Least Mean Squares Regression

Machine Learning

Least Squares Method for regression

- Examples
- The LMS objective
- Gradient descent
- Incremental/stochastic gradient descent

Least Squares Method for regression

- Examples
- The LMS objective
- Gradient descent
- Incremental/stochastic gradient descent

What's the mileage?

Suppose we want to predict the mileage of a car from its weight and age

Weight (x 100 lb)	Age (years) _{X2}	Mileage
X ₁	6	21
31.5	U	
36.2	2	25
43.1	0	18
27.6	2	30

What we want: A function that can predict mileage using x_1 and x_2

Linear regression: The strategy

Predicting continuous values using a linear model

Assumption: The output is a linear function of the inputs

Mileage = $w_0 + w_1 x_1 + w_2 x_2$

Learning: Using the training data to find the *best* possible value of **w**

Prediction: Given the values for x_1 , x_2 for a new car, use the learned **w** to predict the Mileage for the new car

Linear regression: The strategy

Predicting continuous values using a linear model

Assumption: The output is a linear function of the inputs

Mileage = $w_0 + w_1 x_1 + w_2 x_2$

Parameters of the model Also called weights Collectively, a vector

Learning: Using the training data to find the *best* possible value of **w**

Prediction: Given the values for x_1 , x_2 for a new car, use the learned **w** to predict the Mileage for the new car

Linear regression: The strategy

- Inputs are vectors: $\mathbf{x} \in \mathbb{R}^d$
- Outputs are real numbers: $y \in \Re$
- We have a training set
 D = { (x₁, y₁), (x₂, y₂), … }

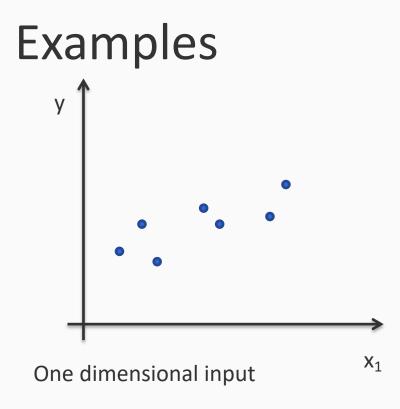
For simplicity, we will assume that the first feature is always 1.

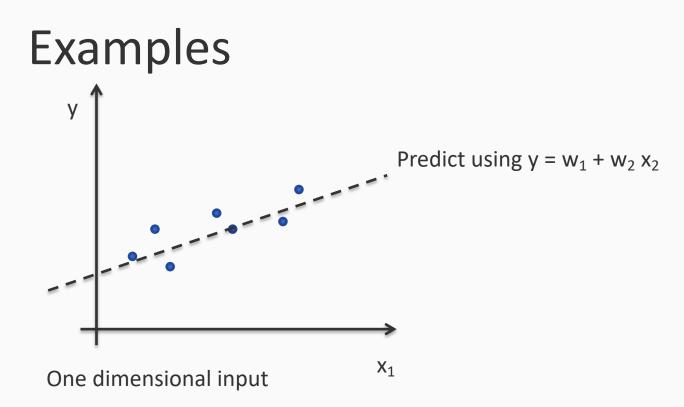
$$\mathbf{x} = \begin{bmatrix} 1 \\ x_2 \\ \vdots \\ x_d \end{bmatrix}$$

This lets makes notation easier

• We want to approximate y as $y = w_1 + w_2 x_2 + \dots + w_d x_d$ $y = \mathbf{w}^T \mathbf{x}$

