
Machine Learning

Linear Models

1

Checkpoint: The bigger picture

• Supervised learning: instances, concepts, and hypotheses

• Specific learners
– Decision trees

• General ML ideas
– Features as high dimensional vectors
– Overfitting

2

Learning
algorithm

Labeled
data

Hypothesis/
Model h

hNew example Prediction

Questions?

Checkpoint: The bigger picture

• Supervised learning: instances, concepts, and hypotheses

• Specific learners
– Decision trees

• General ML ideas
– Features as high dimensional vectors
– Overfitting

3

Questions?

Learning
algorithm

Labeled
data

Hypothesis/
Model h

hNew example Prediction

Checkpoint: The bigger picture

• Supervised learning: instances, concepts, and hypotheses

• Specific learners
– Decision trees

• General ML ideas
– Features as high dimensional vectors
– Overfitting

4

Questions?

Learning
algorithm

Labeled
data

Hypothesis/
Model h

hNew example Prediction

Checkpoint: The bigger picture

• Supervised learning: instances, concepts, and hypotheses

• Specific learners
– Decision trees

• General ML ideas
– Features as high dimensional vectors
– Overfitting

5

Questions?

Learning
algorithm

Labeled
data

Hypothesis/
Model h

hNew example Prediction

Lecture outline

• Linear models

• What functions do linear classifiers express?

6

Where are we?

• Linear models
– Introduction: Why linear classifiers and regressors?
– Geometry of linear classifiers
– A notational simplification
– Learning linear classifiers: The lay of the land

• What functions do linear classifiers express?

7

Is learning possible at all?

• There are 216 = 65536 possible
Boolean functions over 4 inputs
– Why? There are 16 possible outputs. Each

way to fill these 16 slots is a different
function, giving 216 functions.

• We have seen only 7 outputs

• We cannot know what the rest are
without seeing them
– Think of an adversary filling in the labels

every time you make a guess at the
function

8

Is learning possible at all?

• There are 216 = 65536 possible
Boolean functions over 4 inputs
– Why? There are 16 possible outputs. Each

way to fill these 16 slots is a different
function, giving 216 functions.

• We have seen only 7 outputs

• We cannot know what the rest are
without seeing them
– Think of an adversary filling in the labels

every time you make a guess at the
function

9

How could we possibly learn anything?

Solution: Restrict the search space

• A hypothesis space is the set of possible functions we consider
– We were looking at the space of all Boolean functions
– Instead choose a hypothesis space that is smaller than the space of all

functions
• Only simple conjunctions (with four variables, there are only 16 conjunctions without

negations)
• Simple disjunctions
• m-of-n rules: Fix a set of n variables. At least m of them must be true

• Linear functions
!

10

Which is the better classifier?

11

Suppose this our
training set and we
have to separate the
blue circles from the
red triangles

Which is the better classifier?

12

Suppose this our
training set and we
have to separate the
blue circles from the
red triangles

Curve: A

Which is the better classifier?

13

Suppose this our
training set and we
have to separate the
blue circles from the
red triangles

Curve: A

Line: B

Which is the better classifier?

14

Suppose this our
training set and we
have to separate the
blue circles from the
red triangles

Curve: A

Line: B

Blue

Red

Which is the better classifier?

15

Suppose this our
training set and we
have to separate the
blue circles from the
red triangles

Think about overfitting

Which curve runs the risk of
overfitting?

