
Naive Bayes and Linear Classifiers

CS 5350/6350: Machine Learining

This note shows that a binary naive Bayes classifier is a linear classifier.
We will denote inputs by d dimensional vectors, x = (x1, x2, · · · , xd)T . (Note that bold face x denotes the

entire feature vector, while each individual feature will be denoted using normal font with the appropriate
subscript.) We will assume that our features xj are all binary (i.e., 0 or 1). Our classifier will predict the
label 1 if P (y = 1|x) ≥ P (y = 0|x). Or equivalently,

P (x|y = 1)P (y = 1)

P (x|y = 0)P (y = 0)
≥ 1 (1)

By the naive Bayes assumption, we have P (x|y) =
∏d

j=0 P (xj |y). This lets us rewrite the condition for
predicting the label 1 from (1) as follows:

P (y = 1)

P (y = 0)
·

d∏
i=0

P (xj |y = 1)

P (xj |y = 0)
≥ 1 (2)

To simplify notation, let us denote P (y = 1) by p, P (xj = 1|y = 1) by aj and P (xj = 1|y = 0) by bj .
Using this notation, we can write

P (xj |y = 1) = a
xj

j (1− aj)
(1−xj)

Note that we can do this because our features are binary and one of xj or 1− xj will be zero. Similarly,

we can write P (xj |y = 0) = b
xj

j (1− bj)
(1−xj).

Using this notation in (2), we get the following equivalent condition for predicting y = 1 :

p

1− p
·

d∏
j=0

a
xj

j (1− aj)
(1−xj)

b
xj

j (1− bj)
(1−xj)

≥ 1 (3)

Collecting the constants together, we get p

1− p

d∏
j=0

1− aj
1− bj

 · d∏
j=0

(
aj
bj
· 1− bj

1− aj

)xj

≥ 1 (4)

Taking log,

log

 p

1− p

d∏
j=0

1− aj
1− bj

+

d∑
j=0

xj log

(
aj
bj
· 1− bj

1− aj

)
≥ 0 (5)

For any input x, the first term in this summation is a constant because it does not have any xj terms.

Let us denote it by b = log
(

p
1−p

∏d
j=0

1−aj

1−bj

)
. Further, let us denote log

(
aj

bj
· 1−bj
1−aj

)
by wj . Substituting

these, we get the familiar expression

b +

d∑
j=0

xjwj ≥ 0 (6)

Recall that we obtained this condition for predicting that the label is 1. This means that our classifier is
a linear classifier.
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Exercise Suppose the input variables were not binary. This means that P (xj |y) have to be defined using
a probability density functions, one for each value of y and j. Suppose these were Gaussian. Show that the
decision boundary is still linear.
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