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Where are we?

We have seen the following ideas
— Linear models
— Learning as loss minimization
— Bayesian learning criteria (MAP and MLE estimation)
— The Naive Bayes classifier



This lecture

* Logistic regression
* Connection to Naive Bayes
* Training a logistic regression classifier

e Back to loss minimization
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Logistic Regression: Setup

 The setting
— Binary classification
— Inputs: Feature vectors x € Jd
— Labels:y € {-1, +1}

* Training data
— S={(x;, ¥;)}, m examples



Classification, but...

The output y is discrete valued (-1 or 1)

Instead of predicting the output, let us try to predict P(y =1 | x)



Classification, but...

The output y is discrete valued (-1 or 1)

Instead of predicting the output, let us try to predict P(y =1 | x)
Expand hypothesis space to functions whose output is [0-1]

* Original problem: 4 — {-1, 1}

* Modified problem: 4 — [0-1]

e Effectively make the problem a regression problem

Many hypothesis spaces possible



The Sigmoid function

The hypothesis space for logistic regression: All
functions of the form
1

() = (W) = )




The Sigmoid function

The hypothesis space for logistic regression: All
functions of the form

hw(x) = o(w'x) = 1+ eXPE—WTX)

That is, a linear function, composed with a sigmoid
function (the logistic function) o

o) :

1 4+ exp(—2)
This is a reasonable choice. We will see why later




The Sigmoid function

The hypothesis space for logistic regression: All
functions of the form

hw(x) = o(w'x) = 1+ eXPE—WTX)

That is, a linear function, composed with a sigmoid
function (the logistic function) o

1 What is the domain
O'(Z) — and the range of the
o 1 _ sigmoid function?
+ exp(—=2

This is a reasonable choice. We will see why later
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The Sigmoid function

()=
D= + exp(—2)
o(2) | 7
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The Sigmoid function

1
14 exp(—2)

a(2)

What is its derivative with respect to z?

do d 1

dz  dz1+exp(—2)




The Sigmoid function

1
14 exp(—2)

a(2)

What is its derivative with respect to z?

do  d 1
dz  dz1+exp(—2)
1
= Tren(-gy )

1 1

B (1 1+ exp(—Z)) 1+ exp(—2)
= 0(2) (1 —o0(z)).



Predicting probabilities

According to the logistic regression model, we have

1
1 4+ exp(—w?!'x)

P(y = 1jx;w) = o(w'x) =

exp(—w?!x)

1 + exp(—w!x)

Ply=—1lx;w) =1—-0o(wlx) =




Predicting probabilities

According to the logistic regression model, we have
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Predicting probabilities

According to the logistic regression model, we have

1
1 4+ exp(—w?!'x)

P(y = 1jx;w) = o(w'x) =

1
Py =—1jxw) =1-o(w'x) = 1 + exp(w'x)




Predicting probabilities

According to the logistic regression model, we have

1
1 4+ exp(—w?!'x)

P(y = 1jx;w) = o(w'x) =

1
Py =—1jxw) =1-o(w'x) = 1 + exp(w'x)

Or equivalently

1
1 + exp(—yw!x)

P(ylx;w) =



Predicting probabilities

According to the logistic regression model, we have

1
1 4+ exp(—w?!'x)

P(y = 1jx;w) = o(w'x) =

1
1 + exp(w!x)

Ply=—1lx;w)=1—-0o(w'x) =

Note that we are directly modeling

Or equivalently P(y | x) rather than P(x |y) and P(y)

1
1 + exp(—yw!x)

P(ylx;w) =



Predicting a label with logistic regression

1
1 4 exp(—w!x)

Py = 1jx;w) = o(w'x) =

e Compute P(y =1 | x; w)

* If this is greater than half, predict 1 else predict -1

— What does this correspond to in terms of w'x?



