Naive Bayes and Linear Classifiers

CS 5350/6350: Machine Learining

This note shows that a binary naive Bayes classifier is a linear classifier.
We will denote inputs by d dimensional vectors, x = (x1, 2, ,24)7. (Note that bold face x denotes the
entire feature vector, while each individual feature will be denoted using normal font with the appropriate

subscript.) We will assume that our features z; are all binary (i.e., 0 or 1). Our classifier will predict the
label 1 if P(y = 1|x) > P(y = 0|x). Or equivalently,

P(xly=1)P(y=1)
P(xly = 0)P(y=0) ~ o

By the naive Bayes assumption, we have P(x|y) = H?:o P(zjly). This lets us rewrite the condition for
predicting the label 1 from (1) as follows:

iEyZ )_Hi(mj\yil)zl (2)

To simplify notation, let us denote P(y = 1) by p, P(x; = 1|y = 1) by a; and P(z; = 1|y = 0) by b;.
Using this notation, we can write

Plajly = 1) = aj’ (1—a,)" ™)

Note that we can do this because our features are binary and one of x; or 1 — z; will be zero. Similarly,
we can write P(z;|y = 0) = b7 (1 - bj)(l_xj).

Using this notation in (2), we get the following equivalent condition for predicting y =1 :
d a;j (1— aj)(lfwj)

" 11 >1 (3)
1—p iz b;cj (1— bj)(l—xj)

Collecting the constants together, we get

p rl—q ¢ la; 1—b;\"
7 1. A >1 4
1—p;,l;IOl—bj H(b] ) - ()

ot 1—a;
Taking log,
d d
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For any input x, the first term in this summation is a constant because it does not have any z; terms.

Let us denote it by b = log (ﬁ H?:o i:‘;j) Further, let us denote log (‘Z—j . 1:21) by w;. Substituting
these, we get the familiar expression

d
7=0

Recall that we obtained this condition for predicting that the label is 1. This means that our classifier is
a linear classifier.



Exercise Suppose the input variables were not binary. This means that P(z;|y) have to be defined using
a probability density functions, one for each value of y and j. Suppose these were Gaussian. Show that the
decision boundary is still linear.



