
Machine Learning

Least Mean Squares Regression

1

Least Squares Method for regression

• Examples

• The LMS objective

• Gradient descent

• Incremental/stochastic gradient descent

2

Least Squares Method for regression

• Examples

• The LMS objective

• Gradient descent

• Incremental/stochastic gradient descent

3

What’s the mileage?

Suppose we want to predict the mileage of a car from
its weight and age

4

Weight
(x 100 lb)

x1

Age
(years)

x2

Mileage

31.5 6 21

36.2 2 25

43.1 0 18

27.6 2 30

What we want: A
function that can
predict mileage
using x1 and x2

Linear regression: The strategy

Assumption: The output is a linear function of the inputs
 Mileage = w0 + w1 x1 + w2 x2

Learning: Using the training data to find the best possible value
of w

Prediction: Given the values for x1, x2 for a new car, use the
learned w to predict the Mileage for the new car

5

Predicting continuous values using a linear model

Linear regression: The strategy

Assumption: The output is a linear function of the inputs
 Mileage = w0 + w1 x1 + w2 x2

Learning: Using the training data to find the best possible value
of w

Prediction: Given the values for x1, x2 for a new car, use the
learned w to predict the Mileage for the new car

6

Parameters of the model
Also called weights
Collectively, a vector

Predicting continuous values using a linear model

Linear regression: The strategy

• Inputs are vectors: 𝐱 ∈ ℜ!

• Outputs are real numbers: 𝑦 ∈ ℜ

• We have a training set
 D = { 𝐱!, 𝑦! , 𝐱", 𝑦" , ⋯ }

• We want to approximate 𝑦 as
𝑦 = 𝑤! + 𝑤"𝑥" +⋯+𝑤#𝑥#

𝑦 = 𝐰$𝐱

7

𝐰 is the learned weight vector in ℜ#

For simplicity, we will assume
that the first feature is always 1.

𝒙 =

1
𝑥!
⋮
𝑥"

This lets makes notation easier

Examples

8

x1

y

One dimensional input

Examples

9

x1

y

Predict using y = w1 + w2 x2

One dimensional input

Examples

10

x1

y

Predict using y = w1 + w2 x2

The linear function is
not our only choice.
We could have tried
to fit the data as
another polynomial

One dimensional input

Examples

11

x1

y

Predict using y = w1 + w2 x2

The linear function is
not our only choice.
We could have tried
to fit the data as
another polynomial

One dimensional input

Two dimensional input

Predict using y = w1 + w2 x2 +w3 x3

Least Squares Method for regression

• Examples

• The LMS objective

• Gradient descent

• Incremental/stochastic gradient descent

12

What is the best weight vector?

Question: How do we know which weight vector is the best one
for a training set?

For an input (xi, yi) in the training set, the cost of a mistake is

Define the cost (or loss) for a particular weight vector w to be

One strategy for learning: Find the w with least cost on this data

13

Sum of squared
costs over the
training set

What is the best weight vector?

Question: How do we know which weight vector is the best one
for a training set?

For an input (xi, yi) in the training set, the cost of a mistake is

Define the cost (or loss) for a particular weight vector w to be

One strategy for learning: Find the w with least cost on this data

14

Sum of squared
costs over the
training set

What is the best weight vector?

Question: How do we know which weight vector is the best one
for a training set?

For an input (xi, yi) in the training set, the cost of a mistake is

Define the cost (or loss) for a particular weight vector w to be

One strategy for learning: Find the w with least cost on this data

15

What is the best weight vector?

Question: How do we know which weight vector is the best one
for a training set?

For an input (xi, yi) in the training set, the cost of a mistake is

Define the cost (or loss) for a particular weight vector w to be

One strategy for learning: Find the w with least cost on this data

16

Sum of squared
costs over the
training set

What is the best weight vector?

Question: How do we know which weight vector is the best one
for a training set?

For an input (xi, yi) in the training set, the cost of a mistake is

Define the cost (or loss) for a particular weight vector w to be

One strategy for learning: Find the w with least cost on this data

17

Sum of squared
costs over the
training set

Least Mean Squares (LMS) Regression

18

Learning: minimizing mean squared error

Least Mean Squares (LMS) Regression

Different strategies exist for learning by optimization
• Gradient descent is a popular algorithm

(For this particular minimization objective, there is also an analytical solution. No
need for gradient descent)

19

Learning: minimizing mean squared error

Least Squares Method for regression

• Examples

• The LMS objective

• Gradient descent

• Incremental/stochastic gradient descent

20

Gradient descent

General strategy for minimizing
a function J(w)

• Start with an initial guess for
w, say w0

• Iterate till convergence:
– Compute the gradient of the

gradient of J at wt

– Update wt to get wt+1 by taking
a step in the opposite direction
of the gradient

21

J(w)

w

We are trying to minimize

Gradient descent

General strategy for minimizing
a function J(w)

• Start with an initial guess for
w, say w0

• Iterate till convergence:
– Compute the gradient of the

gradient of J at wt

– Update wt to get wt+1 by taking
a step in the opposite direction
of the gradient

