Cross-Validation

Machine Learning

Model selection

Very broadly: Choosing the best model using given data

- What makes a model
 - Features
 - Hyper-parameters that control the hypothesis space
 - Example: depth of a decision tree, neural network architecture, etc.
 - The learning algorithm (which may have its own hyperparameters)
 - Actual model itself
- The learning algorithms we see in this class only find the last one
 - What about the rest?

Model selection strategies

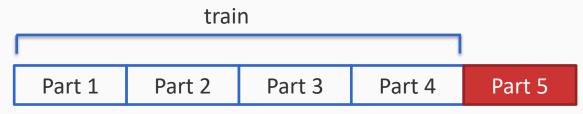
- Many, many different approaches out there
 - (Chapter 7 of Elements of Statistical Learning Theory)

- Minimum description length
- VC dimension and risk minimization
- Cross-validation
- Bayes factor, AIC, BIC,

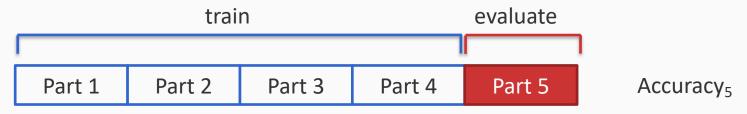
Cross-validation

We want to train a classifier using a given dataset

We know how to train given features and hyperparameters.


How do we know what the best feature set and hyperparameters are?

Given a particular feature set and hyper-parameter setting


1. Split the data into K (say 5 or 10) equal sized parts

Part 1 Part 2	Part 3	Part 4	Part 5
---------------	--------	--------	--------

- 1. Split the data randomly into K (say 5 or 10) equal sized parts
- 2. Train a classifier on four parts and evaluate it on the fifth one

- 1. Split the data randomly into K (say 5 or 10) equal sized parts
- 2. Train a classifier on four parts and evaluate it on the fifth one

- 1. Split the data randomly into K (say 5 or 10) equal sized parts
- 2. Train a classifier on four parts and evaluate it on the fifth one
- 3. Repeat this using each of the K parts as the *validation set*

Part 1	Part 2	Part 3	Part 4	Part 5	Accuracy ₅
Part 1	Part 2	Part 3	Part 4	Part 5	Accuracy ₄
Part 1	Part 2	Part 3	Part 4	Part 5	Accuracy ₃
Part 1	Part 2	Part 3	Part 4	Part 5	Accuracy ₂
Part 1	Part 2	Part 3	Part 4	Part 5	Accuracy _{1₈}

- 1. Split the data randomly into K (say 5 or 10) equal sized parts
- 2. Train a classifier on four parts and evaluate it on the fifth one
- 3. Repeat this using each of the K parts as the *validation set*
- 4. The quality of this feature set/hyper-parameter is the average of these K estimates
 Performance = (accuracy₁ + accuracy₂ + accuracy₃ + accuracy₄ + accuracy₅)/5

- 1. Split the data randomly into K (say 5 or 10) equal sized parts
- 2. Train a classifier on four parts and evaluate it on the fifth one
- 3. Repeat this using each of the K parts as the *validation set*
- 4. The quality of this feature set/hyper-parameter is the average of these K estimates
 Performance = (accuracy₁ + accuracy₂ + accuracy₃ + accuracy₄ + accuracy₅)/5
- 5. Repeat for every feature set/hyper parameter choice

Cross-validation

We want to train a classifier using a given dataset We know how to train given features and hyper-parameters

How do we know what the best feature set and hyperparameters are?

Cross-validation

We want to train a classifier using a given dataset We know how to train given features and hyper-parameters

How do we know what the best feature set and hyperparameters are?

- 1. Evaluate every feature set and hyper-parameter using crossvalidation (could be computationally expensive)
- 2. Pick the best according to cross-validation performance
- 3. Train on full data using this setting