
Machine	Learning

Logistic	Regression
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Where	are	we?

We	have	seen	the	following	ideas
– Linear	models
– Learning	as	loss	minimization
– Bayesian	learning	criteria	(MAP	and	MLE	estimation)
– The	Naïve	Bayes	classifier
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This	lecture

• Logistic	regression

• Connection	to	Naïve	Bayes

• Training	a	logistic	regression	classifier

• Back	to	loss	minimization
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Logistic	Regression:	Setup

• The	setting
– Binary	classification
– Inputs:	Feature	vectors	x 2 <d

– Labels:	y 2 {-1, +1}

• Training	data
– S	=	{(xi, yi)},	m	examples
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Classification,	but…

The	output	y is	discrete	valued	(-1 or 1)

Instead	of	predicting	the	output,	let	us	try	to	predict	P(y	=	1 |	x)

Expand	hypothesis	space	to	functions	whose	output	is	[0-1]
• Original	problem:	<d ! {-1, 1}
• Modified	problem:	<d ! [0-1]
• Effectively	make	the	problem	a	regression	problem

Many	hypothesis	spaces	possible
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The	Sigmoid	function

The	hypothesis	space	for	logistic	regression:	All	
functions	of	the	form

That	is,	a	linear	function,	composed	with	a	sigmoid	
function	(the	logistic	function) ¾

What	is	the	domain	
and	the	range	of	the	
sigmoid	function?

This	is	a	reasonable	choice.	We	will	see	why	later
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The	Sigmoid	function

¾(z)

z

11



The	Sigmoid	function
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What	is	its	derivative	with	respect	to	z?



The	Sigmoid	function
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What	is	its	derivative	with	respect	to	z?



Predicting	probabilities

According	to	the	logistic	regression	model,	we	have
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Note	that	we	are	directly	modeling	
𝑃(𝑦	|	𝑥) rather	than	𝑃(𝑥	|𝑦)	and	𝑃(𝑦)



Predicting	a	label	with	logistic	regression

• Compute	P(y	=1	|	x;	w)

• If	this	is	greater	than	half,	predict	1	else	predict	-1
– What	does	this	correspond	to	in	terms	of	wTx?
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Predicting	a	label	with	logistic	regression

• Compute	P(y	=1	|	x;	w)

• If	this	is	greater	than	half,	predict	1	else	predict	-1
– What	does	this	correspond	to	in	terms	of	wTx?

– Prediction	=	sgn(wTx)
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This	lecture

• Logistic	regression

• Connection	to	Naïve	Bayes

• Training	a	logistic	regression	classifier

• Back	to	loss	minimization
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Naïve	Bayes	and	Logistic	regression

Remember	that	the	naïve	Bayes	decision	is	a	linear	function

Here,	the	P’s	represent	the	Naïve	Bayes	posterior	distribution,	
and	w	can	be	used	to	calculate	the	priors	and	the	likelihoods.

That	is,	𝑃(𝑦	 = 	1	|	𝐰, 𝐱)	is	computed	using
𝑃(𝐱	|	𝑦 = 1,𝐰)	and	𝑃(𝑦 = 1	|	𝐰)
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log
𝑃(𝑦 = −1|𝐱,𝐰)
𝑃(𝑦 = +1|𝐱,𝐰) = 𝐰2𝐱



Naïve	Bayes	and	Logistic	regression

Remember	that	the	naïve	Bayes	decision	is	a	linear	function

But	we	also	know	that	𝑃 𝑦 = +1 𝐱,𝐰 = 1	 − 𝑃(𝑦 = −1|𝐱,𝐰)

23

log
𝑃(𝑦 = −1|𝐱,𝐰)
𝑃(𝑦 = +1|𝐱,𝐰) = 𝐰2𝐱



Naïve	Bayes	and	Logistic	regression

Remember	that	the	naïve	Bayes	decision	is	a	linear	function

But	we	also	know	that	𝑃 𝑦 = +1 𝐱,𝐰 = 1	 − 𝑃(𝑦 = −1|𝐱,𝐰)

Substituting	in	the	above	expression,	we	get
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log
𝑃(𝑦 = −1|𝐱,𝐰)
𝑃(𝑦 = +1|𝐱,𝐰) = 𝐰2𝐱

𝑃 𝑦 = +1 𝐰, 𝐱 = 𝜎 𝐰2𝐱 =
1

1 + exp	(−𝐰2𝐱)
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log
𝑃(𝑦 = −1|𝐱,𝐰)
𝑃(𝑦 = +1|𝐱,𝐰) = 𝐰2𝐱

𝑃 𝑦 = +1 𝐰, 𝐱 = 𝜎 𝐰2𝐱 =
1

1 + exp	(−𝐰2𝐱)

That	is,	both	naïve	Bayes	and	logistic	regression	try	to	
compute	the	same	posterior	distribution	over	the	outputs

Naïve	Bayes	is	a	generative	model.