22

J(w)

w
w0

We are trying to minimize

Gradient descent

General strategy for minimizing
a function J(w)

• Start with an initial guess for
w, say w0

• Iterate till convergence:
– Compute the gradient of the

gradient of J at wt

– Update wt to get wt+1 by taking
a step in the opposite direction
of the gradient

23

J(w)

w
w0

Intuition: The gradient is the direction
of steepest increase in the function. To
get to the minimum, go in the opposite
direction

We are trying to minimize

Gradient descent

General strategy for minimizing
a function J(w)

• Start with an initial guess for
w, say w0

• Iterate till convergence:
– Compute the gradient of the

gradient of J at wt

– Update wt to get wt+1 by taking
a step in the opposite direction
of the gradient

24

J(w)

w
w0w1

Intuition: The gradient is the direction
of steepest increase in the function. To
get to the minimum, go in the opposite
direction

We are trying to minimize

Gradient descent

General strategy for minimizing
a function J(w)

• Start with an initial guess for
w, say w0

• Iterate till convergence:
– Compute the gradient of the

gradient of J at wt

– Update wt to get wt+1 by taking
a step in the opposite direction
of the gradient

25

J(w)

w
w0w1w2

Intuition: The gradient is the direction
of steepest increase in the function. To
get to the minimum, go in the opposite
direction

We are trying to minimize

Gradient descent

General strategy for minimizing
a function J(w)

• Start with an initial guess for
w, say w0

• Iterate till convergence:
– Compute the gradient of the

gradient of J at wt

– Update wt to get wt+1 by taking
a step in the opposite direction
of the gradient

26

J(w)

w
w0w1w2w3

Intuition: The gradient is the direction
of steepest increase in the function. To
get to the minimum, go in the opposite
direction

We are trying to minimize

Gradient descent

General strategy for minimizing
a function J(w)

• Start with an initial guess for
w, say w0

• Iterate till convergence:
– Compute the gradient of the

gradient of J at wt

– Update wt to get wt+1 by taking
a step in the opposite direction
of the gradient

27

J(w)

w
w0w1w2w3

Intuition: The gradient is the direction
of steepest increase in the function. To
get to the minimum, go in the opposite
direction

We are trying to minimize

Gradient descent for LMS

1. Initialize w0

2. For t = 0, 1, 2, ….
1. Compute gradient of 𝐽(𝐰') at 𝐰'. Call it ∇𝐽(𝐰')

2. Update w as follows:

28

r: Called the learning rate
(For now, a small constant. We will get to this later)

We are trying to minimize

Gradient descent for LMS

1. Initialize w0

2. For t = 0, 1, 2, ….
1. Compute gradient of 𝐽(𝐰') at 𝐰'. Call it ∇𝐽(𝐰')

2. Update w as follows:

29

r: Called the learning rate
(For now, a small constant. We will get to this later)

What is the gradient of J?

We are trying to minimize

Gradient of the cost

• The gradient is of the form

• Remember that w is a vector with d elements
– w = [w1, w2, w3, ! wj, !, wd]

30

We are trying to minimize

• The gradient is of the form

31

Gradient of the cost
We are trying to minimize

Gradient of the cost

• The gradient is of the form

32

We are trying to minimize

Gradient of the cost

• The gradient is of the form

33

We are trying to minimize

Gradient of the cost

• The gradient is of the form

34

We are trying to minimize

Gradient of the cost

• The gradient is of the form

35

We are trying to minimize

Gradient of the cost

• The gradient is of the form

36

One element
of the gradient
vector

We are trying to minimize

Gradient of the cost

• The gradient is of the form

37

One element
of the gradient
vector

Error Input×Sum of

We are trying to minimize

Gradient descent for LMS

1. Initialize w0

2. For t = 0, 1, 2, ….
1. Compute gradient of J(w) at wt. Call it ∇𝐽 𝑤'

Evaluate the function for each training example to compute the error
and construct the gradient vector

2. Update w as follows:

38

r: Called the learning rate
(For now, a small constant. We will get to this later)

We are trying to minimize

Gradient descent for LMS

1. Initialize w0

2. For t = 0, 1, 2, ….
1. Compute gradient of J(w) at wt. Call it ∇𝐽 𝑤'

Evaluate the function for each training example to compute the error
and construct the gradient vector

2. Update w as follows:

39

r: Called the learning rate
(For now, a small constant. We will get to this later)

We are trying to minimize

One element
of ∇𝐽 𝑤#

Gradient descent for LMS

1. Initialize w0

2. For t = 0, 1, 2, ….
1. Compute gradient of J(w) at wt. Call it ∇𝐽 𝑤'

Evaluate the function for each training example to compute the error
and construct the gradient vector

2. Update w as follows:

40

r: Called the learning rate
(For now, a small constant. We will get to this later)

