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Shattering and VC Dimensions
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This lecture: Computational Learning Theory

• The Theory of Generalization

• Probably Approximately Correct (PAC) learning

• Positive and negative learnability results

• Agnostic Learning

• Shattering and the VC dimension
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What have we seen so far

If a learner explores a finite hypothesis space and…
1. …guarantees a hypothesis that is consistent with a 

training set: Occam’s razor for a consistent learner

2.  …does not guarantee a consistent hypothesis: Agnostic 
learning and an Occam’s razor 

In both cases, the sample complexity depends on the 
size of the hypothesis space

What if the hypothesis space is infinite?
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Infinite Hypothesis Space

• The previous analysis was restricted to finite hypothesis spaces 

• Some infinite hypothesis spaces are more expressive than others

– E.g., Rectangles, vs. 17- sides convex polygons vs. general convex 
polygons

– Linear threshold function vs. a combination of LTUs

• Need a measure of the expressiveness of an infinite hypothesis 
space other than its size 

• The Vapnik-Chervonenkis  dimension (VC dimension)  provides such 
a measure
– “What is the expressive capacity of a set of functions?”

• Analogous to |H|, there are bounds for sample complexity using 
VC(H)
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Learning Rectangles
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Assume the target concept is an axis parallel rectangle 

Will we be able to learn the target rectangle?

Can we come close?



Let’s think about expressivity of functions
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Suppose we have two points. 

Can linear classifiers correctly classify any labeling of these points?

What about fourteen points?

Linear functions are expressive enough to shatter 2 points
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There are four ways to label two points
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There are four ways to label two points

And it is possible to draw a line that separates 
positive and negative points in all four cases

What about fourteen points?

Linear functions are expressive enough to shatter 2 points
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What about fourteen points?

We say that linear functions are expressive enough to shatter two points

There are four ways to label two points

And it is possible to draw a line that separates 
positive and negative points in all four cases



Let’s think about expressivity of functions
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What about fourteen points?

We say that linear functions are expressive enough to shatter two points

There are four ways to label two points

And it is possible to draw a line that separates 
positive and negative points in all four cases
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Shattering

26

What about this labeling?
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This particular labeling of the points cannot be separated by any line
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This particular labeling of the points cannot be separated by any line



Shattering
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This particular labeling of the points cannot be separated by any line



Shattering
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Linear functions are not expressive enough to shatter fourteen points

Because there is at least one labeling that can not be separated by them



Shattering
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Of course, a more complex function could separate them

Linear functions are not expressive enough to shatter fourteen points

Because there is at least one labeling that can not be separated by them



Shattering

Definition: A set S of examples is shattered by a set of functions 
H if for every partition of the examples in S into positive and 
negative examples there is a function in H that gives exactly 
these labels to the examples

Intuition:  A rich set of functions shatters large sets of points
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Shattering

Definition: A set S of examples is shattered by a set of functions 
H if for every partition of the examples in S into positive and 
negative examples there is a function in H that gives exactly 
these labels to the examples

Intuition:  A rich set of functions shatters large sets of points

Example 1: Hypothesis class of left bounded intervals on the real 
axis: [0,a) for some real number a>0
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0 𝑎
Points in this region 
will be labeled as 
positive

Points outside the 
shaded region will be 
labeled as negative



Left bounded intervals

Example 1: Hypothesis class of left bounded intervals 
on the real axis: [0,a) for some real number a>0
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set S with only 
this one point
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0

If we have a 
set S with only 
this one point

If the point is labeled +, we 
can find an 𝑎 that is to the 
right of that point

+

This hypothesis correctly labels the 
point as positive

𝑎



Left bounded intervals

Example 1: Hypothesis class of left bounded intervals 
on the real axis: [0,a) for some real number a>0
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0

If we have a 
set S with only 
this one point

If the point is labeled −, we 
can find an 𝑎 that is to the 
right of that point

−

This hypothesis correctly labels the 
point as negative

𝑎



Left bounded intervals

Example 1: Hypothesis class of left bounded intervals 
on the real axis: [0,a) for some real number a>0
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0

