples needed 𝑚 > +
, 𝑛 ln 3 + ln +-

  

6

𝑚 >
1
𝜖
ln 𝐻 + ln

1
𝛿



• If we want to guarantee a 95% chance of learning a hypothesis of at least 90% 

accuracy, with 𝑛 = 10 Boolean variables, we need  m >
!" !

"."$ #$% !" &

%.$
= 140 

examples

• If 𝑛 = 100, this goes to 1129.                                           (linearly increases with n)

• Increasing the confidence to 99% will cost 1145 examples   (logarithmic with 𝛿)

These results hold  for any consistent learner
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What can be learned

3-CNF
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Subset of CNFs: Each conjunct can have at most three literals (i.e a variable or its negation)

What is the sample complexity?
That is, if we had a consistent learner, how many examples will it 
need to guarantee PAC learnability?

We need the size of the hypothesis space. How many 3CNFs are there?
• Number of conjuncts =
• A 3-CNF is a conjunction with these many variables. 
• |H| = Number of 3-CNFs =

• log(|H|) = O(n3)

log(|H|) is polynomial in n
 ) the sample complexity is also polynomial in n

𝑚 >
1
𝜖
ln 𝐻 + ln

1
𝛿

𝑙++ ∨ 𝑙+6 ∨ 𝑙+7 ∧ 𝑙6+ ∨ 𝑙66 ∨ 𝑙67



What can be learned

3-CNF

14

Subset of CNFs: Each conjunct can have at most three literals (i.e a variable or its negation)

What is the sample complexity?
That is, if we had a consistent learner, how many examples will it 
need to guarantee PAC learnability?

We need the size of the hypothesis space. How many 3CNFs are there?
• Number of conjuncts = 𝑂 2𝑛 !

• A 3-CNF is a conjunction with these many variables. 
• |𝐻| = Number of 3-CNFs = 𝑂 2 "# (

• log |𝐻| = 𝑂(𝑛!)
log(|H|) is polynomial in n
 ) the sample complexity is also polynomial in n

𝑚 >
1
𝜖
ln 𝐻 + ln

1
𝛿

𝑙++ ∨ 𝑙+6 ∨ 𝑙+7 ∧ 𝑙6+ ∨ 𝑙66 ∨ 𝑙67



What can be learned

3-CNF

15

Subset of CNFs: Each conjunct can have at most three literals (i.e a variable or its negation)

What is the sample complexity?
That is, if we had a consistent learner, how many examples will it 
need to guarantee PAC learnability?

We need the size of the hypothesis space. How many 3CNFs are there?
• Number of conjuncts = 𝑂 2𝑛 !

• A 3-CNF is a conjunction with these many variables. 
• |𝐻| = Number of 3-CNFs = 𝑂 2 "# (

• log |𝐻| = 𝑂(𝑛!)
log(|H|) is polynomial in n
 ) the sample complexity is also polynomial in n

𝑚 >
1
𝜖
ln 𝐻 + ln

1
𝛿

𝑙++ ∨ 𝑙+6 ∨ 𝑙+7 ∧ 𝑙6+ ∨ 𝑙66 ∨ 𝑙67



What can be learned

3-CNF

16

Subset of CNFs: Each conjunct can have at most three literals (i.e a variable or its negation)

What is the sample complexity?
That is, if we had a consistent learner, how many examples will it 
need to guarantee PAC learnability?

We need the size of the hypothesis space. How many 3CNFs are there?
• Number of conjuncts = 𝑂 2𝑛 !

• A 3-CNF is a conjunction with these many variables. 
• |𝐻| = Number of 3-CNFs = 𝑂 2 "# (

• log |𝐻| = 𝑂(𝑛!)
log(|H|) is polynomial in n
 ) the sample complexity is also polynomial in n

𝑚 >
1
𝜖
ln 𝐻 + ln

1
𝛿

𝑙++ ∨ 𝑙+6 ∨ 𝑙+7 ∧ 𝑙6+ ∨ 𝑙66 ∨ 𝑙67



What can be learned

3-CNF

17

Subset of CNFs: Each conjunct can have at most three literals (i.e a variable or its negation)

What is the sample complexity?
That is, if we had a consistent learner, how many examples will it 
need to guarantee PAC learnability?

We need the size of the hypothesis space. How many 3CNFs are there?
• Number of conjuncts = 𝑂 2𝑛 !

