
Machine Learning

Neural Networks: Practical Concerns
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Based on slides and material from Geoffrey Hinton, Richard Socher, Dan Roth, 
Yoav Goldberg, Shai Shalev-Shwartz and Shai Ben-David, and others



Neural Networks

• What is a neural network?

• Predicting with a neural network

• Training neural networks

• Practical concerns
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Training neural networks with SGD

• No guarantee of convergence, may oscillate or reach a local minima

• In practice, many large networks are trained on large amounts of data for 
realistic problems
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Training neural networks with SGD

• No guarantee of convergence, may oscillate or reach a local minima

• In practice, many large networks are trained on large amounts of data for 
realistic problems

• Many epochs (sometimes thousands) may be needed for adequate training
– Large data sets may require hours/days/weeks of CPU or GPU time!
– Sometimes specialized hardware even

• Termination criteria: Number of epochs,  Threshold on training set error, No 
decrease in error, Increased error on a validation set

• To avoid local minima: several trials with different random initial weights with 
majority or voting techniques
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Minibatches

• Stochastic gradient descent:
– Take a random example at each step
– Write down the loss function with that example
– Compute gradient this loss and take a step

Why should we take only one random example at each step?
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Minibatches

• Stochastic gradient descent:
– Take a random example at each step
– Write down the loss function with that example
– Compute gradient this loss and take a step

Why should we take only one random example at each step?

• Stochastic gradient descent with minibatches:
– Collect a small number of random examples (the minibatch) at each step
– Write down the loss function with that example
– Compute gradient this loss and take a step

• New hyperparameter: The size of a minibatch
– Often governs how fast the learning converges
– Hardware considerations around memory could dictate how big the minibatch 

could be 
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Gradient tricks

Simple gradient descent updates the parameters using 
the gradient of one example (or a minibatch of them), 
denoted by 𝑔!

parameters ← parameters	 − 𝜂𝑔!
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When gradients change very fast, this could make learning either slow, or worse, unstable. 

The quality of the model could change drastically based on how many epochs you run



Gradient tricks: Momentum

Instead of updating with the gradient (𝑔!), use a moving average of 
gradients (𝐯!) to update the model parameters

– In the inner loop:
• 𝐯! ← 𝜇𝐯!"# + 𝜂!𝑔!
• parameters ← parameters − 𝐯!
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Gradient tricks: Momentum

Instead of updating with the gradient (𝑔!), use a moving average of 
gradients (𝐯!) to update the model parameters

– In the inner loop:
• 𝐯! ← 𝜇𝐯!"# + 𝜂!𝑔!
• parameters ← parameters − 𝐯!

The hyperparameter 𝜇 controls how much of the previous update 
should be retained. Typical value 𝜇 = 0.9

Momentum smooths out the updates by using a weighted average 
of all previous gradients at each step 20

Update = average of previous 
update 𝐯!"# and the gradient



Gradient tricks: AdaGrad, RMSProp, Adam

• AdaGrad: Each parameter has its own learning rate. If 𝑔$,! is the gradient for the 
𝑖!& parameter at step 𝑡, 

𝑐$ ← 𝑐$ + 𝑔$,!'

parameters$ ← parameters$ −
𝜂

𝛼 + 𝑐$ 	
𝑔$,!
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• RMSProp: Similar to AdaGrad, but more recent gradients are weighted more in the 
denominator 

𝑐$ ← Δ ⋅ 𝑐$ + 1 − Δ ⋅ 𝑔$,!'
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Gradient tricks: AdaGrad, RMSProp, Adam

• AdaGrad: Each parameter has its own learning rate. If 𝑔$,! is the gradient for the 
𝑖!& parameter at step 𝑡, 

𝑐$ ← 𝑐$ + 𝑔$,!'

parameters$ ← parameters$ −
𝜂

𝛼 + 𝑐$ 	
𝑔$,!

• RMSProp: Similar to AdaGrad, but more recent gradients are weighted more in the 
denominator 

𝑐$ ← Δ ⋅ 𝑐$ + 1 − Δ ⋅ 𝑔$,!'

• Adam: A combination of many ideas:
– Momentum to smooth gradients
– RMSProp like approach for adaptively choosing learning rate with more recent 

gradients being weighted higher
– Additional terms to avoid bias introduced during early gradient estimates
– Currently the most commonly used variant of gradient based learning
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Preventing overfitting

• Running too many epochs may over-train the network and result in 
over-fitting

• Keep a hold-out validation set and test accuracy after every epoch

• Maintain weights for best performing network on the validation set 
and return it when performance decreases significantly beyond that

• To avoid losing training data to validation:
– Use k-fold cross-validation to determine the average number of epochs that 

optimizes validation performance
– Train on the full data set using this many epochs to produce the final results
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Avoiding overfitting with Dropout training

• During training, for each step, decide whether to 
delete a hidden unit with some probability p
– That is, make predictions using only a randomly chosen set 

of neurons
– Update only these neurons 

• Tends to avoid overfitting

• Has a model averaging effect
– Only some parameters get trained at any step
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Number of hidden units

• Too few hidden units prevent the system from 
adequately fitting the data and learning the concept.

• Using too many hidden units leads to over-fitting.

• Cross-validation or performance on a held out set 
can  be used to determine an appropriate number of 
hidden units.  
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Neural networks: What we saw

• What is a neural network?
– Multiple layers 

• Inner layers learn a representation of the data

– Highly expressive
• Is this always a good thing? What about the VC dimension? 

Overfitting?

• Training neural networks
– Backpropagation
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What we did not see

Vast area, fast moving
– Many new models, algorithms and tricks for learning that tweak on the 

basic gradient method
– Massively growing models and datasets

Some named neural networks
– Restricted Boltzmann Machines and autoencoders: Learn a latent 

representation of the data 
– Convolutional neural network: Modeled after the mammalian visual 

cortex, currently the state of the art for object recognition tasks
– Recurrent neural networks and Transformers: encode and predict 

sequences
– Attention: Use a neural network to decide what parts of a set of features 

are relevant and create an aggregate “attended” representation
– ...And many many more
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