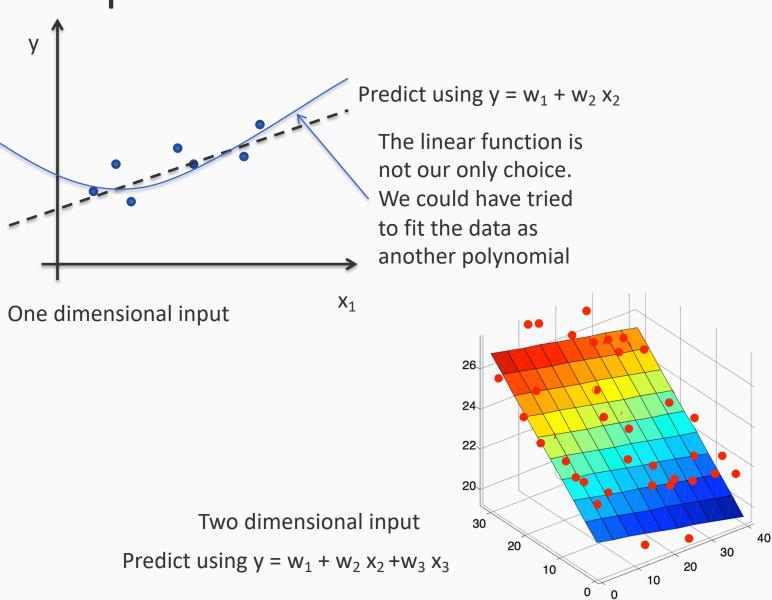
w is the learned weight vector in \Re^d





Examples y Predict using $y = w_1 + w_2 x_2$ The linear function is not our only choice. We could have tried -to fit the data as another polynomial **X**₁ One dimensional input

Examples



Least Squares Method for regression

- Examples
- The LMS objective
- Gradient descent
- Incremental/stochastic gradient descent

Question: How do we know which weight vector is the *best* one for a training set?

Question: How do we know which weight vector is the *best* one for a training set?

For an input (\mathbf{x}_i, y_i) in the training set, the *cost* of a mistake is

$$\left|y_i - \mathbf{w}^T \mathbf{x}_i\right|$$

Question: How do we know which weight vector is the *best* one for a training set?

For an input (\mathbf{x}_i, y_i) in the training set, the *cost* of a mistake is

$$\left|y_{i}-\mathbf{w}^{T}\mathbf{x}_{i}\right|$$

Define the cost (or *loss*) for a particular weight vector **w** to be

$$J(\mathbf{w}) = \frac{1}{2} \sum_{i=1}^{m} \left(y_i - \mathbf{w}^T \mathbf{x}_i \right)^2$$

Question: How do we know which weight vector is the *best* one for a training set?

For an input (\mathbf{x}_i, y_i) in the training set, the *cost* of a mistake is

$$\left|y_{i}-\mathbf{w}^{T}\mathbf{x}_{i}\right|$$

Define the cost (or *loss*) for a particular weight vector **w** to be

$$J(\mathbf{w}) = \frac{1}{2} \sum_{i=1}^{m} \left(y_i - \mathbf{w}^T \mathbf{x}_i \right)^2$$

Sum of squared costs over the training set

Question: How do we know which weight vector is the *best* one for a training set?

For an input (\mathbf{x}_i, y_i) in the training set, the *cost* of a mistake is

$$\left|y_i - \mathbf{w}^T \mathbf{x}_i\right|$$

Define the cost (or *loss*) for a particular weight vector **w** to be

$$J(\mathbf{w}) = \frac{1}{2} \sum_{i=1}^{m} \left(y_i - \mathbf{w}^T \mathbf{x}_i \right)^2$$

Sum of squared costs over the training set

One strategy for learning: Find the w with least cost on this data

Least Mean Squares (LMS) Regression

 $\min_{\mathbf{w}} \frac{1}{2} \sum_{i=1}^{\infty} \left(y_i - \mathbf{w}^T \mathbf{x}_i \right)^2$ Learning: minimizing mean squared error

Least Mean Squares (LMS) Regression

 $\min_{\mathbf{w}} \frac{1}{2} \sum_{i=1}^{N} \left(y_i - \mathbf{w}^T \mathbf{x}_i \right)^2$ Learning: minimizing mean squared error

Different strategies exist for *learning by optimization*

Gradient descent is a popular algorithm

(For this particular minimization objective, there is also an analytical solution. No need for gradient descent)

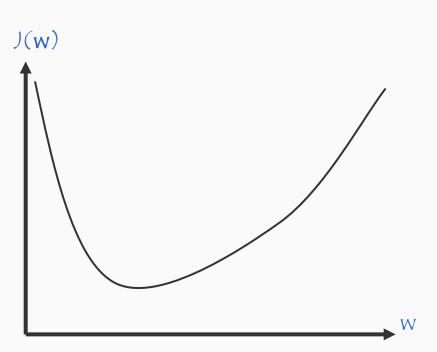
Least Squares Method for regression

- Examples
- The LMS objective
- Gradient descent
- Incremental/stochastic gradient descent

