
Machine Learning

Linear Classifiers: Expressiveness
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Lecture outline

• Linear models: Introduction

• What functions do linear classifiers express?
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Where are we?

• Linear models: Introduction

• What functions do linear classifiers express?
– Conjunctions and disjunctions
– m-of-n functions
– Not all functions are linearly separable
– Feature space transformations
– Exercises
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Which Boolean functions can linear classifiers 
represent?

• Linear classifiers are an expressive hypothesis class

• Many Boolean functions are linearly separable
– Not all though
– Recall: In comparison, decision trees can represent any 

Boolean function
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Conjunctions and disjunctions 

𝑦 = 𝑥! ∧ 𝑥" ∧ 𝑥# is equivalent to “𝑦 = 1 whenever 𝑥1 + 𝑥2 + 𝑥3 ≥ 3”
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x1 x2 x3 y

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 0

1 0 0 0

1 0 1 0

1 1 0 0

1 1 1 1

Consider this truth table of a conjunction

𝑦 = 1 if and only if all the 𝑥’s are 1
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x1 x2 x3 y x1 + x2 + x3 – 3 sign
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Negations are okay too.
In general, use 1 − 𝑥 in the linear 
threshold unit if 𝑥 is negated

𝑦 = 𝑥! ∧ 𝑥" ∧ ¬𝑥#
corresponds to

𝑥1	 + 	𝑥2	 + 1 − 	𝑥3 ≥ 	3
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Exercise: What would the linear 
threshold function be if the 
conjunctions here were replaced 
with disjunctions?
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Exercise: What would the linear 
threshold function be if the 
conjunctions here were replaced 
with disjunctions?

Negations are okay too.
In general, use 1 − 𝑥 in the linear 
threshold unit if 𝑥 is negated

𝑦 = 𝑥! ∧ 𝑥" ∧ ¬𝑥#
corresponds to

𝑥1	 + 	𝑥2	 + 1 − 	𝑥3 ≥ 	3

Questions?



m-of-n functions

m-of-n rules
• There is a fixed set of n variables
• y = true if, and only if, at least m of them are true
• All other variables are ignored

Suppose there are five Boolean variables: x1, x2, x3, x4, x5

What is a linear threshold unit that is equivalent to the 
classification rule “at least 2 of {x1, x2, x3}”?
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Questions?



Parity is not linearly separable
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Not all functions are linearly separable
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Not all functions are linearly separable

• XOR is not linear
– 𝑦 = 𝑥 XOR 𝑦 = 𝑥 ∧ ¬𝑦 ∨ (¬𝑥 ∧ 𝑦)
– Parity cannot be represented as a linear classifier

• f(x) = 1 if the number of 1’s is even

• Many non-trivial Boolean functions
– Example: 𝑦 = 𝑥- ∧ 𝑥. ∨ 𝑥, ∧ ¬𝑥/
– The function is not linear in the four variables
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Even these functions can be made linear
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These points are not separable in 1-dimension by a line

What is a one-dimensional line, by the way?

x



Even these functions can be made linear

The trick: Change the representation
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These points are not separable in 1-dimension by a line

What is a one-dimensional line, by the way?

x



The blown up feature space
The trick: Use feature conjunctions
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Transform points: Represent each point x in 2 dimensions by (x, x2)

x
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The blown up feature space
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Transform points: Represent each point x in 2 dimensions by (x, x2)
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The blown up feature space
The trick: Use feature conjunctions
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Transform points: Represent each point x in 2 dimensions by (x, x2)

Now the data is linearly separable in this space!

x

x2



Exercise

How would you use the feature transformation idea to 
make XOR  in two dimensions linearly separable in a 
new space?

To answer this question, you need to think about a function that 
maps examples from two dimensional space to a higher 
dimensional space. 
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Almost linearly separable data

23

+
+

+
+
+++

+
-

-
-

-

-
- -

-

-

-

-

-
-
- -

- --

sgn(b +w1 x1 + w2x2)

x1

x2

Training data is almost 
separable, except for 
some noise

How much noise do 
we allow for?



Almost linearly separable data
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Linear classifiers: An expressive hypothesis class

• Many functions are linear

• Often a good guess for a hypothesis space

• Some functions are not linear
– The XOR function
– Non-trivial Boolean functions

• But there are ways of making them linear in a higher 
dimensional feature space
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Why is the bias term needed?
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Why is the bias term needed?
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If b is zero, then we are 
restricting the learner only 
to hyperplanes that go 
through the origin

May not be expressive 
enough
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Exercises

1. Represent the simple disjunction as a linear classifier.

2. How would you apply the feature space expansion idea for the XOR 
function? 
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