• A 3-CNF is a conjunction with these many variables. 
• |𝐻| = Number of 3-CNFs = 𝑂 2 "# (

• log |𝐻| = 𝑂(𝑛!)
log(|H|) is polynomial in n
 ) the sample complexity is also polynomial in n

𝑚 >
1
𝜖
ln 𝐻 + ln

1
𝛿

𝑙++ ∨ 𝑙+6 ∨ 𝑙+7 ∧ 𝑙6+ ∨ 𝑙66 ∨ 𝑙67



What can be learned

3-CNF

18

Subset of CNFs: Each conjunct can have at most three literals (i.e a variable or its negation)

What is the sample complexity?
That is, if we had a consistent learner, how many examples will it 
need to guarantee PAC learnability?

We need the size of the hypothesis space. How many 3CNFs are there?
• Number of conjuncts = 𝑂 2𝑛 !

• A 3-CNF is a conjunction with these many variables. 
• |𝐻| = Number of 3-CNFs = 𝑂 2 "# (

• log |𝐻| = 𝑂(𝑛!)
log(|H|) is polynomial in n
 ) the sample complexity is also polynomial in n

𝑚 >
1
𝜖
ln 𝐻 + ln

1
𝛿

𝑙++ ∨ 𝑙+6 ∨ 𝑙+7 ∧ 𝑙6+ ∨ 𝑙66 ∨ 𝑙67



What can be learned

3-CNF

19

Subset of CNFs: Each conjunct can have at most three literals (i.e a variable or its negation)

What is the sample complexity?
That is, if we had a consistent learner, how many examples will it 
need to guarantee PAC learnability?

We need the size of the hypothesis space. How many 3CNFs are there?
• Number of conjuncts = 𝑂 2𝑛 !

• A 3-CNF is a conjunction with these many variables. 
• |𝐻| = Number of 3-CNFs = 𝑂 2 "# (

• log |𝐻| = 𝑂(𝑛!)

𝑚 >
1
𝜖
ln 𝐻 + ln

1
𝛿

𝑙++ ∨ 𝑙+6 ∨ 𝑙+7 ∧ 𝑙6+ ∨ 𝑙66 ∨ 𝑙67



What can be learned

3-CNF

20

Subset of CNFs: Each conjunct can have at most three literals (i.e a variable or its negation)

What is the sample complexity?
That is, if we had a consistent learner, how many examples will it 
need to guarantee PAC learnability?

We need the size of the hypothesis space. How many 3CNFs are there?
• Number of conjuncts = 𝑂 2𝑛 !

• A 3-CNF is a conjunction with these many variables. 
• |𝐻| = Number of 3-CNFs = 𝑂 2 "# (

• log |𝐻| = 𝑂(𝑛!)

𝑚 >
1
𝜖
ln 𝐻 + ln

1
𝛿

log	(|𝐻|) is polynomial in 𝑛
 ⇒ the sample complexity is also polynomial in n

𝑙++ ∨ 𝑙+6 ∨ 𝑙+7 ∧ 𝑙6+ ∨ 𝑙66 ∨ 𝑙67



What can be learned

3-CNF

21

Subset of CNFs: Each conjunct can have at most three literals (i.e a variable or its negation)

What is the sample complexity?
That is, if we had a consistent learner, how many examples will it 
need to guarantee PAC learnability?

We need the size of the hypothesis space. How many 3CNFs are there?
• Number of conjuncts = 𝑂 2𝑛 !
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• |𝐻| = Number of 3-CNFs = 𝑂 2 "# (

• log |𝐻| = 𝑂(𝑛!)
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 ⇒ the sample complexity is also polynomial in 𝑛

For PAC learnability, we still 
need an efficient algorithm 
that will find a consistent 
hypothesis. 
Exercise: Find one
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What can be learned

General Boolean functions
• How many Boolean functions exist with 𝑛 variables? 
     So log(|𝐻|) is exponential. 
• General Boolean functions are not PAC learnable
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Sample Complexity
• k-CNF: Conjunctions of any number of clauses where each disjunctive 

clause has at most k literals.
• k-clause-CNF: Conjunctions of at most k disjunctive clauses.

• k-DNF: Disjunctions of any number of terms where each conjunctive 
term has at most k literals.

• k-term-DNF: Disjunctions of at most k conjunctive terms.

f = T1∨T2 ∨..∨.Tm
Ti = l1∧ l2 ∧...∧ lk

Suppose we want to learn a 2-term-DNF
What should our hypothesis class be? 