Predicting a label with logistic regression

1
1 4 exp(—w!x)

Py = 1jx;w) = o(w'x) =

e Compute P(y =1 | x; w)

* If this is greater than half, predict 1 else predict -1

— What does this correspond to in terms of w'x?

— Prediction = sgn(w™x)
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This lecture

* Logistic regression
* Connection to Naive Bayes
* Training a logistic regression classifier

e Back to loss minimization
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Naive Bayes and Logistic regression

Remember that the naive Bayes decision is a linear function

l P(y I _1|X W) T

=W'X
P(y +1|x, W)

Here, the P’s represent the Naive Bayes posterior distribution,
and w can be used to calculate the priors and the likelihoods.

Thatis, P(y = 1| w,X) is computed using
Px|ly=1w)andP(y =1]|w)
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Naive Bayes and Logistic regression

Remember that the naive Bayes decision is a linear function

l P(y I _1|X W) T

P(y +1|x, W) - WX

But we also know that P(y = +1|x,w) =1 — P(y = —1|x,w)
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Naive Bayes and Logistic regression

Remember that the naive Bayes decision is a linear function

P(y = —1|x,w) .
=wW'Xx
P(y +1|x, W)

log

But we also know that P(y = +1|x,w) =1 — P(y = —1|x,w)

Substituting in the above expression, we get

1
1+ exp(—wTx)

P(y = +1|w,x) = oc(wlx) =
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Naive Bayes and Logistic regression

Remember that the naive Bayes decision is a linear function

| Ply=-1xw)
O b — Ao W X

That is, both naive Bayes and logistic regression try to
compute the same posterior distribution over the outputs
But we X, W)

Naive Bayes is a generative model.

Substit Logistic Regression is the discriminative version.

1
1+ exp(—wTx)

P(y = +1|w,x) = oc(wlx) =
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This lecture

* Logistic regression
* Connection to Naive Bayes

* Training a logistic regression classifier
— First: Maximum likelihood estimation

— Then: Adding priors > Maximum a Posteriori estimation

e Back to loss minimization
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Maximum likelihood estimation

Let’s get back to the problem of learning

* Training data
— S={(x;, y;)}, m examples

e What we want

— Find a w such that P(S | w) is maximized

— We know that our examples are drawn independently and
are identically distributed (i.i.d)

— How do we proceed?
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Maximum likelihood estimation

m

argmax P(S|w) = argmax | | P(y;|x;, W)

wW A4 4
=1

The usual trick: Convert products to sums by taking log

Recall that this works only because log is an increasing
function and the maximizer will not change
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Maximum likelihood estimation

m

argmax P(S|w) = argmax | | P(y;|x;, W)
w w J.L A
1=1
I
Equivalent to solving

m
maxz log P(y;|x;, W)
w
i




Maximum likelihood estimation

m

argmax P(S|w) = argmax | | P(y;|x;, W)

wW A4 4
=1

m
maxz log P(y;|x;, W)
\%'%
i

But (by definition) we know that

1
1+ exp(—y;w'x;)

P(ylw,x) = o(y;w'x;) =
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1
1+ exp(—y;wT’x;)

P(ylw,x) =
Maximum likelihood estimation

m

argmax P(S|w) = argmax | | P(y;|x;, W)

wW A4 4
=1

m
maxz log P(y;|x;, W)
\%'%
i

I
Equivalent to solving

|

maxz —log(1 + exp(—y;w'x;)

A%/

i
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1
1+ exp(—y;wT’x;)

P(ylw,x) =

Maximum likelihood estimation

m
argmax P(S|w) = argmax | | P(y;|x;, W)
wW w JiL= iL

likelihood training of a
discriminative I

m
The goal: Maximum maxz logP(y,;IXi,W)
w
i

probabilistic classifier Equivalent to solving
under the logistic l

model for the posterior

distribution. e

maxz —log(1 + exp(—y;w'x;)

w L
i
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1
1+ exp(—y;wT’x;)