If we have a 
set S with only 
this one point

If the point is labeled −, we 
can find an 𝑎 that is to the 
right of that point

−

This hypothesis correctly labels the 
point as negative

𝑎

Any set of one point can be shattered by the 
hypothesis class of left bounded intervals



Left bounded intervals

Example 1: Hypothesis class of left bounded intervals 
on the real axis: [0,a) for some real number a>0
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0

If we have a set S with 
these two points

Let us consider a set with two points



Left bounded intervals

Example 1: Hypothesis class of left bounded intervals 
on the real axis: [0,a) for some real number a>0
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0

If we have a set S with 
these two points

Let us consider a set with two points

We can label the points such that no hypothesis in our class can match the labels



Left bounded intervals

Example 1: Hypothesis class of left bounded intervals 
on the real axis: [0,a) for some real number a>0
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0

If we have a set S with 
these two points

Let us consider a set with two points

We can label the points such that no hypothesis in our class can match the labels

− +



Left bounded intervals

Example 1: Hypothesis class of left bounded intervals 
on the real axis: [0,a) for some real number a>0
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0

Let us consider a set with two points

We can label the points such that no hypothesis in our class can match the labels

− +

𝑎

Incorrectly labels this 
point as negative 
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Example 1: Hypothesis class of left bounded intervals 
on the real axis: [0,a) for some real number a>0
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0

Let us consider a set with two points

We can label the points such that no hypothesis in our class can match the labels

− +

𝑎

Incorrectly labels this 
point as positive



Left bounded intervals

Example 1: Hypothesis class of left bounded intervals 
on the real axis: [0,a) for some real number a>0
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0

Let us consider a set with two points

We can label the points such that no hypothesis in our class can match the labels

− +

𝑎

Incorrectly labels this 
point as negative 

Incorrectly labels this 
point as positive
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Sets with one point can be shattered

That is: Given one point, for any labeling of 
the points, we can find a concept in this 

class that is consistent with it
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Sets with one point can be shattered

That is: Given one point, for any labeling of 
the points, we can find a concept in this 

class that is consistent with it

Sets with two points cannot be shattered

That is: given two points, it is possible to label 
them in such a way that no concept in this 
class will be consistent with  their labeling



Shattering

Definition: A set S of examples is shattered by a set of functions 
H if for every partition of the examples in S into positive and 
negative examples there is a function in H that gives exactly 
these labels to the examples

Example 2: Hypothesis class is the set of intervals on the real 
axis: [a,b],for some real numbers b>a
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Shattering

Definition: A set S of examples is shattered by a set of functions 
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𝑎 𝑏

Points in this region will 
be labeled as positive

Points outside the shaded region will be 
labeled as negative



Real intervals

Example 2: Hypothesis class is the set of intervals on 
the real axis: [a,b],for some real numbers b>a
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Shattering

Definition: A set S of examples is shattered by a set of functions 
H if for every partition of the examples in S into positive and 
negative examples there is a function in H that gives exactly 
these labels to the examples
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axis: [a,b],for some real numbers b>a
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Shattering

Definition: A set S of examples is shattered by a set of functions 
H if for every partition of the examples in S into positive and 
negative examples there is a function in H that gives exactly 
these labels to the examples

Example 2: Hypothesis class is the set of intervals on the real 
axis: [a,b],for some real numbers b>a
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All sets of one or two points can be shattered
But sets of three points cannot be shattered

Proof? Enumerate all possible three points

𝑎 𝑏

+ − +



Shattering

Definition: A set S of examples is shattered by a set of functions 
H if for every partition of the examples in S into positive and 
negative examples there is a function in H that gives exactly 
these labels to the examples

Example 3: Half spaces in a plane 

54
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Can one point be 
shattered?

Two points?

Three points? Can any 
three points be shattered?