Simplicity versus Accuracy

Curve: A

Line: B

Blue

Red

Similar argument for regression

16

x

F(x)

Linear regression might make smaller errors on new points

Similar argument for regression

17

x

F(x)

Curve: A

Linear regression might make smaller errors on new points

Similar argument for regression

18

x

F(x)

Line: B

Curve: A

Linear regression might make smaller errors on new points

Recall: Regression vs. Classification

• Linear regression is about predicting real valued
outputs

• Linear classification is about predicting a discrete
class label
– +1 or -1
– SPAM or NOT-SPAM
– Or more than two categories

19

Linear classifiers: An example

Suppose we want to determine whether a robot arm is
defective or not using two measurements:
1. The maximum distance the arm can reach 𝑑
2. The maximum angle it can rotate 𝑎

Suppose we use a linear decision rule that predicts
defective if 2𝑑 + 0.01𝑎 ≥ 7

We can apply this rule if we have the two measurements
For example: for a certain arm, if d = 3 and a = 200, then

2𝑑 + 0.01𝑎 = 8 ≥ 7
The arm would be labeled as not defective

20

Linear classifiers: An example

Suppose we want to determine whether a robot arm is
defective or not using two measurements:
1. The maximum distance the arm can reach 𝑑
2. The maximum angle it can rotate 𝑎

Suppose we use a linear decision rule that predicts
defective if 2𝑑 + 0.01𝑎 ≥ 7

We can apply this rule if we have the two measurements
For example: for a certain arm, if d = 3 and a = 200, then

2𝑑 + 0.01𝑎 = 8 ≥ 7
The arm would be labeled as not defective

21

Linear classifiers: An example

Suppose we want to determine whether a robot arm is
defective or not using two measurements:
1. The maximum distance the arm can reach 𝑑
2. The maximum angle it can rotate 𝑎

Suppose we use a linear decision rule that predicts
defective if 2𝑑 + 0.01𝑎 ≥ 7

We can apply this rule if we have the two measurements
For example: for a certain arm, if d = 3 and a = 200, then

2𝑑 + 0.01𝑎 = 8 ≥ 7
The arm would be labeled as not defective

22

Linear classifiers: An example

Suppose we want to determine whether a robot arm is
defective or not using two measurements:
1. The maximum distance the arm can reach 𝑑
2. The maximum angle it can rotate 𝑎

Suppose we use a linear decision rule that predicts
defective if 2𝑑 + 0.01𝑎 ≥ 7

We can apply this rule if we have the two measurements
For example: for a certain arm, if d = 3 and a = 200, then

2𝑑 + 0.01𝑎 = 8 ≥ 7
The arm would be labeled as not defective

23

This rule is an example of a linear classifier
Features are weighted and added up,

the sum is checked against a threshold

Linear Classifiers

Inputs are 𝑑 dimensional feature vectors, denoted by 𝐱
Output is a label 𝑦 ∈ {−1, 1}

Linear Threshold Units classify an example 𝐱 using parameters 𝐰 (a
𝑑 dimensional vector) and 𝑏 (a real number) according the following
classification rule

Output = sign 𝐰!𝐱 + 𝑏 = sign =
"

𝑤"𝑥" + 𝑏

𝐰!𝐱 + 𝑏 ≥ 0 ⇒ 𝑦 = +1
𝐰!𝐱 + 𝑏 < 0 ⇒ 𝑦 = −1

24𝑏 is called the bias term

Linear Classifiers

Inputs are 𝑑 dimensional feature vectors, denoted by 𝐱
Output is a label 𝑦 ∈ {−1, 1}

Linear Threshold Units classify an example 𝐱 using parameters 𝐰 (a
𝑑 dimensional vector) and 𝑏 (a real number) according the following
classification rule

Output = sign 𝐰!𝐱 + 𝑏 = sign =
"

𝑤"𝑥" + 𝑏

𝐰!𝐱 + 𝑏 ≥ 0 ⇒ 𝑦 = +1
𝐰!𝐱 + 𝑏 < 0 ⇒ 𝑦 = −1

25𝑏 is called the bias term

Linear Classifiers

Inputs are 𝑑 dimensional feature vectors, denoted by 𝐱
Output is a label 𝑦 ∈ {−1, 1}

Linear Threshold Units classify an example 𝐱 using parameters 𝐰 (a
𝑑 dimensional vector) and 𝑏 (a real number) according the following
classification rule