Logistic	Regression	is	the	discriminative	version.



This	lecture

• Logistic	regression

• Connection	to	Naïve	Bayes

• Training	a	logistic	regression	classifier
– First:	Maximum	likelihood	estimation
– Then:	Adding	priors	à Maximum	a	Posteriori	estimation

• Back	to	loss	minimization
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Maximum	likelihood	estimation		

Let’s	get	back	to	the	problem	of	learning

• Training	data
– S	=	{(xi, yi)},	m	examples

• What	we	want
– Find	a	w such	that	P(S	|	w)	is	maximized
– We	know	that	our	examples	are	drawn	independently	and	
are	identically	distributed	(i.i.d)

– How	do	we	proceed?
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Maximum	likelihood	estimation	
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The	usual	trick:	Convert	products	to	sums	by	taking	log

Recall	that	this	works	only	because	log	is	an	increasing	
function	and	the	maximizer will	not	change

argmax
𝐰

𝑃 𝑆 𝐰 = argmax
𝐰

;𝑃 𝑦< 𝐱<,𝐰)
=

<>?

	



Maximum	likelihood	estimation	

29

Equivalent	to	solving

argmax
𝐰

𝑃 𝑆 𝐰 = argmax
𝐰

;𝑃 𝑦< 𝐱<,𝐰)
=

<>?

	

max
𝐰

@log𝑃 𝑦< 𝐱<, 𝐰)
=

<



Maximum	likelihood	estimation	
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But	(by	definition)	we	know	that

argmax
𝐰

𝑃 𝑆 𝐰 = argmax
𝐰

;𝑃 𝑦< 𝐱<,𝐰)
=

<>?

	

max
𝐰

@log𝑃 𝑦< 𝐱<, 𝐰)
=

<

𝑃 𝑦 𝐰, 𝐱 = 𝜎 𝑦<𝐰2𝐱< =
1

1 + exp	(−𝑦<𝐰2𝐱<)



Maximum	likelihood	estimation	
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argmax
𝐰

𝑃 𝑆 𝐰 = argmax
𝐰

;𝑃 𝑦< 𝐱<,𝐰)
=

<>?

	

max
𝐰

@log𝑃 𝑦< 𝐱<, 𝐰)
=

<

𝑃 𝑦 𝐰, 𝐱 =
1

1 + exp	(−yB𝐰2𝐱<)

Equivalent	to	solving

max
𝐰

@−log(1 + exp	(−𝑦<𝐰2𝐱<)
=

<



Maximum	likelihood	estimation	
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argmax
𝐰

𝑃 𝑆 𝐰 = argmax
𝐰

;𝑃 𝑦< 𝐱<,𝐰)
=

<>?

	

max
𝐰

@log𝑃 𝑦< 𝐱<, 𝐰)
=

<

𝑃 𝑦 𝐰, 𝐱 =
1

1 + exp	(−yB𝐰2𝐱<)

Equivalent	to	solving

The	goal:	Maximum	
likelihood	training	of	a	
discriminative	
probabilistic	classifier	
under	the	logistic	
model	for	the	posterior	
distribution.	

max
𝐰

@−log(1 + exp	(−𝑦<𝐰2𝐱<)
=

<



Maximum	likelihood	estimation	
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argmax
𝐰

𝑃 𝑆 𝐰 = argmax
𝐰

;𝑃 𝑦< 𝐱<,𝐰)
=

<>?

	

max
𝐰

@log𝑃 𝑦< 𝐱<, 𝐰)
=

<

𝑃 𝑦 𝐰, 𝐱 =
1

1 + exp	(−yB𝐰2𝐱<)

Equivalent	to	solving

max
𝐰

@−log(1 + exp	(−𝑦<𝐰2𝐱<)
=

<

Equivalent	to:	Training	a	linear	classifier	by	minimizing	the	logistic	loss.	

The	goal:	Maximum	
likelihood	training	of	a	
discriminative	
probabilistic	classifier	
under	the	logistic	
model	for	the	posterior	
distribution.	



Maximum	a	posteriori	estimation

We	could	also	add	a	prior	on	the	weights

Suppose	each	weight	in	the	weight	vector	is	drawn	
independently	from	the	normal	distribution	with	zero	
mean	and	standard	deviation	𝜎

𝑝 𝐰 =;𝑝(𝑤<)
E

F>?

