
Machine Learning

Neural Networks: Prediction 
(i.e. the forward pass)
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Based on slides and material from Geoffrey Hinton, Richard Socher, Dan Roth, 
Yoav Goldberg, Shai Shalev-Shwartz and Shai Ben-David, and others



Neural Networks

• What is a neural network?

• Predicting with a neural network

• Training neural networks

• Practical concerns
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This lecture

• What is a neural network?

• Predicting with a neural network

• Training neural networks

• Practical concerns
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Let us consider an example network
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We will use this example network 
as to introduce the general 
principle of how to make 
predictions with a neural network. 

output



Let us consider an example network
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Naming conventions for this 
example
• Inputs: x
• Hidden: z
• Output: y𝑦

𝑧! 𝑧"1

𝑥! 𝑥"1

output



Let us consider an example network
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Bias feature, 
always 1

𝑦

𝑧! 𝑧"1

𝑥! 𝑥"1

output Naming conventions for this 
example
• Inputs: x
• Hidden: z
• Output: y



Let us consider an example network
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Sigmoid activations

𝑦

𝑧! 𝑧"1

𝑥! 𝑥"1

output

Bias feature, 
always 1

Naming conventions for this 
example
• Inputs: x
• Hidden: z
• Output: y



Let us consider an example network
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Sigmoid activations

𝑦

𝑧! 𝑧"1

𝑥! 𝑥"1

output

Bias feature, 
always 1

Naming conventions for this 
example
• Inputs: x
• Hidden: z
• Output: y

Linear activation



Let us consider an example network
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𝑦

𝑧! 𝑧"1

𝑥! 𝑥"1

𝑤"!#$%𝑤!!#$%𝑤&!#$%

𝑤""'
𝑤&!'

output
Naming Convention for Weights
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Let us consider an example network
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Naming Convention for Weights

𝑤&!#$%
From neuron #0 
to neuron #1 in 

output layer

𝑤()*+,-*
-.)/0-&1.20)

𝑤""'

𝑦

𝑧! 𝑧"1

𝑥! 𝑥"1

output

𝑤"!#$%𝑤!!#$%𝑤&!#$%

𝑤&!'



How to predict: The forward pass
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Given an input x, how is the output predicted

𝑦

𝑧! 𝑧"1

𝑥! 𝑥"1

output

𝑤"!#$%𝑤!!#$%𝑤&!#$%

𝑤&!' 𝑤""'



The forward pass
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Given an input x, how is the output predicted

𝑦

𝑧! 𝑧"1

𝑥! 𝑥"1

𝑤"!#$%𝑤!!#$%𝑤&!#$%

𝑤&!'

z! = 𝜎(𝑤"!# +𝑤!!# 𝑥! +𝑤$!# 𝑥$)

output

𝑤""'



The forward pass
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Given an input x, how is the output predictedoutput

𝑦

𝑧! 𝑧"1

𝑥! 𝑥"1

𝑤"!#$%𝑤!!#$%𝑤&!#$%

𝑤&!' 𝑤""'

z! = 𝜎(𝑤"!# +𝑤!!# 𝑥! +𝑤$!# 𝑥$)

𝑧$ = 𝜎(𝑤"$# +𝑤!$# 𝑥! +𝑤$$# 𝑥$)



The forward pass
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Given an input x, how is the output predictedoutput

𝑦

𝑧! 𝑧"1

𝑥! 𝑥"1

𝑤"!#$%𝑤!!#$%𝑤&!#$%

𝑤&!' 𝑤""'

z! = 𝜎(𝑤"!# +𝑤!!# 𝑥! +𝑤$!# 𝑥$)

𝑧$ = 𝜎(𝑤"$# +𝑤!$# 𝑥! +𝑤$$# 𝑥$)

y = 𝑤"!% +𝑤!!% 𝑧! +𝑤$!% 𝑧$output



The forward pass
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Given an input x, how is the output predictedoutput

𝑦

𝑧! 𝑧"1

𝑥! 𝑥"1

𝑤!!#$%𝑤&!#$%

𝑤&!' 𝑤""'

z! = 𝜎(𝑤"!# +𝑤!!# 𝑥! +𝑤$!# 𝑥$)

𝑧$ = 𝜎(𝑤"$# +𝑤!$# 𝑥! +𝑤$$# 𝑥$)

y = 𝑤"!% +𝑤!!% 𝑧! +𝑤$!% 𝑧$output



The forward pass
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Given an input x, how is the output predicted

z! = 𝜎(𝑤"!# +𝑤!!# 𝑥! +𝑤$!# 𝑥$)

𝑧$ = 𝜎(𝑤"$# +𝑤!$# 𝑥! +𝑤$$# 𝑥$)

y = 𝑤"!% +𝑤!!% 𝑧! +𝑤$!% 𝑧$output
𝑦

𝑧! 𝑧"1

𝑥! 𝑥"1

𝑤"!#$%𝑤!!#$%𝑤&!#$%

𝑤""'
𝑤&!'

output

In general, before visiting (i.e. computing) the value 
of a node, visit all nodes that serve as inputs to it.