P(ylw,x) =

Maximum likelihood estimation

m
argmax P(S|w) = argmax | | P(y;|x;, W)
wW w JiL= iL

likelihood training of a
discriminative I

m
The goal: Maximum maxz logP(y,;IXi,W)
w
i

probabilistic classifier Equivalent to solving
under the logistic l
model for the posterior
distribution. e
maxz —log(1 + exp(—y;w'x;)
w

i

| Equivalent to: Training a linear classifier by minimizing the logistic loss. I
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Maximum a posteriori estimation

We could also add a prior on the weights

Suppose each weight in the weight vector is drawn
independently from the normal distribution with zero
mean and standard deviation o

d
p(w) = ﬂp(w» [ [omew (2

=1 Ji=it

§
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MAP estimation for Iogistic regression

Maximum likelihood estimation _WZ
l
arg max P(S|w) = arg max | [ P(ys|xi, w)| p(W) = p(w;) = exp ( )
I1 ‘ ‘ i ‘ ‘ T

1=1

max Y log Py, w)
W =1
1

Equivalent to solvi
- enl = Let us work through this
procedure again to see what

m
max )  —log (1 + exp(—yiw’ x;)) changes
=1
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MAP estimation for Iogistic regression

Maximum likelihood estimation _WZ
l
arg max P(S|w) = arg max | [ P(ys|xi, w)| p(W) = p(w;) = exp ( )
I1 ‘ ‘ i ‘ ‘ T

1=1

max Y log Py, w)
W =1
1

Equivalent to solvi
- enl = Let us work through this
procedure again to see what

m
max )  —log (1 + exp(—yiw’ x;)) changes
=1

What is the goal of MAP estimation? (In maximum likelihood, we
maximized the likelihood of the data)
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MAP estimation for Iogistic regression

2
m —W:
zngmm(]) Slw) = awnmxH[’ Yi | X, W p(W) = HP(WL) = 1_[0\/_ exp( l )

=i

m

1111\5 log P(y;|x;, w

Equivalent to solving

m

max Z —log (1 + (‘xp(—y,—w’['x,-))

=1

What is the goal of MAP estimation? (In maximum likelihood, we
maximized the likelihood of the data)

To maximize the posterior probability of the model given the data (i.e. to find the
most probable model, given the data)

P(w|S) < P(S|w)P(w)
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MAP estimation for Iogistic regression

2
m —W:
¢ x P(S = arg max P(y;|x, (W) = 1_[ W;) = 1_[ ex ( : )
ngnn (S|lw) = ar Sy H (yi|xi, W) p(w;) = Y p

=l

max Z log P(y;|xi, w)
i

Learning by solving

Equivalent to solving

m

Oy — o X —U; Tx.
mw(l‘\Z 1(%(1 + exp(—y;w X/))

2=1

argmax P(w|S) = argmax P(S|w)P(w)
w w
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MAP estimation for Iogistic regression

2
m _Wl
a ax P(S = argmax | | P(y;|Xi, w —1_[ w —1_[ ex
g max P(S|w) = arg max [ | P(yilxi, w)| - p(W) p(wy) e p( )

=l

max Z log P(y;|xi, w)
e

Learning by solving

Equivalent to solving

m

Y — o X —U; Tx.
111\;1xZ 1()h(1 +(X})( Yiw X/))

2=1

argmax P(S|w)P(w)
W
Take log to simplify
max log P(S|w) + log P(w)
W
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MAP estimation for Iogistic regression

2
m —W:
¢ x P(S = argmax | | P(y;|x, (W) = 1_[ W;) = 1_[ ex ( ' )
ngnn (S|w) = ar St H (yi|x;,Ww)| P p(w;) = Y p

=i

max log P(y;|xi, W)
Z | Learning by solving

Equivalent to solving

argmax P(S|w)P(w)
w

m

max Z —log (1 + (‘xp(az/,-w’/'x,-))

