
Machine Learning

Linear Models
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Checkpoint: The bigger picture

• Supervised learning: instances, concepts, and hypotheses

• Specific learners
– Decision trees 

• General ML ideas
– Features as high dimensional vectors
– Overfitting
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Lecture outline

• Linear models

• What functions do linear classifiers express?
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Where are we?

• Linear models
– Introduction: Why linear classifiers and regressors?
– Geometry of linear classifiers
– A notational simplification
– Learning linear classifiers: The lay of the land

• What functions do linear classifiers express?
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Is learning possible at all?

• There are 216 = 65536 possible 
Boolean functions over 4 inputs
– Why? There are 16 possible outputs. Each 

way to fill these 16 slots is a different 
function, giving 216 functions.

• We have seen only 7 outputs

• We cannot know what the rest are 
without seeing them
– Think of an adversary filling in the labels 

every time you make a guess at the 
function
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How could we possibly learn anything?



Solution: Restrict the search space

• A hypothesis space is the set of possible functions we consider
– We were looking at the space of all Boolean functions
– Instead choose a hypothesis space that is smaller than the space of all 

functions
• Only simple conjunctions (with four variables, there are only 16 conjunctions without 

negations)
• Simple disjunctions
• m-of-n rules: Fix a set of n variables. At least m of them must be true

• Linear functions
!
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Which is the better classifier?
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Which is the better classifier?
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Suppose this our 
training set and we 
have to separate the 
blue circles from the 
red triangles

Think about overfitting

Which curve runs the risk of 
overfitting?

Simplicity versus Accuracy

Curve: A

Line: B

Blue 

Red



Similar argument for regression
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Similar argument for regression
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Recall: Regression vs. Classification

• Linear regression is about predicting real valued 
outputs

• Linear classification is about predicting a discrete 
class label
– +1 or -1
– SPAM or NOT-SPAM
– Or more than two categories
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Linear classifiers: An example

Suppose we want to determine whether a robot arm is 
defective or not using two measurements: 
1. The maximum distance the arm can reach 𝑑
2. The maximum angle it can rotate 𝑎

Suppose we use a linear decision rule that predicts
defective if 2𝑑 + 0.01𝑎 ≥ 7

We can apply this rule if we have the two measurements
For example: for a certain arm, if d = 3 and a = 200, then 

2𝑑 + 0.01𝑎 = 8 ≥ 7
The arm would be labeled as not defective
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This rule is an example of a linear classifier
Features are weighted and added up,

the sum is checked against a threshold



Linear Classifiers

Inputs are 𝑑 dimensional feature vectors, denoted by 𝐱
Output is a label 𝑦 ∈ {−1, 1}

Linear Threshold Units classify an example 𝐱 using parameters 𝐰 (a 
𝑑 dimensional vector) and 𝑏 (a real number) according the following 
classification rule

Output = sign 𝐰!𝐱 + 𝑏 = sign =
"

𝑤"𝑥" + 𝑏

𝐰!𝐱 + 𝑏 ≥ 0 ⇒ 𝑦 = +1
𝐰!𝐱 + 𝑏 < 0 ⇒ 𝑦 = −1

24𝑏 is called the bias term
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classification rule

Output = sign 𝐰!𝐱 + 𝑏 = sign =
"

𝑤"𝑥" + 𝑏

if 𝐰!𝐱 + 𝑏 ≥ 0 then predict 𝑦 = +1
if 𝐰!𝐱 + 𝑏 < 0 then predict 𝑦 = −1
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The geometry of a linear classifier
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The geometry of a linear classifier
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The geometry of a linear classifier
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The geometry of a linear classifier
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The geometry of a linear classifier
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Simplifying notation

We can stop writing b at each step using notational sugar:
The prediction function is sgn(𝐰!𝐱 + 𝑏) = sgn ∑"𝑤"𝑥" + 𝑏

Rewrite 𝐱 as 𝐱1 . Call this 𝐱# Rewrite 𝐰 as 𝐰𝑏 . Call this 𝐰′

Note that 𝐰$𝐱 + 𝑏 is the same as 𝐰#𝑻𝐱′

The prediction function is now sgn(𝐰#𝑻𝐱#)

In the increased dimensional space, the vector 𝐰# goes through the origin

We sometimes hide the bias 𝑏, and instead fold the bias term into the 
weights by adding an extra constant feature. But remember that it is there.

35Questions?
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Increases dimensionality by one

Equivalent to adding a feature 
that is a constant: always 1
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Coming up (next several weeks): Linear classification

• Perceptron:  Error  driven learning, updates the hypothesis if there is an 
error

• Support Vector Machines: Define a different cost function that includes an 
error term and a term that targets future performance

• Naïve Bayes classifier: A simple linear classifier with a probabilistic 
interpretation

• Logistic regression: Another probabilistic linear classifier, bears similarity 
to support vector machines
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In all cases, the prediction will be done with the same rule:
𝐰!𝐱 + 𝑏 ≥ 0 ⇒ 𝑦 = +1
𝐰!𝐱 + 𝑏 < 0 ⇒ 𝑦 = −1