General strategy for minimizing a function J(w)

We are trying to minimize

 $J(\mathbf{w}) = \frac{1}{2} \sum_{i=1}^{m} (y_i - \mathbf{w}^T \mathbf{x}_i)^2$



General strategy for minimizing a function J(w)

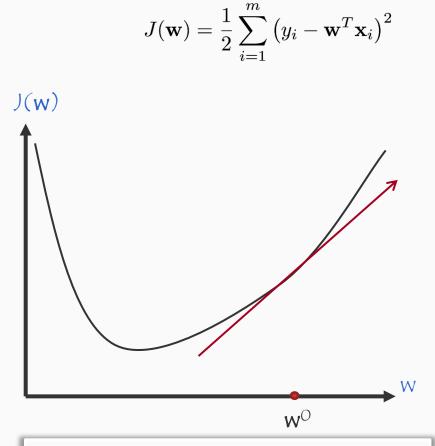
 Start with an initial guess for w, say w⁰ J(w)W w^O

We are trying to minimize

 $J(\mathbf{w}) = \frac{1}{2} \sum_{i=1}^{m} \left(y_i - \mathbf{w}^T \mathbf{x}_i \right)^2$

General strategy for minimizing a function J(w)

 Start with an initial guess for w, say w⁰

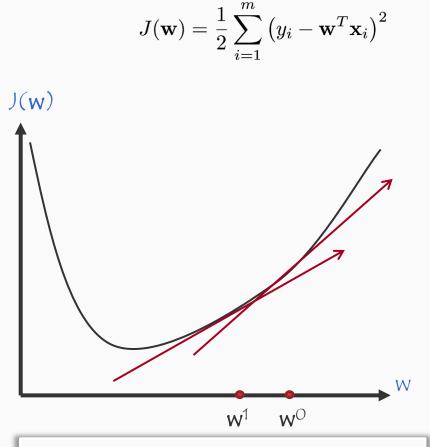


We are trying to minimize

Intuition: The gradient is the direction of steepest increase in the function. To get to the minimum, go in the opposite direction

General strategy for minimizing a function J(w)

- Start with an initial guess for w, say w⁰
- Iterate till convergence:
 - Compute the gradient of the gradient of J at w^t
 - Update w^t to get w^{t+1} by taking a step in the opposite direction of the gradient

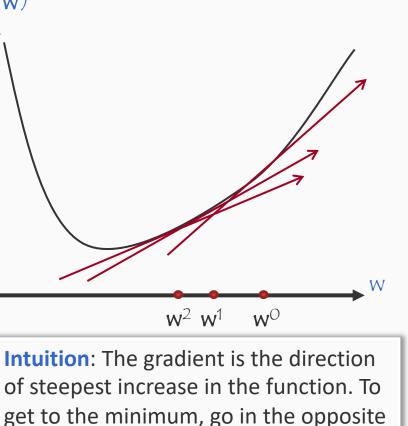


We are trying to minimize

Intuition: The gradient is the direction of steepest increase in the function. To get to the minimum, go in the opposite direction

General strategy for minimizing a function J(w)

- Start with an initial guess for w, say w⁰
- Iterate till convergence:
 - Compute the gradient of the gradient of J at w^t
 - Update w^t to get w^{t+1} by taking a step in the opposite direction of the gradient



 $J(\mathbf{w}) = \frac{1}{2} \sum_{i=1}^{m} (y_i - \mathbf{w}^T \mathbf{x}_i)^2$

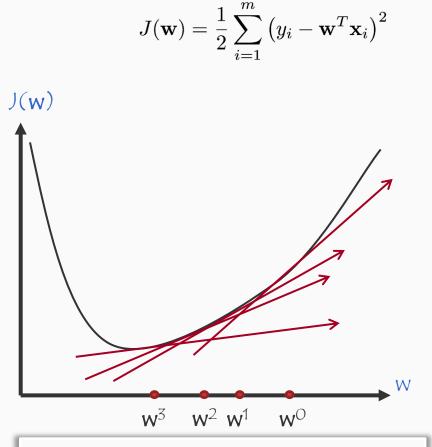
J(w)

direction

We are trying to minimize

General strategy for minimizing a function J(w)

