
Machine Learning

Neural Networks: Prediction
(i.e. the forward pass)

1
Based on slides and material from Geoffrey Hinton, Richard Socher, Dan Roth,
Yoav Goldberg, Shai Shalev-Shwartz and Shai Ben-David, and others

Neural Networks

• What is a neural network?

• Predicting with a neural network

• Training neural networks

• Practical concerns

2

This lecture

• What is a neural network?

• Predicting with a neural network

• Training neural networks

• Practical concerns

3

Let us consider an example network

4

We will use this example network
as to introduce the general
principle of how to make
predictions with a neural network.

output

Let us consider an example network

5

Naming conventions for this
example
• Inputs: x
• Hidden: z
• Output: y𝑦

𝑧! 𝑧"1

𝑥! 𝑥"1

output

Let us consider an example network

6

Bias feature,
always 1

𝑦

𝑧! 𝑧"1

𝑥! 𝑥"1

output Naming conventions for this
example
• Inputs: x
• Hidden: z
• Output: y

Let us consider an example network

7

Sigmoid activations

𝑦

𝑧! 𝑧"1

𝑥! 𝑥"1

output

Bias feature,
always 1

Naming conventions for this
example
• Inputs: x
• Hidden: z
• Output: y

Let us consider an example network

8

Sigmoid activations

𝑦

𝑧! 𝑧"1

𝑥! 𝑥"1

output

Bias feature,
always 1

Naming conventions for this
example
• Inputs: x
• Hidden: z
• Output: y

Linear activation

Let us consider an example network

9

𝑦

𝑧! 𝑧"1

𝑥! 𝑥"1

𝑤"!#$%𝑤!!#$%𝑤&!#$%

𝑤""'
𝑤&!'

output
Naming Convention for Weights

𝑤()*+,-*
-.)/0-&1.20)

Let us consider an example network

10

Naming Convention for Weights

𝑤&!#$%
From neuron #0
to neuron #1 in

output layer

𝑤()*+,-*
-.)/0-&1.20)

𝑤""'

𝑦

𝑧! 𝑧"1

𝑥! 𝑥"1

output

𝑤"!#$%𝑤!!#$%𝑤&!#$%

𝑤&!'

How to predict: The forward pass

11

Given an input x, how is the output predicted

𝑦

𝑧! 𝑧"1

𝑥! 𝑥"1

output

𝑤"!#$%𝑤!!#$%𝑤&!#$%

𝑤&!' 𝑤""'

The forward pass

12

Given an input x, how is the output predicted

𝑦

𝑧! 𝑧"1

𝑥! 𝑥"1

𝑤"!#$%𝑤!!#$%𝑤&!#$%

𝑤&!'

z! = 𝜎(𝑤"!# +𝑤!!# 𝑥! +𝑤$!# 𝑥$)

output

𝑤""'

The forward pass

13

Given an input x, how is the output predictedoutput

𝑦

𝑧! 𝑧"1

𝑥! 𝑥"1

𝑤"!#$%𝑤!!#$%𝑤&!#$%

𝑤&!' 𝑤""'

z! = 𝜎(𝑤"!# +𝑤!!# 𝑥! +𝑤$!# 𝑥$)

𝑧$ = 𝜎(𝑤"$# +𝑤!$# 𝑥! +𝑤$$# 𝑥$)

The forward pass

14

Given an input x, how is the output predictedoutput

𝑦

𝑧! 𝑧"1

𝑥! 𝑥"1

𝑤"!#$%𝑤!!#$%𝑤&!#$%

𝑤&!' 𝑤""'

z! = 𝜎(𝑤"!# +𝑤!!# 𝑥! +𝑤$!# 𝑥$)

𝑧$ = 𝜎(𝑤"$# +𝑤!$# 𝑥! +𝑤$$# 𝑥$)

y = 𝑤"!% +𝑤!!% 𝑧! +𝑤$!% 𝑧$output

The forward pass

15

Given an input x, how is the output predictedoutput

𝑦

𝑧! 𝑧"1

𝑥! 𝑥"1

𝑤!!#$%𝑤&!#$%

𝑤&!' 𝑤""'

z! = 𝜎(𝑤"!# +𝑤!!# 𝑥! +𝑤$!# 𝑥$)

𝑧$ = 𝜎(𝑤"$# +𝑤!$# 𝑥! +𝑤$$# 𝑥$)

y = 𝑤"!% +𝑤!!% 𝑧! +𝑤$!% 𝑧$output

The forward pass

16

Given an input x, how is the output predicted

z! = 𝜎(𝑤"!# +𝑤!!# 𝑥! +𝑤$!# 𝑥$)

𝑧$ = 𝜎(𝑤"$# +𝑤!$# 𝑥! +𝑤$$# 𝑥$)

y = 𝑤"!% +𝑤!!% 𝑧! +𝑤$!% 𝑧$output
𝑦

𝑧! 𝑧"1

𝑥! 𝑥"1

𝑤"!#$%𝑤!!#$%𝑤&!#$%

𝑤""'
𝑤&!'

output

In general, before visiting (i.e. computing) the value
of a node, visit all nodes that serve as inputs to it.

