
Machine Learning

Neural Networks: Practical Concerns

1
Based on slides and material from Geoffrey Hinton, Richard Socher, Dan Roth,
Yoav Goldberg, Shai Shalev-Shwartz and Shai Ben-David, and others

Neural Networks

• What is a neural network?

• Predicting with a neural network

• Training neural networks

• Practical concerns

2

This lecture

• What is a neural network?

• Predicting with a neural network

• Training neural networks

• Practical concerns

3

Training neural networks with SGD

• No guarantee of convergence, may oscillate or reach a local minima

• In practice, many large networks are trained on large amounts of data for
realistic problems

4

Training neural networks with SGD

• No guarantee of convergence, may oscillate or reach a local minima

• In practice, many large networks are trained on large amounts of data for
realistic problems

• Many epochs (sometimes thousands) may be needed for adequate training
– Large data sets may require hours/days/weeks of CPU or GPU time!
– Sometimes specialized hardware even

5

Training neural networks with SGD

• No guarantee of convergence, may oscillate or reach a local minima

• In practice, many large networks are trained on large amounts of data for
realistic problems

• Many epochs (sometimes thousands) may be needed for adequate training
– Large data sets may require hours/days/weeks of CPU or GPU time!
– Sometimes specialized hardware even

• Termination criteria: Number of epochs, Threshold on training set error, No
decrease in error, Increased error on a validation set

6

Training neural networks with SGD

• No guarantee of convergence, may oscillate or reach a local minima

• In practice, many large networks are trained on large amounts of data for
realistic problems

• Many epochs (sometimes thousands) may be needed for adequate training
– Large data sets may require hours/days/weeks of CPU or GPU time!
– Sometimes specialized hardware even

• Termination criteria: Number of epochs, Threshold on training set error, No
decrease in error, Increased error on a validation set

• To avoid local minima: several trials with different random initial weights with
majority or voting techniques

7

Minibatches

• Stochastic gradient descent:
– Take a random example at each step
– Write down the loss function with that example
– Compute gradient this loss and take a step

Why should we take only one random example at each step?

8

Minibatches

• Stochastic gradient descent:
– Take a random example at each step
– Write down the loss function with that example
– Compute gradient this loss and take a step

Why should we take only one random example at each step?

• Stochastic gradient descent with minibatches:
– Collect a small number of random examples (the minibatch) at each step
– Write down the loss function with that example
– Compute gradient this loss and take a step

9

Minibatches

• Stochastic gradient descent:
– Take a random example at each step
– Write down the loss function with that example
– Compute gradient this loss and take a step

Why should we take only one random example at each step?

• Stochastic gradient descent with minibatches:
– Collect a small number of random examples (the minibatch) at each step
– Write down the loss function with that example
– Compute gradient this loss and take a step

• New hyperparameter: The size of a minibatch
– Often governs how fast the learning converges
– Hardware considerations around memory could dictate how big the minibatch

could be
10

Gradient tricks

Simple gradient descent updates the parameters using
the gradient of one example (or a minibatch of them),
denoted by 𝑔!

parameters ← parameters	 − 𝜂𝑔!

11

Gradient tricks

Gradients could change much faster in one direction
than another

12

Gradient tricks

Gradients could change much faster in one direction
than another

13

Gradient tricks

Gradients could change much faster in one direction
than another

14

Gradient tricks

Gradients could change much faster in one direction
than another

15

Gradient tricks

Gradients could change much faster in one direction
than another

16

When gradients change very fast, this could make learning either slow, or worse, unstable.

The quality of the model could change drastically based on how many epochs you run

Gradient tricks: Momentum

Instead of updating with the gradient (𝑔!), use a moving average of
gradients (𝐯!) to update the model parameters

– In the inner loop:
• 𝐯! ← 𝜇𝐯!"# + 𝜂!𝑔!
• parameters ← parameters − 𝐯!

17

Gradient tricks: Momentum

Instead of updating with the gradient (𝑔!), use a moving average of
gradients (𝐯!) to update the model parameters

– In the inner loop:
• 𝐯! ← 𝜇𝐯!"# + 𝜂!𝑔!
• parameters ← parameters − 𝐯!

18

Update = average of previous
update 𝐯!"# and the gradient

Gradient tricks: Momentum

Instead of updating with the gradient (𝑔!), use a moving average of
gradients (𝐯!) to update the model parameters

– In the inner loop:
• 𝐯! ← 𝜇𝐯!"# + 𝜂!𝑔!
• parameters ← parameters − 𝐯!

The hyperparameter 𝜇 controls how much of the previous update
should be retained. Typical value 𝜇 = 0.9

19

Update = average of previous
update 𝐯!"# and the gradient

Gradient tricks: Momentum

Instead of updating with the gradient (𝑔!), use a moving average of
gradients (𝐯!) to update the model parameters

– In the inner loop:
• 𝐯! ← 𝜇𝐯!"# + 𝜂!𝑔!
• parameters ← parameters − 𝐯!