- Start with an initial guess for w, say w⁰
- Iterate till convergence:
 - Compute the gradient of the gradient of J at w^t
 - Update w^t to get w^{t+1} by taking a step in the opposite direction of the gradient

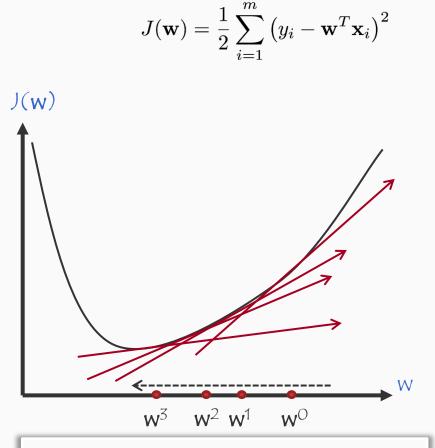


We are trying to minimize

Intuition: The gradient is the direction of steepest increase in the function. To get to the minimum, go in the opposite direction

General strategy for minimizing a function J(w)

- Start with an initial guess for w, say w⁰
- Iterate till convergence:
 - Compute the gradient of the gradient of J at w^t
 - Update w^t to get w^{t+1} by taking a step in the opposite direction of the gradient



We are trying to minimize

Intuition: The gradient is the direction of steepest increase in the function. To get to the minimum, go in the opposite direction

Gradient descent for LMS

$$J(\mathbf{w}) = \frac{1}{2} \sum_{i=1}^{m} \left(y_i - \mathbf{w}^T \mathbf{x}_i \right)^2$$

- 1. Initialize **w**⁰
- 2. For t = 0, 1, 2,
 - 1. Compute gradient of $J(\mathbf{w}^t)$ at \mathbf{w}^t . Call it $\nabla J(\mathbf{w}^t)$
 - 2. Update w as follows:

$$\mathbf{w}^{t+1} = \mathbf{w}^t - r\nabla J(\mathbf{w}^t)$$

r: Called the learning rate

(For now, a small constant. We will get to this later)

Gradient descent for LMS

$$J(\mathbf{w}) = \frac{1}{2} \sum_{i=1}^{m} (y_i - \mathbf{w}^T \mathbf{x}_i)^2$$

- 1. Initialize **w**⁰
- 2. For t = 0, 1, 2, What is the gradient of J?
 - 1. Compute gradient of $J(\mathbf{w}^t)$ at \mathbf{w}^t . Call it $\nabla J(\mathbf{w}^t)$
 - 2. Update w as follows:

$$\mathbf{w}^{t+1} = \mathbf{w}^t - r\nabla J(\mathbf{w}^t)$$

r: Called the learning rate

(For now, a small constant. We will get to this later)

Gradient of the cost

$$J(\mathbf{w}) = \frac{1}{2} \sum_{i=1}^{m} (y_i - \mathbf{w}^T \mathbf{x}_i)^2$$

- The gradient is of the form $\nabla J(\mathbf{w}^t) = \left[\frac{\partial J}{\partial w_1}, \frac{\partial J}{\partial w_2}, \cdots, \frac{\partial J}{\partial w_d}\right]$
- Remember that w is a vector with d elements
 w = [w₁, w₂, w₃, … w_j, …, w_d]

Gradient of the cost

$$J(\mathbf{w}) = \frac{1}{2} \sum_{i=1}^{m} \left(y_i - \mathbf{w}^T \mathbf{x}_i \right)^2$$

$$\frac{\partial J}{\partial w_j} = \frac{\partial}{\partial w_j} \frac{1}{2} \sum_{i=1}^m \left(y_i - \mathbf{w}^T \mathbf{x}_i \right)^2$$