We are trying to minimize

One element
of ∇𝐽 𝑤#

Gradient descent for LMS

1. Initialize w0

2. For t = 0, 1, 2, ….
1. Compute gradient of J(w) at wt. Call it ∇𝐽 𝑤'

Evaluate the function for each training example to compute the error
and construct the gradient vector

2. Update w as follows:

41

r: Called the learning rate
(For now, a small constant. We will get to this later)

We are trying to minimize

One element
of ∇𝐽 𝑤#

(until total error is below a threshold)

Gradient descent for LMS

1. Initialize w0

2. For t = 0, 1, 2, ….
1. Compute gradient of J(w) at wt. Call it ∇𝐽 𝑤'

Evaluate the function for each training example to compute the error
and construct the gradient vector

2. Update w as follows:

42

r: Called the learning rate
(For now, a small constant. We will get to this later)

(until total error is below a threshold)

We are trying to minimize

One element
of ∇𝐽 𝑤#

Gradient descent for LMS

1. Initialize w0

2. For t = 0, 1, 2, ….
1. Compute gradient of J(w) at wt. Call it ∇𝐽 𝑤'

Evaluate the function for each training example to compute the error
and construct the gradient vector

2. Update w as follows:

43

r: Called the learning rate
(For now, a small constant. We will get to this later)

(until total error is below a threshold)

This algorithm is guaranteed to converge to the minimum of J if r is small enough.
Why? The objective J is a convex function

We are trying to minimize

One element
of ∇𝐽 𝑤#

Least Squares Method for regression

• Examples

• The LMS objective

• Gradient descent

• Incremental/stochastic gradient descent

44

Gradient descent for LMS

1. Initialize w0

2. For t = 0, 1, 2, ….
1. Compute gradient of J(w) at wt. Call it ∇𝐽 𝑤'

Evaluate the function for each training example to compute the error
and construct the gradient vector

2. Update w as follows:

45

(until total error is below a threshold)

We are trying to minimize

Gradient descent for LMS

1. Initialize w0

2. For t = 0, 1, 2, ….
1. Compute gradient of J(w) at wt. Call it ∇𝐽 𝑤'

Evaluate the function for each training example to compute the error
and construct the gradient vector

2. Update w as follows:

46

(until total error is below a threshold)

The weight vector is not updated until all errors are calculated

Why not make early updates to the weight vector as soon as we encounter
errors instead of waiting for a full pass over the data?

We are trying to minimize

Incremental/Stochastic gradient descent

• Repeat for each example (xi, yi)
– Pretend that the entire training set is represented by this

single example
– Use this example to calculate the gradient and update the

model

• Contrast with batch gradient descent which makes
one update to the weight vector for every pass over
the data

47

Incremental/Stochastic gradient descent

1. Initialize w
2. For t = 0, 1, 2, …. (until error below some threshold)

– For each training example (xi, yi):
• Update w. For each element of the weight vector (wj):

48

Incremental/Stochastic gradient descent

1. Initialize w
2. For t = 0, 1, 2, …. (until error below some threshold)

– For each training example (xi, yi):
• Update w. For each element of the weight vector (wj):

49

Contrast with the previous method, where the
weights are updated only after all examples are
processed once

Incremental/Stochastic gradient descent

1. Initialize w
2. For t = 0, 1, 2, …. (until error below some threshold)

– For each training example (xi, yi):
• Update w. For each element of the weight vector (wj):

50

This update rule is also called the Widrow-Hoff
rule in the neural networks literature

Incremental/Stochastic gradient descent

1. Initialize w
2. For t = 0, 1, 2, …. (until error below some threshold)

– For each training example (xi, yi):
• Update w. For each element of the weight vector (wj):

51

This update rule is also called the Widrow-Hoff
rule in the neural networks literature

Online/Incremental algorithms are often preferred when the training
set is very large

May get close to optimum much faster than the batch version

Learning Rates and Convergence

• In the general (non-separable) case the learning rate r must
decrease to zero to guarantee convergence

• The learning rate is called the step size.
– More sophisticated algorithms choose the step size automatically and

converge faster

• Choosing a better starting point can also have impact

• Gradient descent and its stochastic version are very simple
algorithms
– Yet, almost all the algorithms we will learn in the class can be traced back

to gradient decent algorithms for different loss functions and different
hypotheses spaces

52

Linear regression: Summary

• What we want: Predict a real valued output using a
feature representation of the input

• Assumption: Output is a linear function of the inputs

• Learning by minimizing total cost
– Gradient descent and stochastic gradient descent to find

the best weight vector
– This particular optimization can be computed directly by

framing the problem as a matrix problem

53

Exercises
1. Use the gradient descent algorithms to solve the mileage problem (on

paper, or write a small program)

2. LMS regression can be solved analytically. Given a dataset
 D = { (x1, y1), (x2, y2), !, (xm, ym)}, define matrix X and vector Y as follows:

Show that the optimization problem we saw earlier is equivalent to

This can be solved analytically. Show that the solution w* is

54

Hint: You have to take the derivative of the objective with
respect to the vector w and set it to zero.