+ −−−
−

+
+

+



Half spaces on a plane: 3 points
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Shattering

Definition: A set S of examples is shattered by a set of functions 
H if for every partition of the examples in S into positive and 
negative examples there is a function in H that gives exactly 
these labels to the examples

Example 3: Half spaces in a plane 
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Can four points be shattered?

Suppose three of them lie on the same 
line, label the outside points + and the 
inner one –

Otherwise, make a convex hull. Label 
points outside + and the inner one –

Four points cannot be shattered!

+ −−−
−

+
+

+



Half spaces on a plane: 4 points
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Shattering: The adversarial game

59

You An adversary



Shattering: The adversarial game
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You An adversary

You: Hypothesis class H can shatter 
these d points 



Shattering: The adversarial game
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You An adversary

You: Hypothesis class H can shatter 
these d points 

Adversary: That’s what you think! 
Here is a labeling that will defeat you.



Shattering: The adversarial game
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You An adversary

You: Hypothesis class H can shatter 
these d points 

Adversary: That’s what you think! 
Here is a labeling that will defeat you.

You: Aha! There is a function ℎ ∈ 𝐻 
that correctly predicts your evil 
labeling



Shattering: The adversarial game
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You An adversary

You: Hypothesis class H can shatter 
these d points 

Adversary: That’s what you think! 
Here is a labeling that will defeat you.

You: Aha! There is a function ℎ ∈ 𝐻 
that correctly predicts your evil 
labeling

Adversary: Argh! You win this round. 
But I’ll be back…..



Some functions can shatter infinite points!

If arbitrarily large finite subsets of the instance space X can be shattered by a 
hypothesis space H.

An unbiased hypothesis space H shatters the entire instance space X, i.e, it 
can induce every possible partition on the set of all possible instances

The larger the subset X  that can be shattered, the more expressive a 
hypothesis space is, i.e., the less biased it is

64

Intuition:  A rich set of functions shatters large sets of points
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Intuition:  A rich set of functions shatters large sets of points



Vapnik-Chervonenkis Dimension

A set S of examples is shattered by a set of functions H if for every 
partition of the examples in S into positive and negative examples 
there is a function in H that gives exactly these labels to the examples

Definition: The VC dimension of hypothesis space H over instance 
space X is the size of the largest finite subset of X that is shattered by H

 

• If there exists any subset of size d that can be shattered, VC(H) >= d
– Even one subset will do

• If no subset of size d can be shattered, then VC(H) < d
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What we have managed to prove
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Concept class
VC 

Dimension
Why?

Half intervals 1
There is a dataset of size 1 that can be shattered
No dataset of size 2 can be shattered

Intervals 2
There is a dataset of size 2 that can be shattered
No dataset of size 3 can be shattered

Half-spaces in the 
plane

3
There is a dataset of size 3 that can be shattered
No dataset of size 4 can be shattered



More VC dimensions
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Concept class VC Dimension

Linear threshold unit 
in d dimensions

d + 1

Neural networks
Number of 
parameters

1 nearest neighbors infinite

Intuition:  A rich set of functions shatters large sets of points



More VC dimensions

71

Concept class VC Dimension

Linear threshold unit 
in d dimensions

d + 1

Neural networks
Number of 
parameters

1 nearest neighbors infinite

What is the number of parameters 
needed to specify a linear threshold unit 
in d dimensions? 