Gradient of the cost

$$J(\mathbf{w}) = \frac{1}{2} \sum_{i=1}^{m} (y_i - \mathbf{w}^T \mathbf{x}_i)^2$$

$$\begin{aligned} \frac{\partial J}{\partial w_j} &= \frac{\partial}{\partial w_j} \frac{1}{2} \sum_{i=1}^m \left(y_i - \mathbf{w}^T \mathbf{x}_i \right)^2 \\ &= \frac{1}{2} \sum_{i=1}^m \frac{\partial}{\partial w_j} \left(y_i - \mathbf{w}^T \mathbf{x}_i \right)^2 \end{aligned}$$

Gradient of the cost

$$J(\mathbf{w}) = \frac{1}{2} \sum_{i=1}^{m} \left(y_i - \mathbf{w}^T \mathbf{x}_i \right)^2$$

$$\begin{aligned} \frac{\partial J}{\partial w_j} &= \frac{\partial}{\partial w_j} \frac{1}{2} \sum_{i=1}^m \left(y_i - \mathbf{w}^T \mathbf{x}_i \right)^2 \\ &= \frac{1}{2} \sum_{i=1}^m \frac{\partial}{\partial w_j} \left(y_i - \mathbf{w}^T \mathbf{x}_i \right)^2 \\ &= \frac{1}{2} \sum_{i=1}^m 2(y_i - \mathbf{w}^T \mathbf{x}_i) \frac{\partial}{\partial w_j} \left(y_i - w_1 x_{i1} - \cdots + w_j x_{ij} - \cdots \right) \end{aligned}$$

Gradient of the cost

$$J(\mathbf{w}) = \frac{1}{2} \sum_{i=1}^{m} \left(y_i - \mathbf{w}^T \mathbf{x}_i \right)^2$$

$$\begin{aligned} \frac{\partial J}{\partial w_j} &= \frac{\partial}{\partial w_j} \frac{1}{2} \sum_{i=1}^m \left(y_i - \mathbf{w}^T \mathbf{x}_i \right)^2 \\ &= \frac{1}{2} \sum_{i=1}^m \frac{\partial}{\partial w_j} \left(y_i - \mathbf{w}^T \mathbf{x}_i \right)^2 \\ &= \frac{1}{2} \sum_{i=1}^m 2(y_i - \mathbf{w}^T \mathbf{x}_i) \frac{\partial}{\partial w_j} \left(y_i - w_1 x_{i1} - \cdots w_j x_{ij} - \cdots \right) \\ &= \frac{1}{2} \sum_{i=1}^m 2(y_i - \mathbf{w}^T \mathbf{x}_i) (-x_{ij}) \end{aligned}$$

Gradient of the cost

$$J(\mathbf{w}) = \frac{1}{2} \sum_{i=1}^{m} \left(y_i - \mathbf{w}^T \mathbf{x}_i \right)^2$$

$$\begin{aligned} \frac{\partial J}{\partial w_j} &= \frac{\partial}{\partial w_j} \frac{1}{2} \sum_{i=1}^m \left(y_i - \mathbf{w}^T \mathbf{x}_i \right)^2 \\ &= \frac{1}{2} \sum_{i=1}^m \frac{\partial}{\partial w_j} \left(y_i - \mathbf{w}^T \mathbf{x}_i \right)^2 \\ &= \frac{1}{2} \sum_{i=1}^m 2(y_i - \mathbf{w}^T \mathbf{x}_i) \frac{\partial}{\partial w_j} \left(y_i - w_1 x_{i1} - \dots w_j x_{ij} - \dots \right) \\ &= \frac{1}{2} \sum_{i=1}^m 2(y_i - \mathbf{w}^T \mathbf{x}_i) (-x_{ij}) \\ &= -\sum_{i=1}^m (y_i - \mathbf{w}^T \mathbf{x}_i) x_{ij} \end{aligned}$$