All these classes can be learned using a polynomial size sample
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ln k−clause−CNF = 𝑂 𝑘𝑛
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Computational Complexity

• Though sample complexity is polynomial, the computational 
complexity is prohibitive in this case

• Determining whether there is a 2-term DNF consistent with a set of 
training data is NP-hard 

• That is, the class of k-term-DNF is not efficiently (properly) PAC 
learnable due to computational complexity

• But, we have seen an algorithm for learning k-CNF
• And, k-CNF is a superset of k-term-DNF

(That is, every k-term-DNF can be written as a k-CNF)
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H∈J#,L∈J$,M∈J%

𝑥 ∨ 𝑦 ∨ 𝑧
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(It was an exercise 
a few slides back.)
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Suppose we want to learn a 2-term-DNF

• Though sample complexity is polynomial, the computational 
complexity is prohibitive in this case
– Determining whether there is a 2-term DNF consistent with a set of training 

data is NP-hard 
– That is, the class of k-term-DNF is not efficiently PAC learnable due to 

computational complexity

• But, we have seen an algorithm for learning k-CNF
– And, k-CNF is a superset of k-term-DNF
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𝑇+ ∨ 𝑇6 ∨ 𝑇7 = 4
H∈J#,L∈J$,M∈J%

𝑥 ∨ 𝑦 ∨ 𝑧

Example:
𝑎 ∧ 𝑏 ∧ 𝑐 ∨ 𝑑 ∧ 𝑒 ∧ 𝑓 = 𝑎 ∨ 𝑑 ∧ 𝑎 ∨ 𝑒 ∧ 𝑎 ∨ 𝑓 ∧ 𝑏 ∨ 𝑑 ∧ ⋯∧ 𝑐 ∨ 𝑓 	
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That is, the concept class C = k-term-DNF can be learned 
using H = k-CNF as the hypothesis space
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The lesson: Importance of representation Concepts that cannot be 
learned using one representation can sometimes be learned using a 
different, more expressive, representation
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Suppose we want to learn a 2-term-DNF

That is, the concept class C = k-term-DNF can be learned 
using H = k-CNF as the hypothesis space

The lesson: Importance of representation Concepts that cannot be 
learned using one representation can sometimes be learned using a 
different, more expressive, representation

We have seen this idea before: Linear classifiers for conjunctions



Negative Results – Examples 

Two types of non-learnability results

1. Complexity Theoretic (computational complexity bad)
– Showing that various concepts classes cannot be learned, based on well-

accepted assumptions from computational complexity theory 
– Takes the form “A concept class C cannot be learned unless P=NP”

 
2. Information Theoretic (sample complexity bad)

– The concept class is sufficiently rich that a polynomial number of examples 
may not be sufficient to distinguish a particular target concept

– Both type involve “representation dependent” arguments
– The proof shows that a given class cannot be learned by algorithms using 

hypotheses from the same class.  (So?)
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– Takes the form “A concept class C cannot be learned unless P=NP”

 
2. Information Theoretic (sample complexity bad)

– The concept class is sufficiently rich that a polynomial number of examples 
may not be sufficient to distinguish a particular target concept

– Both type involve “representation dependent” arguments
– The proof shows that a given class cannot be learned by algorithms using 

hypotheses from the same class.  (So?)
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Negative Results – Examples 

Two types of non-learnability results

1. Complexity Theoretic (computational complexity bad)
– Showing that various concepts classes cannot be learned, based on well-

accepted assumptions from computational complexity theory 
– Takes the form “A concept class C cannot be learned unless P=NP”

 
2. Information Theoretic (sample complexity bad)

– The concept class is sufficiently rich that a polynomial number of examples 
may not be sufficient to distinguish a particular target concept

– The proof typically shows that a given class cannot be learned by algorithms 
using hypotheses from the same class.  (Is this always a problem?)

41



Negative Results for Learning

• Complexity Theoretic 
– k-term DNF, for k>1 (k-clause CNF, k>1)
– Neural Networks of fixed architecture: 2-layer, 3-nodes, n inputs, 

threshold activations. (Blum and Rivest, 1988)

– “read-once” Boolean formulas (Pitt and Valiant, 1988)

– Quantified conjunctive concepts 

• Information Theoretic
– Arbitrary Boolean functions (DNF Formulas or CNF Formulas)
– Deterministic Finite Automata
– Context Free Grammars
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