
Machine Learning

Decision Trees: Discussion
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Some slides from Tom Mitchell, Dan Roth and others



This lecture: Learning Decision Trees

1. Representation: What are decision trees?

2. Algorithm: Learning decision trees

– The ID3 algorithm: A greedy heuristic 

3. Some extensions
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Tips and Tricks

1. Decision tree variants

2. Handling examples with missing feature values

3. Non-Boolean features

4. Avoiding overfitting
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1. Variants of information gain

Information gain is defined using entropy to measure the 
disorder/impurity of the labels.

There are other ways to measure disorder. Eg: MajorityError, Gini Index

Example: MajorityError computes:
“Suppose the tree was not grown below this node and the most frequent label 
were chosen, what would be the error?”

Suppose at some node, there are 15 + and 5 - examples. What is the 
MajorityError? 

Answer: ¼

Works like entropy

5



1. Variants of information gain

Information gain is defined using entropy to measure the 
disorder/impurity of the labels.

There are other ways to measure disorder. Eg: MajorityError, Gini Index

Example: MajorityError computes:
“Suppose the tree was not grown below this node and the most frequent label 
were chosen, what would be the error?”

Suppose at some node, there are 15 + and 5 - examples. What is the 
MajorityError? 

Answer: ¼

Works like entropy

6



1. Variants of information gain
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Entropy: 
− 𝑝 log2 𝑝 + 1 − 𝑝 log2 1 − 𝑝

Let 𝑝 denote the fraction of positive examples. Then 1 − 𝑝 is the fraction of negative examples.

Gini Index: 
1 − 𝑝2 + 1 − 𝑝 2

MajorityError: 
min(𝑝, 1 − 𝑝)

p (fraction of positive examples)
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Entropy: 
− 𝑝 log2 𝑝 + 1 − 𝑝 log2 1 − 𝑝

Let 𝑝 denote the fraction of positive examples. Then 1 − 𝑝 is the fraction of negative examples.

Gini Index: 
1 − 𝑝2 + 1 − 𝑝 2

MajorityError: 
min(𝑝, 1 − 𝑝)

p (fraction of positive examples)

Lowest (zero) when 
uncertainty is lowest 
(i.e. p=0 or p=1)



1. Variants of information gain
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Entropy: 
− 𝑝 log2 𝑝 + 1 − 𝑝 log2 1 − 𝑝

Let 𝑝 denote the fraction of positive examples. Then 1 − 𝑝 is the fraction of negative examples.

Gini Index: 
1 − 𝑝2 + 1 − 𝑝 2

MajorityError: 
min(𝑝, 1 − 𝑝)

p (fraction of positive examples)

Each of these work like entropy. 

They can replace entropy in the 
definition of information gain.



2. Missing feature values

Suppose an example is missing the value of an attribute. What 
can we do at training time?
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Day    Outlook    Temperature      Humidity    Wind       PlayTennis     
1       Sunny            Hot              High          Weak            No

2       Sunny            Hot              High          Strong           No

8       Sunny            Mild             ??? Weak            No

9       Sunny            Cool             High          Weak            Yes

11      Sunny            Mild            Normal     Strong           Yes



2. Missing feature values

Suppose an example is missing the value of an attribute. What 
can we do at training time?

Different methods to “Complete the example”:

– Using the most common value of the attribute in the data

– Using the most common value of the attribute among all 
examples with the same output 

– Using fractional counts of the attribute values
• Eg: Outlook={5/14 Sunny, 4/14 Overcast, 5/15 Rain}

• Exercise: Will this change probability computations?
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2. Missing feature values

Suppose an example is missing the value of an attribute. What 
can we do at training time?

Different methods to “Complete the example”:

– Using the most common value of the attribute in the data

– Using the most common value of the attribute among all 
examples with the same output 

– Using fractional counts of the attribute values
• Eg: Outlook={5/14 Sunny, 4/14 Overcast, 5/15 Rain}

• Exercise: Will this change probability computations?

At test time? Use the same method
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3. Non-Boolean features

• If the features can take multiple values

– We have seen one edge per value (i.e a multi-way split)
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Outlook 

Overcast RainSunny



3. Non-Boolean features

• If the features can take multiple values

– We have seen one edge per value (i.e a multi-way split)

– Another option: Make the attributes Boolean by testing for 
each value

– Or, perhaps group values into disjoint sets

16

Convert Outlook=Sunny   →

{
  Outlook:Sunny=True, 
  Outlook:Overcast=False, 
  Outlook:Rain=False
}



3. Non-Boolean features

• If the features can take multiple values

– We have seen one edge per value (i.e a multi-way split)

– Another option: Make the attributes Boolean by testing for 
each value

– Or, perhaps group values into disjoint sets

• For numeric features, use thresholds or ranges to get 
Boolean/discrete alternatives 
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Convert Outlook=Sunny   →

{
  Outlook:Sunny=True, 
  Outlook:Overcast=False, 
  Outlook:Rain=False
}



4. Overfitting
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The “First Bit” function

• A Boolean function with n inputs

• Simply returns the value of the first input, all others 
irrelevant
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What is the decision tree 
for this function?