The hyperparameter 𝜇 controls how much of the previous update
should be retained. Typical value 𝜇 = 0.9

Momentum smooths out the updates by using a weighted average
of all previous gradients at each step 20

Update = average of previous
update 𝐯!"# and the gradient

Gradient tricks: AdaGrad, RMSProp, Adam

• AdaGrad: Each parameter has its own learning rate. If 𝑔$,! is the gradient for the
𝑖!& parameter at step 𝑡,

𝑐$ ← 𝑐$ + 𝑔$,!'

parameters$ ← parameters$ −
𝜂

𝛼 + 𝑐$ 	
𝑔$,!

21

Gradient tricks: AdaGrad, RMSProp, Adam

• AdaGrad: Each parameter has its own learning rate. If 𝑔$,! is the gradient for the
𝑖!& parameter at step 𝑡,

𝑐$ ← 𝑐$ + 𝑔$,!'

parameters$ ← parameters$ −
𝜂

𝛼 + 𝑐$ 	
𝑔$,!

• RMSProp: Similar to AdaGrad, but more recent gradients are weighted more in the
denominator

𝑐$ ← Δ ⋅ 𝑐$ + 1 − Δ ⋅ 𝑔$,!'

22

Gradient tricks: AdaGrad, RMSProp, Adam

• AdaGrad: Each parameter has its own learning rate. If 𝑔$,! is the gradient for the
𝑖!& parameter at step 𝑡,

𝑐$ ← 𝑐$ + 𝑔$,!'

parameters$ ← parameters$ −
𝜂

𝛼 + 𝑐$ 	
𝑔$,!

• RMSProp: Similar to AdaGrad, but more recent gradients are weighted more in the
denominator

𝑐$ ← Δ ⋅ 𝑐$ + 1 − Δ ⋅ 𝑔$,!'

• Adam: A combination of many ideas:
– Momentum to smooth gradients
– RMSProp like approach for adaptively choosing learning rate with more recent

gradients being weighted higher
– Additional terms to avoid bias introduced during early gradient estimates
– Currently the most commonly used variant of gradient based learning

23

Preventing overfitting

• Running too many epochs may over-train the network and result in
over-fitting

• Keep a hold-out validation set and test accuracy after every epoch

• Maintain weights for best performing network on the validation set
and return it when performance decreases significantly beyond that

• To avoid losing training data to validation:
– Use k-fold cross-validation to determine the average number of epochs that

optimizes validation performance
– Train on the full data set using this many epochs to produce the final results

24

Preventing overfitting

• Running too many epochs may over-train the network and result in
over-fitting

• Keep a hold-out validation set and test accuracy after every epoch

• Maintain weights for best performing network on the validation set
and return it when performance decreases significantly beyond that

• To avoid losing training data to validation:
– Use k-fold cross-validation to determine the average number of epochs that

optimizes validation performance
– Train on the full data set using this many epochs to produce the final results

25

Preventing overfitting

• Running too many epochs may over-train the network and result in
over-fitting

• Keep a hold-out validation set and test accuracy after every epoch

• Maintain weights for best performing network on the validation set
and return it when performance decreases significantly beyond that

• To avoid losing training data to validation:
– Use k-fold cross-validation to determine the average number of epochs that

optimizes validation performance
– Train on the full data set using this many epochs to produce the final results

26

Preventing overfitting

• Running too many epochs may over-train the network and result in
over-fitting

• Keep a hold-out validation set and test accuracy after every epoch

• Maintain weights for best performing network on the validation set
and return it when performance decreases significantly beyond that

• To avoid losing training data to validation:
– Use k-fold cross-validation to determine the average number of epochs that

optimizes validation performance
– Train on the full data set using this many epochs to produce the final results

27

Avoiding overfitting with Dropout training

• During training, for each step, decide whether to
delete a hidden unit with some probability p
– That is, make predictions using only a randomly chosen set

of neurons
– Update only these neurons

• Tends to avoid overfitting

• Has a model averaging effect
– Only some parameters get trained at any step

28

Hinton et al, 2012

Number of hidden units

• Too few hidden units prevent the system from
adequately fitting the data and learning the concept.

• Using too many hidden units leads to over-fitting.

• Cross-validation or performance on a held out set
can be used to determine an appropriate number of
hidden units.

29

Neural networks: What we saw

• What is a neural network?
– Multiple layers

• Inner layers learn a representation of the data

– Highly expressive
• Is this always a good thing? What about the VC dimension?

Overfitting?

• Training neural networks
– Backpropagation

30

What we did not see

Vast area, fast moving
– Many new models, algorithms and tricks for learning that tweak on the

basic gradient method
– Massively growing models and datasets

Some named neural networks
– Restricted Boltzmann Machines and autoencoders: Learn a latent

representation of the data
– Convolutional neural network: Modeled after the mammalian visual

cortex, currently the state of the art for object recognition tasks
– Recurrent neural networks and Transformers: encode and predict

sequences
– Attention: Use a neural network to decide what parts of a set of features

are relevant and create an aggregate “attended” representation
– ...And many many more

31