=;
1

𝜎 2𝜋� exp
−𝑤<J

𝜎J

E

F>?
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MAP	estimation	for	logistic	regression
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𝑝 𝐰 =;𝑝(𝑤<)
E

F>?

=;
1

𝜎 2𝜋� exp
−𝑤<J

𝜎J

E

F>?

Let	us	work	through	this	
procedure	again	to	see	what	
changes



MAP	estimation	for	logistic	regression

36

𝑝 𝐰 =;𝑝(𝑤<)
E

F>?

=;
1

𝜎 2𝜋� exp
−𝑤<J

𝜎J

E

F>?

Let	us	work	through	this	
procedure	again	to	see	what	
changes

What	is	the	goal	of	MAP	estimation?	(In	maximum	likelihood,	we	
maximized	the	likelihood	of	the	data)



MAP	estimation	for	logistic	regression
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𝑝 𝐰 =;𝑝(𝑤<)
E

F>?

=;
1

𝜎 2𝜋� exp
−𝑤<J

𝜎J

E

F>?

What	is	the	goal	of	MAP	estimation?	(In	maximum	likelihood,	we	
maximized	the	likelihood	of	the	data)

To	maximize	the	posterior	probability	of	the	model	given	the	data	(i.e.	to	find	the	
most	probable	model,	given	the	data)

𝑃 𝐰 𝑆 ∝ 𝑃 𝑆 𝐰 𝑃(𝐰)



MAP	estimation	for	logistic	regression
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Learning	by	solving

𝑝 𝐰 =;𝑝(𝑤<)
E

F>?

=;
1

𝜎 2𝜋� exp
−𝑤<J

𝜎J

E

F>?

argmax
𝐰

𝑃(𝐰|𝑆) = argmax
𝐰

𝑃 𝑆 𝐰 𝑃(𝐰)



MAP	estimation	for	logistic	regression
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Learning	by	solving

𝑝 𝐰 =;𝑝(𝑤<)
E

F>?

=;
1

𝜎 2𝜋� exp
−𝑤<J

𝜎J

E

F>?

argmax
𝐰

𝑃 𝑆 𝐰 𝑃(𝐰)

Take	log	to	simplify

max
𝐰

log 𝑃 𝑆 𝐰 + log𝑃(𝐰)



MAP	estimation	for	logistic	regression
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Learning	by	solving

𝑝 𝐰 =;𝑝(𝑤<)
E

F>?

=;
1

𝜎 2𝜋� exp
−𝑤<J

𝜎J

E

F>?

argmax
𝐰

𝑃 𝑆 𝐰 𝑃(𝐰)

Take	log	to	simplify

max
𝐰

log 𝑃 𝑆 𝐰 + log𝑃(𝐰)

We	have	already	expanded	out	the	first	term.

@−log(1 + exp	(−𝑦<𝐰2𝐱<)
=

<



MAP	estimation	for	logistic	regression
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Learning	by	solving

𝑝 𝐰 =;𝑝(𝑤<)
E

F>?

=;
1

𝜎 2𝜋� exp
−𝑤<J

𝜎J

E

F>?

argmax
𝐰

𝑃 𝑆 𝐰 𝑃(𝐰)

Take	log	to	simplify

max
𝐰

log 𝑃 𝑆 𝐰 + log𝑃(𝐰)

@−log(1 + exp	(−𝑦<𝐰2𝐱<)
=

<

+@
−𝑤<J

𝜎J

E

F>?

+ 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑠

Expand	the	log	prior



MAP	estimation	for	logistic	regression
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Learning	by	solving

𝑝 𝐰 =;𝑝(𝑤<)
E

F>?

=;
1

𝜎 2𝜋� exp
−𝑤<J

𝜎J

E

F>?

argmax
𝐰

𝑃 𝑆 𝐰 𝑃(𝐰)

Take	log	to	simplify

max
𝐰

log 𝑃 𝑆 𝐰 + log𝑃(𝐰)

max
𝐰

@−log(1 + exp	(−𝑦<𝐰2𝐱<)
=

<

+@
−𝑤<J

𝜎J

E

F>?

+ 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑠



MAP	estimation	for	logistic	regression
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Learning	by	solving

𝑝 𝐰 =;𝑝(𝑤<)
E

F>?

=;
1

𝜎 2𝜋� exp
−𝑤<J

𝜎J

E

F>?

argmax
𝐰

𝑃 𝑆 𝐰 𝑃(𝐰)

Take	log	to	simplify

max
𝐰

log 𝑃 𝑆 𝐰 + log𝑃(𝐰)

max
𝐰

@−log(1 + exp	(−𝑦<𝐰2𝐱<)
=

<

−
1
𝜎J 𝐰

2𝐰



MAP	estimation	for	logistic	regression
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Learning	by	solving

𝑝 𝐰 =;𝑝(𝑤<)
E

F>?