Gradient of the cost

$$J(\mathbf{w}) = \frac{1}{2} \sum_{i=1}^{m} \left(y_i - \mathbf{w}^T \mathbf{x}_i \right)^2$$

$$\begin{aligned} \frac{\partial J}{\partial w_j} &= \frac{\partial}{\partial w_j} \frac{1}{2} \sum_{i=1}^m \left(y_i - \mathbf{w}^T \mathbf{x}_i \right)^2 \\ &= \frac{1}{2} \sum_{i=1}^m \frac{\partial}{\partial w_j} \left(y_i - \mathbf{w}^T \mathbf{x}_i \right)^2 \\ &= \frac{1}{2} \sum_{i=1}^m 2(y_i - \mathbf{w}^T \mathbf{x}_i) \frac{\partial}{\partial w_j} \left(y_i - w_1 x_{i1} - \dots w_j x_{ij} - \dots \right) \\ &= \frac{1}{2} \sum_{i=1}^m 2(y_i - \mathbf{w}^T \mathbf{x}_i) (-x_{ij}) \\ &= \begin{bmatrix} -\sum_{i=1}^m (y_i - \mathbf{w}^T \mathbf{x}_i) x_{ij} \end{bmatrix} \end{aligned}$$
 One element of the gradient vector

Gradient of the cost

$$J(\mathbf{w}) = \frac{1}{2} \sum_{i=1}^{m} (y_i - \mathbf{w}^T \mathbf{x}_i)^2$$

• The gradient is of the form $\nabla J(\mathbf{w}^t) = \left[\frac{\partial J}{\partial w_1}, \frac{\partial J}{\partial w_2}, \cdots, \frac{\partial J}{\partial w_d}\right]$

$$\frac{\partial J}{\partial w_{j}} = \frac{\partial}{\partial w_{j}} \frac{1}{2} \sum_{i=1}^{m} (y_{i} - \mathbf{w}^{T} \mathbf{x}_{i})^{2}$$

$$= \frac{1}{2} \sum_{i=1}^{m} \frac{\partial}{\partial w_{j}} (y_{i} - \mathbf{w}^{T} \mathbf{x}_{i})^{2}$$

$$= \frac{1}{2} \sum_{i=1}^{m} 2(y_{i} - \mathbf{w}^{T} \mathbf{x}_{i}) \frac{\partial}{\partial w_{j}} (y_{i} - w_{1} x_{i1} - \cdots w_{j} x_{ij} - \cdots)$$

$$= \frac{1}{2} \sum_{i=1}^{m} 2(y_{i} - \mathbf{w}^{T} \mathbf{x}_{i})(-x_{ij})$$
One element of the gradient vector
$$= \underbrace{-\sum_{i=1}^{m} (y_{i} - \mathbf{w}^{T} \mathbf{x}_{i}) x_{ij}}_{\text{Sum of Error } \times \text{ Input}}$$

$$37$$

Gradient descent for LMS

$$J(\mathbf{w}) = \frac{1}{2} \sum_{i=1}^{m} (y_i - \mathbf{w}^T \mathbf{x}_i)^2$$

- 1. Initialize **w**⁰
- 2. For t = 0, 1, 2,
 - 1. Compute gradient of J(w) at w^t . Call it $\nabla J(w^t)$

Evaluate the function for *each* training example to compute the error and construct the gradient vector

$$\frac{\partial J}{\partial w_j} = -\sum_{i=1}^m (y_i - \mathbf{w}^T \mathbf{x}_i) x_{ij}$$

Gradient descent for LMS

$$J(\mathbf{w}) = \frac{1}{2} \sum_{i=1}^{m} (y_i - \mathbf{w}^T \mathbf{x}_i)^2$$

- 1. Initialize **w**⁰
- 2. For t = 0, 1, 2,
 - 1. Compute gradient of J(w) at w^t. Call it $\nabla J(w^t)$

Evaluate the function for *each* training example to compute the error and construct the gradient vector

$$\frac{\partial J}{\partial w_j} = -\sum_{i=1}^m (y_i - \mathbf{w}^T \mathbf{x}_i) x_{ij} \longleftarrow \begin{array}{c} \text{One element} \\ \text{of } \nabla J(w^t) \end{array}$$

Gradient descent for LMS

$$J(\mathbf{w}) = \frac{1}{2} \sum_{i=1}^{m} (y_i - \mathbf{w}^T \mathbf{x}_i)^2$$

- 1. Initialize **w**⁰
- 2. For t = 0, 1, 2,
 - Compute gradient of J(w) at w^t. Call it ∇J(w^t)
 Evaluate the function for *each* training example to compute the error and construct the gradient vector

$$\frac{\partial J}{\partial w_j} = -\sum_{i=1}^m (y_i - \mathbf{w}^T \mathbf{x}_i) x_{ij} \qquad \text{One element} \\ \text{of } \nabla J(w^t) \qquad \text{of } \nabla J(w^t) \qquad \text{One element} \\ \text{of } \nabla J(w^t) \qquad \text{of } \nabla J(w^t) \qquad \text{One element} \\ \text{of } \nabla J(w^t) \qquad \text{of } \nabla$$