The forward pass

17

Given an input x, how is the output predicted

z! = 𝜎(𝑤"!# +𝑤!!# 𝑥! +𝑤$!# 𝑥$)

𝑧$ = 𝜎(𝑤"$# +𝑤!$# 𝑥! +𝑤$$# 𝑥$)

y = 𝑤"!% +𝑤!!% 𝑧! +𝑤$!% 𝑧$output

In general, before visiting (i.e. computing) the value
of a node, visit all nodes that serve as inputs to it.

𝑦

𝑧! 𝑧"1

𝑥! 𝑥"1

𝑤"!#$%𝑤!!#$%𝑤&!#$%

𝑤""'
𝑤&!'

output

Questions?

A notational convenience

Commonly nodes in the networks represent not only single numbers (e.g.
features, outputs) but also entire vectors (an array of numbers), matrices (a 2d array
of numbers) or tensors (an n-dimensional array of numbers).

18

A notational convenience

Commonly nodes in the networks represent not only single numbers (e.g.
features, outputs) but also entire vectors (an array of numbers), matrices (a 2d array
of numbers) or tensors (an n-dimensional array of numbers).

19

𝐱
Represents [𝑥!, 𝑥", 𝑥#]

A notational convenience

Commonly nodes in the networks represent not only single numbers (e.g.
features, outputs) but also entire vectors (an array of numbers), matrices (a 2d array
of numbers) or tensors (an n-dimensional array of numbers).

20

𝐱

𝐳

𝐖$ =
𝑤!"$ 𝑤""$ 𝑤#"$

𝑤!#$ 𝑤"#$ 𝑤##$

A notational convenience

Commonly nodes in the networks represent not only single numbers (e.g.
features, outputs) but also entire vectors (an array of numbers), matrices (a 2d array
of numbers) or tensors (an n-dimensional array of numbers).

21

𝐱

𝐳

𝐖$

𝒛 = 𝜎 𝐖$𝐱

A notational convenience

Commonly nodes in the networks represent not only single numbers (e.g.
features, outputs) but also entire vectors (an array of numbers), matrices (a 2d array
of numbers) or tensors (an n-dimensional array of numbers).

22

𝐱

𝐳

𝐖$

𝒛 = 𝜎 𝐖$𝐱

Each element of 𝐳 is 𝑧%,
and is generated by the
sigmoid activation to
each element of 𝐖$𝐱.

A notational convenience

Commonly nodes in the networks represent not only single numbers (e.g.
features, outputs) but also entire vectors (an array of numbers), matrices (a 2d array
of numbers) or tensors (an n-dimensional array of numbers).

23

𝐱

𝐳

𝑦

𝐖$

𝐰& = 𝑤!"& , 𝑤""& , 𝑤#"&

𝒛 = 𝜎 𝐖$𝐱

A notational convenience

Commonly nodes in the networks represent not only single numbers (e.g.
features, outputs) but also entire vectors (an array of numbers), matrices (a 2d array
of numbers) or tensors (an n-dimensional array of numbers).

24

𝐱

𝐳

𝑦

𝐖$

𝐰&

𝑦 = 𝐰&𝐳

𝒛 = 𝜎 𝐖$𝐱

A notational convenience

Commonly nodes in the networks represent not only single numbers (e.g.
features, outputs) but also entire vectors (an array of numbers), matrices (a 2d array
of numbers) or tensors (an n-dimensional array of numbers).

25

𝐱

𝐳

𝑦

𝐖$

𝐰&

𝑦 = 𝐰&𝐳

𝒛 = 𝜎 𝐖$𝐱

No activation because the
output is defined to be linear

Side note: Why tensors?

The notational convenience allows us to:

1. Build complicated neural network architectures
without the cognitive load

2. Write code that operates on vectors, matrices,
tensors directly

3. Design and use accelerators for matrix algebra (e.g.
GPUs)

26