=;
1

𝜎 2𝜋� exp
−𝑤<J

𝜎J

E

F>?

argmax
𝐰

𝑃 𝑆 𝐰 𝑃(𝐰)

Take	log	to	simplify

max
𝐰

log 𝑃 𝑆 𝐰 + log𝑃(𝐰)

max
𝐰

@−log(1 + exp	(−𝑦<𝐰2𝐱<)
=

<

−
1
𝜎J 𝐰

2𝐰

Maximizing	a	negative	function	is	the	same	as	minimizing	the	function



Learning	a	logistic	regression	classifier

Learning	a	logistic	regression	classifier	is	equivalent	to	
solving

45

min
𝐰
@log(1 + exp	(−𝑦<𝐰2𝐱<)
=

<

+
1
𝜎J 𝐰

2𝐰



Learning	a	logistic	regression	classifier

Learning	a	logistic	regression	classifier	is	equivalent	to	
solving
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Where	have	we	seen	this	before?

min
𝐰
@log(1 + exp	(−𝑦<𝐰2𝐱<)
=

<

+
1
𝜎J 𝐰

2𝐰



Learning	a	logistic	regression	classifier

Learning	a	logistic	regression	classifier	is	equivalent	to	
solving

47

Where	have	we	seen	this	before?

The	first	question	in	the	homework:	Write	down	the	stochastic	gradient	descent	
algorithm	for	this?

Historically,	other	training	algorithms	exist.	In	particular,	you	might	run	into	LBFGS

min
𝐰
@log(1 + exp	(−𝑦<𝐰2𝐱<)
=

<

+
1
𝜎J 𝐰

2𝐰



Logistic	regression	is…

• A	classifier	that	predicts	the	probability	that	the	label	is	
+1	for	a	particular	input

• The	discriminative	counter-part	of	the	naïve	Bayes	
classifier

• A	discriminative	classifier	that	can	be	trained	via	MAP	or	
MLE	estimation

• A	discriminative	classifier	that	minimizes	the	logistic	loss	
over	the	training	set

48



This	lecture

• Logistic	regression

• Connection	to	Naïve	Bayes

• Training	a	logistic	regression	classifier

• Back	to	loss	minimization
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Learning	as	loss	minimization
• The	setup	

– Examples	x drawn	from	a	fixed,	unknown	distribution	D
– Hidden	oracle	classifier	f labels	examples
– We	wish	to	find	a	hypothesis	h that	mimics	f

• The	ideal	situation
– Define	a	function	L that	penalizes	bad	hypotheses
– Learning:	Pick	a	function	h	2 H	to	minimize	expected	loss

• Instead,	minimize	empirical	loss	on	the	training	set

50

But	distribution	D	is	unknown



Empirical	loss	minimization

Learning	=	minimize	empirical	loss	on	the	training	set

51

Is	there	a	problem	here?



Empirical	loss	minimization

Learning	=	minimize	empirical	loss	on	the	training	set

We	need	something	that	biases	the	learner	towards	simpler	
hypotheses
• Achieved	using	a	regularizer,	which	penalizes	complex	

hypotheses

52

Is	there	a	problem	here? Overfitting!	



Regularized	loss	minimization

• Learning:

• With	linear	classifiers:

• What	is	a	loss	function?
– Loss	functions	should	penalize	mistakes
– We	are	minimizing	average	loss	over	the	training	data

• What	is	the	ideal	loss	function	for	classification?

53

(using	l2	regularization)



The	0-1	loss

Penalize	classification	mistakes	between	true	label	y	and	
prediction	y’	

• For	linear	classifiers,	the	prediction	y’	=	sgn(wTx)
– Mistake	if	y	wTx· 0

Minimizing	0-1	loss	is	intractable.	Need	surrogates
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The	loss	function	zoo

Many	loss	functions	exist
– Perceptron	loss

– Hinge	loss	(SVM)

– Exponential	loss	(AdaBoost)

– Logistic	loss	(logistic	regression)
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The	loss	function	zoo
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The	loss	function	zoo
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Zero-one



The	loss	function	zoo
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Hinge:	SVM

Zero-one



The	loss	function	zoo
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Perceptron

Hinge:	SVM

Zero-one



The	loss	function	zoo
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Perceptron

Hinge:	SVM

Exponential:	AdaBoost

Zero-one



The	loss	function	zoo

61

Perceptron

Hinge:	SVM

Logistic	regression

Exponential:	AdaBoost

Zero-one



The	loss	function	zoo
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Zoomed	out



The	loss	function	zoo
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Zoomed	out	even	more