Output = sign 𝐰!𝐱 + 𝑏 = sign =
"

𝑤"𝑥" + 𝑏

if 𝐰!𝐱 + 𝑏 ≥ 0 then predict 𝑦 = +1
if 𝐰!𝐱 + 𝑏 < 0 then predict 𝑦 = −1

26𝑏 is called the bias term

The geometry of a linear classifier

27

x1

x2

An illustration in two dimensions

The geometry of a linear classifier

28

x1

x2

+
+

+
+
+++

+

-
- -

-

-

- -
- -

-

-
-
-
--

-

-

-

An illustration in two dimensions

The geometry of a linear classifier

29

sgn(b +w1 x1 + w2x2)

x1

x2

+
+

+
+
+++

+

-
- -

-

-

- -
- -

-

-
-
-
--

-

-

-

An illustration in two dimensions

The geometry of a linear classifier

30

sgn(b +w1 x1 + w2x2)

x1

x2

+
+

+
+
+++

+

-
- -

-

-

- -
- -

-

-
-
-
--

-

-

-

b +w1 x1 + w2x2=0

An illustration in two dimensions

The geometry of a linear classifier

31

sgn(b +w1 x1 + w2x2)

x1

x2

+
+

+
+
+++

+

-
- -

-

-

- -
- -

-

-
-
-
--

-

-

-

b +w1 x1 + w2x2=0

An illustration in two dimensions

The geometry of a linear classifier

32

sgn(b +w1 x1 + w2x2)

x1

x2

+
+

+
+
+++

+

-
- -

-

-

- -
- -

-

-
-
-
--

-

-

-

b +w1 x1 + w2x2=0

[w1 w2]

An illustration in two dimensions

The geometry of a linear classifier

33

sgn(b +w1 x1 + w2x2)

x1

x2

+
+

+
+
+++

+

-
- -

-

-

- -
- -

-

-
-
-
--

-

-

-

b +w1 x1 + w2x2=0
We only care about the
sign, not the magnitude

[w1 w2]

An illustration in two dimensions

The geometry of a linear classifier

34

sgn(b +w1 x1 + w2x2)

In higher dimensions,
a linear classifier
represents a hyperplane
that separates the space
into two half-spaces

x1

x2

+
+

+
+
+++

+

-
- -

-

-

- -
- -

-

-
-
-
--

-

-

-

b +w1 x1 + w2x2=0
We only care about the
sign, not the magnitude

[w1 w2]

Questions?

An illustration in two dimensions

Simplifying notation

We can stop writing b at each step using notational sugar:
The prediction function is sgn(𝐰!𝐱 + 𝑏) = sgn ∑"𝑤"𝑥" + 𝑏

Rewrite 𝐱 as 𝐱1 . Call this 𝐱# Rewrite 𝐰 as 𝐰𝑏 . Call this 𝐰′

Note that 𝐰$𝐱 + 𝑏 is the same as 𝐰#𝑻𝐱′

The prediction function is now sgn(𝐰#𝑻𝐱#)

In the increased dimensional space, the vector 𝐰# goes through the origin

We sometimes hide the bias 𝑏, and instead fold the bias term into the
weights by adding an extra constant feature. But remember that it is there.

35Questions?

Simplifying notation

We can stop writing b at each step using notational sugar:
The prediction function is sgn(𝐰!𝐱 + 𝑏) = sgn ∑"𝑤"𝑥" + 𝑏

Rewrite 𝐱 as 𝐱1 . Call this 𝐱# Rewrite 𝐰 as 𝐰𝑏 . Call this 𝐰′

Note that 𝐰$𝐱 + 𝑏 is the same as 𝐰#𝑻𝐱′

The prediction function is now sgn(𝐰#𝑻𝐱#)

In the increased dimensional space, the vector 𝐰# goes through the origin

We sometimes hide the bias 𝑏, and instead fold the bias term into the
weights by adding an extra constant feature. But remember that it is there.

