
Machine Learning

Least Mean Squares Regression
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Least Squares Method for regression

• Examples

• The LMS objective

• Gradient descent

• Incremental/stochastic gradient descent
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What’s the mileage?

Suppose we want to predict the mileage of a car from 
its weight and age
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Weight 
(x 100 lb) 

x1

Age 
(years) 

x2

Mileage

31.5 6 21

36.2 2 25

43.1 0 18

27.6 2 30

What we want: A 
function that can 
predict mileage 
using x1 and x2



Linear regression: The strategy

Assumption: The output is a linear function of the inputs
   Mileage = w0 + w1 x1 + w2 x2

Learning: Using the training data to find the best possible value 
of w

Prediction: Given the values for x1, x2 for a new car, use the 
learned w to predict the Mileage for the new car
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Predicting continuous values using a linear model
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Parameters of the model
Also called weights
Collectively, a vector

Predicting continuous values using a linear model



Linear regression: The strategy

• Inputs are vectors: 𝐱 ∈ ℜ!

• Outputs are real numbers: 𝑦 ∈ ℜ

• We have a training set 
   D = { 𝐱!, 𝑦! , 𝐱", 𝑦" , ⋯ }

• We want to approximate 𝑦 as 
𝑦 = 𝑤! + 𝑤"𝑥" +⋯+𝑤#𝑥#

𝑦 = 𝐰$𝐱
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𝐰 is the learned weight vector in ℜ#

For simplicity, we will assume 
that the first feature is always 1.

𝒙 =

1
𝑥!
⋮
𝑥"

This lets makes notation easier



Examples
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The linear function is 
not our only choice. 
We could have tried 
to fit the data as 
another polynomial

One dimensional input
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x1

y

Predict using y = w1 + w2 x2

The linear function is 
not our only choice. 
We could have tried 
to fit the data as 
another polynomial

One dimensional input

Two dimensional input

Predict using y = w1 + w2 x2 +w3 x3



Least Squares Method for regression

• Examples

• The LMS objective

• Gradient descent

• Incremental/stochastic gradient descent

12



What is the best weight vector?

Question: How do we know which weight vector is the best one 
for a training set?

For an input (xi, yi) in the training set, the cost of a mistake is

Define the cost (or loss) for a particular weight vector w to be

One strategy for learning: Find the w with least cost on this data

13

Sum of squared 
costs over the 
training set
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Least Mean Squares (LMS) Regression
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Learning: minimizing mean squared error



Least Mean Squares (LMS) Regression

Different strategies exist for learning by optimization
• Gradient descent is a popular algorithm

(For this particular minimization objective, there is also an analytical solution. No 
need for gradient descent)
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Learning: minimizing mean squared error
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Gradient descent

General strategy for minimizing 
a function J(w)

• Start with an initial guess for 
w, say w0

• Iterate till convergence: 
– Compute the gradient of the 

gradient of J at wt

– Update wt to get wt+1 by taking 
a step in the opposite direction 
of the gradient

21

J(w)

w

We are trying to minimize 
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J(w)

w
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Intuition: The gradient is the direction 
of steepest increase in the function. To 
get to the minimum, go in the opposite 
direction
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Gradient descent for LMS

1. Initialize w0

2. For t = 0, 1, 2, ….
1. Compute gradient of 𝐽(𝐰') at 𝐰'. Call it ∇𝐽(𝐰')

2. Update w as follows:
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r: Called the learning rate 
(For now, a small constant. We will get to this later)

We are trying to minimize 
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r: Called the learning rate 
(For now, a small constant. We will get to this later)

What is the gradient of J?

We are trying to minimize 



Gradient of the cost

• The gradient is of the form

• Remember that w is a vector with d elements
– w = [w1, w2, w3, ! wj, !, wd]

30

We are trying to minimize 
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Gradient of the cost
We are trying to minimize 
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One element 
of the gradient
vector
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37

One element 
of the gradient
vector

Error Input×Sum of

We are trying to minimize 



Gradient descent for LMS

1. Initialize w0

2. For t = 0, 1, 2, …. 
1. Compute gradient of J(w) at wt. Call it ∇𝐽 𝑤'

Evaluate the function for each training example to compute the error 
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r: Called the learning rate 
(For now, a small constant. We will get to this later)

(until total error is below a threshold)

This algorithm is guaranteed to converge to the minimum of J if r is small enough.
Why? The objective J is a convex function

We are trying to minimize 

One element 
of ∇𝐽 𝑤#
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(until total error is below a threshold)

The weight vector is not updated until all errors are calculated

Why not make early updates to the weight vector as soon as we encounter 
errors instead of waiting for a full pass over the data?

We are trying to minimize 



Incremental/Stochastic gradient descent

• Repeat for each example (xi, yi)
– Pretend that the entire training set is represented by this 

single example
– Use this example to calculate the gradient and update the 

model

• Contrast with batch gradient descent which makes 
one update to the weight vector for every pass over 
the data
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Incremental/Stochastic gradient descent

1. Initialize w
2. For t = 0, 1, 2, …. (until error below some threshold)

– For each training example (xi, yi):
•  Update w. For each element of the weight vector (wj):
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Contrast with the previous method, where the 
weights are updated only after all examples are 
processed once
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This update rule is also called the Widrow-Hoff 
rule in the neural networks literature
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This update rule is also called the Widrow-Hoff 
rule in the neural networks literature

Online/Incremental algorithms are often preferred when the training 
set is very large

May get close to optimum much faster than the batch version



Learning Rates and Convergence

• In the general (non-separable) case the learning rate r must 
decrease to zero to guarantee convergence

• The learning rate is called the step size.
– More sophisticated algorithms choose the step size automatically and 

converge faster

• Choosing a better starting point can also have impact 

• Gradient descent and its stochastic version are very simple 
algorithms
– Yet, almost all the algorithms we will learn in the class can be traced back 

to gradient decent algorithms for different loss functions and different 
hypotheses spaces
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Linear regression: Summary

• What we want: Predict a real valued output using a 
feature representation of the input

• Assumption: Output is a linear function of the inputs

• Learning by minimizing total cost
– Gradient descent and stochastic gradient descent to find 

the best weight vector
– This particular optimization can be computed directly by 

framing the problem as a matrix problem
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Exercises
1. Use the gradient descent algorithms to solve the mileage problem (on 

paper, or write a small program) 

2. LMS regression can be solved analytically. Given a dataset 
 D = { (x1, y1), (x2, y2), !, (xm, ym)}, define matrix X and vector Y as follows:

Show that the optimization problem we saw earlier is equivalent to

This can be solved analytically. Show that the solution w* is
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Hint: You have to take the derivative of the objective with 
respect to the vector w and set it to zero.