The forward pass
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Given an input x, how is the output predicted

z! = 𝜎(𝑤"!# +𝑤!!# 𝑥! +𝑤$!# 𝑥$)

𝑧$ = 𝜎(𝑤"$# +𝑤!$# 𝑥! +𝑤$$# 𝑥$)

y = 𝑤"!% +𝑤!!% 𝑧! +𝑤$!% 𝑧$output

In general, before visiting (i.e. computing) the value 
of a node, visit all nodes that serve as inputs to it.

𝑦

𝑧! 𝑧"1

𝑥! 𝑥"1

𝑤"!#$%𝑤!!#$%𝑤&!#$%

𝑤""'
𝑤&!'

output

Questions?



A notational convenience

Commonly nodes in the networks represent not only single numbers (e.g. 
features, outputs) but also entire vectors (an array of numbers), matrices (a 2d array 
of numbers) or tensors (an n-dimensional array of numbers).
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A notational convenience

Commonly nodes in the networks represent not only single numbers (e.g. 
features, outputs) but also entire vectors (an array of numbers), matrices (a 2d array 
of numbers) or tensors (an n-dimensional array of numbers).
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𝐱
Represents [𝑥!, 𝑥", 𝑥#]



A notational convenience

Commonly nodes in the networks represent not only single numbers (e.g. 
features, outputs) but also entire vectors (an array of numbers), matrices (a 2d array 
of numbers) or tensors (an n-dimensional array of numbers).
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𝐱

𝐳

𝐖$ =
𝑤!"$ 𝑤""$ 𝑤#"$

𝑤!#$ 𝑤"#$ 𝑤##$



A notational convenience

Commonly nodes in the networks represent not only single numbers (e.g. 
features, outputs) but also entire vectors (an array of numbers), matrices (a 2d array 
of numbers) or tensors (an n-dimensional array of numbers).
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𝐱

𝐳

𝐖$

𝒛 = 𝜎 𝐖$𝐱



A notational convenience

Commonly nodes in the networks represent not only single numbers (e.g. 
features, outputs) but also entire vectors (an array of numbers), matrices (a 2d array 
of numbers) or tensors (an n-dimensional array of numbers).
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𝐱

𝐳

𝐖$

𝒛 = 𝜎 𝐖$𝐱

Each element of 𝐳 is 𝑧%, 
and is generated by the 
sigmoid activation to 
each element of 𝐖$𝐱.



A notational convenience

Commonly nodes in the networks represent not only single numbers (e.g. 
features, outputs) but also entire vectors (an array of numbers), matrices (a 2d array 
of numbers) or tensors (an n-dimensional array of numbers).
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𝐱

𝐳

𝑦

𝐖$

𝐰& = 𝑤!"& , 𝑤""& , 𝑤#"&

𝒛 = 𝜎 𝐖$𝐱



A notational convenience

Commonly nodes in the networks represent not only single numbers (e.g. 
features, outputs) but also entire vectors (an array of numbers), matrices (a 2d array 
of numbers) or tensors (an n-dimensional array of numbers).
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𝐱

𝐳

𝑦

𝐖$

𝐰&

𝑦 = 𝐰&𝐳

𝒛 = 𝜎 𝐖$𝐱



A notational convenience

Commonly nodes in the networks represent not only single numbers (e.g. 
features, outputs) but also entire vectors (an array of numbers), matrices (a 2d array 
of numbers) or tensors (an n-dimensional array of numbers).
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𝐱

𝐳

𝑦

𝐖$

𝐰&

𝑦 = 𝐰&𝐳

𝒛 = 𝜎 𝐖$𝐱

No activation because the 
output is defined to be linear



Side note: Why tensors?

The notational convenience allows us to:

1. Build complicated neural network architectures 
without the cognitive load

2. Write code that operates on vectors, matrices, 
tensors directly

3. Design and use accelerators for matrix algebra (e.g. 
GPUs)
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