2. Update **w** as follows: $\mathbf{w}^{t+1} = \mathbf{w}^t - r\nabla J(\mathbf{w}^t)$

Gradient descent for LMS

$$J(\mathbf{w}) = \frac{1}{2} \sum_{i=1}^{m} (y_i - \mathbf{w}^T \mathbf{x}_i)^2$$

- 1. Initialize **w**⁰
- 2. For t = 0, 1, 2, (until total error is below a threshold)
 - Compute gradient of J(w) at w^t. Call it ∇J(w^t)
 Evaluate the function for *each* training example to compute the error and construct the gradient vector

2. Update **w** as follows: $\mathbf{w}^{t+1} = \mathbf{w}^t - r\nabla J(\mathbf{w}^t)$

Gradient descent for LMS

$$J(\mathbf{w}) = \frac{1}{2} \sum_{i=1}^{m} (y_i - \mathbf{w}^T \mathbf{x}_i)^2$$

- 1. Initialize \mathbf{w}^0
- 2. For t = 0, 1, 2, (until total error is below a threshold)
 - Compute gradient of J(w) at w^t. Call it ∇J(w^t)
 Evaluate the function for *each* training example to compute the error and construct the gradient vector

$$\frac{\partial J}{\partial w_j} = -\sum_{i=1}^m (y_i - \mathbf{w}^T \mathbf{x}_i) x_{ij}$$
 One element of $\nabla J(w^t)$

2. Update **w** as follows: $\mathbf{w}^{t+1} = \mathbf{w}^t - r\nabla J(\mathbf{w}^t)$

r: Called the learning rate

(For now, a small constant. We will get to this later)

Gradient descent for LMS

$$J(\mathbf{w}) = \frac{1}{2} \sum_{i=1}^{m} (y_i - \mathbf{w}^T \mathbf{x}_i)^2$$

- 1. Initialize **w**⁰
- 2. For t = 0, 1, 2, (until total error is below a threshold)
 - Compute gradient of J(w) at w^t. Call it ∇J(w^t)
 Evaluate the function for *each* training example to compute the error and construct the gradient vector

$$\frac{\partial J}{\partial w_j} = -\sum_{i=1}^m (y_i - \mathbf{w}^T \mathbf{x}_i) x_{ij}$$
 One element of $\nabla J(w^t)$

2. Update **w** as follows: $\mathbf{w}^{t+1} = \mathbf{w}^t - r\nabla J(\mathbf{w}^t)$

r: Called the learning rate

(For now, a small constant. We will get to this later)

This algorithm is guaranteed to converge to the minimum of J if r is small enough. Why? The objective J is a *convex* function

Least Squares Method for regression

- Examples
- The LMS objective
- Gradient descent
- Incremental/stochastic gradient descent

Gradient descent for LMS

$$J(\mathbf{w}) = \frac{1}{2} \sum_{i=1}^{m} (y_i - \mathbf{w}^T \mathbf{x}_i)^2$$

- 1. Initialize **w**⁰
- 2. For t = 0, 1, 2, (until total error is below a threshold)
 - Compute gradient of J(w) at w^t. Call it ∇J(w^t)
 Evaluate the function for *each* training example to compute the error and construct the gradient vector

$$\frac{\partial J}{\partial w_j} = -\sum_{i=1}^m (y_i - \mathbf{w}^T \mathbf{x}_i) x_{ij}$$

2. Update **w** as follows: $\mathbf{w}^{t+1} = \mathbf{w}^t - r\nabla J(\mathbf{w}^t)$

Gradient descent for LMS

$$J(\mathbf{w}) = \frac{1}{2} \sum_{i=1}^{m} (y_i - \mathbf{w}^T \mathbf{x}_i)^2$$

- 1. Initialize \mathbf{w}^0
- 2. For t = 0, 1, 2, (until total error is below a threshold)
 - Compute gradient of J(w) at w^t. Call it ∇J(w^t)
 Evaluate the function for *each* training example to compute the error and construct the gradient vector

$$\frac{\partial J}{\partial w_j} = -\sum_{i=1}^m (y_i - \mathbf{w}^T \mathbf{x}_i) x_{ij}$$

2. Update **w** as follows: $\mathbf{w}^{t+1} = \mathbf{w}^t - r\nabla J(\mathbf{w}^t)$

The weight vector is not updated until *all errors are calculated*

Why not make early updates to the weight vector as soon as we encounter errors instead of waiting for a full pass over the data?