=1

Take log to simplify
maxlog P(S|w) + log P(w)
W

We have already expanded out the first term.

m

Z —log(1 + exp(—y;w'x;)

i
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MAP estimation for Iogistic regression

2
m _Wl

a ax P(S = argmax | | P(y;|x, w —1_[ w —1_[ ex
e e o= T ] )

=l

max Z log P(y;|xi, w)
i

Learning by solving

Equivalent to solving

argmax P(S|w)P(w)
w

m

Oy — o X —U; Tx.
mw(l‘\Z 1(%(1 + exp(—y;w X/))

2=1

Take log to simplify
max log P(S|w) + log P(w)
W

Expand the log prior

m d 2
—W;
Z —log(1 + exp(—y;w'x;) + 2 + constant«/

o2

i =1
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MAP estimation for Iogistic regression

w) p(w) = Hp(wl) = Hm/—exp<

m

mgm ax P(S|w) = uonanP ;| %,

w i=1

max Z log P(y;|xi, w)
i

Equivalent to solving
m

Oy — o X —U; Tx.
mw(l‘\Z 1(%(1 + exp(—y;w X/))

2=1

m

d
maxz —log(1 + exp(—y;w’x;) + Z —
\%'%

i

Learning by solving

argmax P(S|w)P(w)
W
Take log to simplify
max log P(S|w) + log P(w)
w

j=1

)
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MAP estimation for Iogistic regression

2
m —W:
¢ x P(S = argmax | | P(y;|x, (W) = 1_[ W;) = 1_[ ex ( : )
ngnn (S|lw) = ar Sy H (yi|xiyw)| P p(w;) = Y p

=l

max Z log P(y;|xi, w)
i

Learning by solving

Equivalent to solving

argmax P(S|w)P(w)
w

m

Oy — o X —U; Tx.
mw(l‘\Z 1(%(1 + exp(—y;w X/))

2=1

Take log to simplify
max log P(S|w) + log P(w)
W

m

1
maxz: —log(1 + exp(—y;w'x;) — —w w
\%'%

i
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MAP estimation for Iogistic regression

2
m —W:
¢ x P(S = argmax | | P(y;|x, (W) = 1_[ wW;) = 1_[ ex ( : )
ngnn (S|w) = ar St H (yi|x;,Ww)| P p(w;) = Y p

=i

max log P(y;|xi, W)
Z | Learning by solving

Equivalent to solving

m

max Z —log (1 + (‘xp(az/,-w’/'x,-))

=1

argmax P(S|w)P(w)
W
Take log to simplify
max log P(S|w) + log P(w)
W

m

1
maxz: —log(1 + exp(—y;w'x;) — —w w
\%'%

i

Maximizing a negative function is the same as minimizing the function
44



Learning a logistic regression classifier

Learning a logistic regression classifier is equivalent to
solving

1
mmz log(1 + exp(—y;wlx;) + —w w
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Learning a logistic regression classifier

Learning a logistic regression classifier is equivalent to
solving

1
mmz log(1 + exp(—y;wlx;) + —w w

Where have we seen this before?
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Learning a logistic regression classifier

Learning a logistic regression classifier is equivalent to
solving

1
mmz log(1 + exp(—y;wlx;) + —w w

Where have we seen this before?

The first question in the homework: Write down the stochastic gradient descent
algorithm for this?

Historically, other training algorithms exist. In particular, you might run into LBFGS
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Logistic regression is...

e A classifier that predicts the probability that the label is
+1 for a particular input

* The discriminative counter-part of the naive Bayes
classifier

e A discriminative classifier that can be trained via MAP or
MLE estimation

* Adiscriminative classifier that minimizes the logistic loss
over the training set
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This lecture

* Logistic regression
* Connection to Naive Bayes
* Training a logistic regression classifier

e Back to loss minimization
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Learning as loss minimization

* The setup
— Examples x drawn from a fixed, unknown distribution D

— Hidden oracle classifier f labels examples
— We wish to find a hypothesis h that mimics f

* The ideal situation
— Define a function L that penalizes bad hypotheses
— Learning: Pick a function h € H to minimize expected loss

hmeiII} Ex-D [L (h(x), f(X))] But distribution D is unknown

* |nstead, minimize empirical loss on the training set

i 2 LA, )
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Empirical loss minimization

Learning = minimize empirical loss on the training set
min — L(h
i 30 L) 0x0)

Is there a problem here?