36Questions?

Simplifying notation

We can stop writing b at each step using notational sugar:
The prediction function is sgn(𝐰!𝐱 + 𝑏) = sgn ∑"𝑤"𝑥" + 𝑏

Rewrite 𝐱 as 𝐱1 . Call this 𝐱# Rewrite 𝐰 as 𝐰𝑏 . Call this 𝐰′

Note that 𝐰$𝐱 + 𝑏 is the same as 𝐰#𝑻𝐱′

The prediction function is now sgn(𝐰#𝑻𝐱#)

In the increased dimensional space, the vector 𝐰# goes through the origin

We sometimes hide the bias 𝑏, and instead fold the bias term into the
weights by adding an extra constant feature. But remember that it is there.

37Questions?

Simplifying notation

We can stop writing b at each step using notational sugar:
The prediction function is sgn(𝐰!𝐱 + 𝑏) = sgn ∑"𝑤"𝑥" + 𝑏

Rewrite 𝐱 as 𝐱1 . Call this 𝐱# Rewrite 𝐰 as 𝐰𝑏 . Call this 𝐰′

Note that 𝐰$𝐱 + 𝑏 is the same as 𝐰#𝑻𝐱′

The prediction function is now sgn(𝐰#𝑻𝐱#)

In the increased dimensional space, the vector 𝐰# goes through the origin

We sometimes hide the bias 𝑏, and instead fold the bias term into the
weights by adding an extra constant feature. But remember that it is there.

38Questions?

Increases dimensionality by one

Equivalent to adding a feature
that is a constant: always 1

Simplifying notation

We can stop writing b at each step using notational sugar:
The prediction function is sgn(𝐰!𝐱 + 𝑏) = sgn ∑"𝑤"𝑥" + 𝑏

Rewrite 𝐱 as 𝐱1 . Call this 𝐱# Rewrite 𝐰 as 𝐰𝑏 . Call this 𝐰′

Note that 𝐰$𝐱 + 𝑏 is the same as 𝐰#𝑻𝐱′

The prediction function is now sgn(𝐰#𝑻𝐱#)

In the increased dimensional space, the vector 𝐰# goes through the origin

We sometimes hide the bias 𝑏, and instead fold the bias term into the
weights by adding an extra constant feature. But remember that it is there.

39Questions?

Increases dimensionality by one

Equivalent to adding a feature
that is a constant: always 1

Simplifying notation

We can stop writing b at each step using notational sugar:
The prediction function is sgn(𝐰!𝐱 + 𝑏) = sgn ∑"𝑤"𝑥" + 𝑏

Rewrite 𝐱 as 𝐱1 . Call this 𝐱# Rewrite 𝐰 as 𝐰𝑏 . Call this 𝐰′

Note that 𝐰$𝐱 + 𝑏 is the same as 𝐰#𝑻𝐱′

The prediction function is now sgn(𝐰#𝑻𝐱#)

In the increased dimensional space, the vector 𝐰# goes through the origin

We sometimes hide the bias 𝑏, and instead fold the bias term into the
weights by adding an extra constant feature. But remember that it is there.

40Questions?

Increases dimensionality by one

Equivalent to adding a feature
that is a constant: always 1

Coming up (next several weeks): Linear classification

• Perceptron: Error driven learning, updates the hypothesis if there is an
error

• Support Vector Machines: Define a different cost function that includes an
error term and a term that targets future performance

• Naïve Bayes classifier: A simple linear classifier with a probabilistic
interpretation

• Logistic regression: Another probabilistic linear classifier, bears similarity
to support vector machines

41

In all cases, the prediction will be done with the same rule:
𝐰!𝐱 + 𝑏 ≥ 0 ⇒ 𝑦 = +1
𝐰!𝐱 + 𝑏 < 0 ⇒ 𝑦 = −1