X0 X1 Y

F F F

F T F

T F T

T T T

X1 is irrelvant
Y = X0
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F T F
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T T T

What is the decision tree 
for this function?
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The “First Bit” function

• A Boolean function with n inputs

• Simply returns the value of the first input, all others 
irrelevant
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X0 X1 Y

F F F

F T F

T F T

T T T

What is the decision tree 
for this function?

X0

T F

T F

Exercise: Convince yourself that 
ID3 will generate this tree



The best case scenario: Perfect data

Suppose we have all 2n examples for training. What will 
the error be on any future examples?

Zero! Because we have seen every possible input!

And the decision tree can represent the function and 
ID3 will build a consistent tree
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The best case scenario: Perfect data

Suppose we have all 2n examples for training. What will 
the error be on any future examples?

Zero! Because we have seen every possible input!

And the decision tree can represent the function and 
ID3 will build a consistent tree
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Noisy data

What if the data is noisy? And we have all 2n examples.
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X0 X1 X2 Y

F F F F

F F T F

F T F F

F T T F

T F F T

T F T T

T T F T

T T T T

Suppose, the outputs of both 
training and test sets are 
randomly corrupted

Train and test sets are no longer 
identical. 

Both have noise, possibly different



Noisy data

What if the data is noisy? And we have all 2n examples.
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X0 X1 X2 Y

F F F F

F F T F

F T F F

F T T F

T F F T

T F T T

T T F T

T T T T

F

T

Suppose, the outputs of both 
training and test sets are 
randomly corrupted

Train and test sets are no longer 
identical. 

Both have noise, possibly different



E.g: Output corrupted with probability 0.25
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26The error bars are generated by running the same 
experiment multiple times for the same setting

The data is noisy. And we have all 2n examples.
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Error = approx 0.375

  We can analytically compute test error in this case
Correct prediction:
P(Training example uncorrupted AND test example uncorrupted) = 0.75 × 0.75
P(Training example corrupted AND test example corrupted) = 0.25 × 0.25
P(Correct prediction) = 0.625

Incorrect prediction:
P(Training example uncorrupted AND test example corrupted) = 0.75 × 0.25
P(Training example corrupted and AND example uncorrupted) = 0.25 × 0.75
P(incorrect prediction) = 0.375

The data is noisy. And we have all 2n examples.
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What about the training accuracy?

The data is noisy. And we have all 2n examples.
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What about the training accuracy?

Training accuracy = 100%
Because the learning algorithm will 
find a tree that agrees with the data

The data is noisy. And we have all 2n examples.
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Then, why is the classifier not perfect?

The data is noisy. And we have all 2n examples.
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Then, why is the classifier not perfect?

The classifier overfits the training 
data

The data is noisy. And we have all 2n examples.



Overfitting

• The learning algorithm finds a hypothesis that fits 
the noise in the data

– Irrelevant attributes or noisy examples influence the 
choice of the hypothesis

• May lead to poor performance on future examples
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Overfitting: One definition 

• Data comes from a probability distribution 𝐷(𝑋, 𝑌)

• We are using a hypothesis space 𝐻

• Errors:
– Training error for hypothesis ℎ ∈ 𝐻: errortrain(ℎ)
– True error for ℎ ∈ 𝐻: errorD(ℎ)

• A hypothesis ℎ overfits the training data if there is 
another hypothesis ℎ′ such that 
1. errortrain ℎ < errortrain ℎ′

2. errorD ℎ > errorD ℎ′
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34

1. ℎ has lower training error than the competing hypothesis ℎ′ but,

2. ℎ′ generalizes better than ℎ. 
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2. ℎ′ generalizes better than ℎ. 
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Decision trees will overfit

37
Plot from Mitchell



Avoiding overfitting with decision trees

Occam’s Razor

 Favor simpler (in this case, shorter) hypotheses

Why? Fewer shorter trees, less likely to fit better by coincidence

• Some approaches:
1. Fix the depth of the tree

• Decision stump = a decision tree with only one level 

• Typically will not be very good by itself

• But, we will revisit decision stumps later (short decision trees can make 
very good features for a second layer of learning)
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Avoiding overfitting with decision trees

Occam’s Razor

 Favor simpler (in this case, shorter) hypotheses

Why? Fewer shorter trees, less likely to fit better by coincidence

• Some approaches:
2. Optimize on a held-out set (also called development set or 

validation set) while growing the trees

• Split your data into two parts –training set and held-out set

• Grow your tree on the training split and check the performance on the 
held-out set after every new node is added

• If growing the tree hurts validation set performance, stop growing
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Avoiding overfitting with decision trees

Occam’s Razor

 Favor simpler (in this case, shorter) hypotheses

Why? Fewer shorter trees, less likely to fit better by coincidence

• Some approaches:
3. Grow full tree and then prune as a post-processing step in one of 

several ways:

1. Use a validation set for pruning from bottom up greedily

2. Convert the tree into a set of rules (one rule per path from root to leaf) 
and prune each rule independently
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Summary: Decision trees

• A popular machine learning tool
– Prediction is easy
– If we have Boolean features and binary classification, decision trees 

can represent any Boolean function

• Greedy heuristics for learning
– ID3 algorithm (using information gain)
– Robust implementations of some variants (eg. C4.5 algorithm) exist

• Can be used for regression too

• Decision trees are prone to overfitting unless you take care to 
avoid it

41
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