Intuition:  A rich set of functions shatters large sets of points



More VC dimensions
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Concept class VC Dimension

Linear threshold unit 
in d dimensions

d + 1

Neural networks
Number of 
parameters

1 nearest neighbors infinite

What is the number of parameters 
needed to specify a linear threshold unit 
in d dimensions? d + 1

Intuition:  A rich set of functions shatters large sets of points



More VC dimensions
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Concept class VC Dimension

Linear threshold unit 
in d dimensions

d + 1

Neural networks
Number of 
parameters

1 nearest neighbors infinite

What is the number of parameters 
needed to specify a linear threshold unit 
in d dimensions? d + 1

Local minima in learning means neural 
networks may not find the best 
parameters

Intuition:  A rich set of functions shatters large sets of points



More VC dimensions
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Concept class VC Dimension

Linear threshold unit 
in d dimensions

d + 1

Neural networks
Number of 
parameters

1 nearest neighbors infinite

What is the number of parameters 
needed to specify a linear threshold unit 
in d dimensions? d + 1

Local minima in learning means neural 
networks may not find the best 
parameters

Exercise: Try to prove this after we see 
nearest neighbors

Intuition:  A rich set of functions shatters large sets of points



Why VC dimension?

• Remember sample complexity 

– Occam’s razor

– Agnostic learning

• Sample complexity in both cases depends on the log 
of the size of the hypothesis space

• For infinite hypothesis spaces, its VC dimension 
behaves like log(|𝐻|)

75



VC dimension and Occam’s razor for 
consistent learners

• Using VC(H) as a measure of expressiveness, we have an 
Occam theorem for infinite hypothesis spaces

• Given a sample D with m examples, find some ℎ ∈  𝐻 is 
consistent with all m examples. If

𝑚 >
1

𝜖
8VC 𝐻 log

13

𝜖
+ 4 log

2

𝛿

Then with probability at least 1 − 𝛿, the hypothesis h has 
error less than 𝜖.
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That is, if m is polynomial we have a PAC learning algorithm;
To be efficient, we need to produce the hypothesis h efficiently 



VC dimension and Agnostic Learning

Similar statement for the agnostic setting as well

If we have m examples, then with probability 1 − 𝛿, a 
the true error of a hypothesis h with training error 
𝑒𝑟𝑟𝑆 ℎ  is bounded by

𝑒𝑟𝑟𝐷 ℎ ≤ 𝑒𝑟𝑟𝑆 ℎ +
𝑉𝐶 𝐻 ln

2𝑚
𝑉𝐶 𝐻

+ 1 + ln
4
𝛿

𝑚
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(Phew!)



Exercises

What is the VC dimension axis parallel rectangles 
(which we saw at the beginning of this lecture)?

Your homework asks you to compute the VC dimension 
of different classes of functions
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PAC learning: What you need to know

• What is PAC learning?
– Remember: We care about generalization error, not training error

• Finite hypothesis spaces
– Connection between size of hypothesis space and sample complexity

– Derive and understand the sample complexity bounds

– Count number of hypotheses in a hypothesis class

• Infinite hypotheses classes
– What is shattering and VC dimension?

– How to find VC dimension of simple concept classes?

– Higher VC dimensions ⇒ more sample complexity
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Computational Learning Theory

• Probably Approximately Correct (PAC) learning
– A general definition that assumes fixed, but perhaps unknown distribution

• Occam’s razor for consistent learners in finite hypothesis spaces
– Positive and negative learnability results in this setting

• Agnostic Learning and the associated Occam razor

• Shattering and the VC dimension

• Many extensions to the theory exist
– Noisy data,  known data distributions, probabilistic models
– One important extension: PAC-Bayes theory that makes assumptions 

about the the prior distribution over hypothesis spaces
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COLT still doesn’t explain why learning 
works in all cases

81
OpenAI. 2023. GPT-4 Technical Report. arXiv:2303.08774 [cs].



Why computational learning theory

• Answers questions such as
– What is learnability? How good is my class of functions?
– Is a concept learnable? How many examples do I need?

• Mistake bounds imply PAC-learnability

• Raises interesting theoretical questions
– If a concept class is weakly learnable (i.e there is a learning algorithm that 

can produce a classifier that does slightly better than chance), does this 
mean that the concept class is strongly learnable?

– We have seen bounds of the form
 true error < training error + (a term with 𝜖, 𝛿 and VC dimension)
     Can we use this to define a learning algorithm?
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Boosting

Structural Risk Minimization principle
Support Vector Machine
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