Empirical loss minimization

Learning = minimize empirica/ loss on the training set
min — E L(h X;))
heH m
Is there a problem here? | Overfitting!

We need something that biases the learner towards simpler
hypotheses

* Achieved using a regularizer, which penalizes complex
hypotheses
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Regularized loss minimization

e Learning: hmellr} regularizer(h) + C’% ZL(h(xi), f(x;))

T . .1
* With linear classifiers: min §WTW +C Y L(yi,xi,w)
(using [2 regularization) W i
 What is a loss function?
— Loss functions should penalize mistakes

— We are minimizing average loss over the training data

What is the ideal loss function for classification?
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The 0-1 loss

Penalize classification mistakes between true label y and
prediction y’

1 ify#y,
Lo-l(y7 y/) — {O lf y — y/

* For linear classifiers, the prediction y’ = sgn(w'x)
— Mistake ifyw'x <0

1 ifywlx <0,

0 otherwise.

Lo_l(y, X, W) = {

Minimizing 0-1 loss is intractable. Need surrogates

54



. . 1
min regularizer(h) + C’E zZ: L(h(x:), f(xi))

The loss function zoo

Many loss functions exist

— Perceptron loss Lperceptron(y, X, w) = max(0, —yw’ x)
— Hinge loss (SVM) Lizinge(y,%, w) = max(0,1 — yw"x)
—ywlx

— Exponential loss (AdaBoost) LEzponential(y,X, W) = e

— Logistic loss (logistic regression)
T
Liogistic(y,x,w) =log(1 4+ e ¥V *)
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. . 1
min regularizer(h) + CE zz: L(h(x;), f(x:))

The loss function zoo
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. L3 1
niiz regularizer(h) + CE zz: L(h(x;), f(x:))

The loss function zoo

Zero-one
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min regularizer(h) + C’% Z L(h(x:), f(xs))

heH
The loss function zoo
LHinge (y7 X, W) — ma'X(Oa 1 - yWTX)
AN
Hinge: SVM

Zero-one
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AN

min regularizer

heH

The loss function zoo

LHinge (y7 X, W) — ma'X(07 1 - yw

() +C— 3" L{h(x), £(x:)

TX)

Hinge: SVM

Perceptron

LPerceptron(

Y, X, W) 3

= max(0,

—wax)

Zero-one
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min regularizer
he H

The loss function zoo

() +C— 3" L{h(x), £(x:)

o
o

Liinge(y,x,w) = max(0,1 — wax)
AN : I
Hinge: SVM Lperceptron(y, X, w) = max(0, —yw" x)
SR, o
Exponential: AdaBoost LEa:pOT ential(y, X, W) =g IW X
Perceptron
Zero-one
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min regularizer(h) + C’% Z L(h(x:), f(xs))

heH
The loss function zoo
LHinge (yv X, W) — maX(Oa 1 — yWTX)
N\l R o
Hinge: SVM ) LPerceptron( Y, X, W) T max(O, _ywi X)
S, o
Exponential: AdaBoost LE:EpOT ential(ya X, W) =leT*™ £
Perceptron 5
15 T / \ 1 (1 — UW - X\
- LiLogistic\Y, X, W) = 10g(1 - € ~ )

Zero-one

Logistic regression

o
o
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The loss function zoo

N\

Zoomed out

10

T

N\
REAs

10

15
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The loss function zoo

Zoomed out even more

120

100

80

60
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