- Repeat for each example (**x**_i, y_i)
 - Pretend that the entire training set is represented by this single example
 - Use this example to calculate the gradient and update the model
- Contrast with *batch gradient descent* which makes one update to the weight vector for every pass over the data

- 1. Initialize **w**
- 2. For t = 0, 1, 2, ... (until error below some threshold)
 - For each training example (\mathbf{x}_i, y_i) :
 - Update **w**. For each element of the weight vector (w_i):

$$w_j^{t+1} = w_j^t + r(y_i - \mathbf{w}^T \mathbf{x}_i) x_{ij}$$

- 1. Initialize **w**
- 2. For t = 0, 1, 2, ... (until error below some threshold)
 - For each training example (x_i, y_i):
 - Update **w**. For each element of the weight vector (w_i):

$$w_j^{t+1} = w_j^t + r(y_i - \mathbf{w}^T \mathbf{x}_i) x_{ij}$$

Contrast with the previous method, where the weights are updated only after all examples are processed once

- 1. Initialize w
- 2. For t = 0, 1, 2, ... (until error below some threshold)
 - For each training example (x_i, y_i):
 - Update **w**. For each element of the weight vector (w_i):

$$w_j^{t+1} = w_j^t + r(y_i - \mathbf{w}^T \mathbf{x}_i) x_{ij}$$

This update rule is also called the Widrow-Hoff rule in the neural networks literature

- 1. Initialize w
- 2. For t = 0, 1, 2, ... (until error below some threshold)
 - For each training example (x_i, y_i):
 - Update **w**. For each element of the weight vector (w_i):

$$w_j^{t+1} = w_j^t + r(y_i - \mathbf{w}^T \mathbf{x}_i) x_{ij}$$

This update rule is also called the Widrow-Hoff rule in the neural networks literature

Online/Incremental algorithms are often preferred when the training set is very large

May get close to optimum much faster than the batch version

Learning Rates and Convergence

- In the general (non-separable) case the learning rate *r* must decrease to zero to guarantee convergence
- The learning rate is called the *step size*.
 - More sophisticated algorithms choose the step size automatically and converge faster
- Choosing a better starting point can also have impact
- Gradient descent and its stochastic version are very simple algorithms
 - Yet, almost all the algorithms we will learn in the class can be traced back to gradient decent algorithms for different loss functions and different hypotheses spaces

Linear regression: Summary

- What we want: Predict a real valued output using a feature representation of the input
- Assumption: Output is a linear function of the inputs
- Learning by minimizing total cost
 - Gradient descent and stochastic gradient descent to find the *best* weight vector
 - This particular optimization can be computed directly by framing the problem as a matrix problem

Exercises

- 1. Use the gradient descent algorithms to solve the mileage problem (on paper, or write a small program)
- LMS regression can be solved analytically. Given a dataset
 D = { (x₁, y₁), (x₂, y₂), ···, (x_m, y_m)}, define matrix X and vector Y as follows:

$$X = \begin{bmatrix} \mathbf{x}_1 & \mathbf{x}_2 & \cdots & \mathbf{x}_m \end{bmatrix}_{d \times m} \quad Y = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{bmatrix}_{m \times 1}$$

Show that the optimization problem we saw earlier is equivalent to

$$\min_{\mathbf{w}} \left(X^T \mathbf{w} - Y \right)^T \left(X^T \mathbf{w} - Y \right)$$

This can be solved analytically. Show that the solution w* is

$$\mathbf{w}^* = \left(XX^T\right)^{-1}XY$$

Hint: You have to take the derivative of the objective with respect to the vector **w** and set it to zero.