
Machine Learning

Introduction to Bayesian Learning
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What we have seen so far

What does it mean to learn?
– Mistake-driven learning 

• Learning by counting (and bounding) number of mistakes

– PAC learnability
• Sample complexity and bounds on errors on unseen examples

Various learning algorithms
– Analyzed algorithms under these models of learnability
– In all cases, the algorithm outputs a function that produces 

a label y for a given input x
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Coming up

Another way of thinking about “What does it mean to 
learn?”
– Bayesian learning

Different learning algorithms in this regime
– Naïve Bayes
– Logistic Regression
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Today’s lecture

• Bayesian Learning

• Maximum a posteriori and maximum likelihood 
estimation

• Two examples of maximum likelihood estimation
– Binomial distribution
– Normal distribution
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Probabilistic Learning

Two different notions of probabilistic learning
• Learning probabilistic concepts 

– The learned concept is a function c:X®[0,1]
– c(x) may be interpreted as the probability that the label 1 is 

assigned to x
– The learning theory that we have studied before is applicable 

(with some extensions)

• Bayesian Learning: Use of a probabilistic criterion in 
selecting a hypothesis
– The hypothesis can be deterministic, a Boolean function
– The criterion for selecting the hypothesis is probabilistic
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Bayesian Learning: The basics

• Goal: To find the best hypothesis from some space H of hypotheses, using 
the observed data D

• Define best  =  most probable hypothesis in H
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Bayesian Learning: The basics

• Goal: To find the best hypothesis from some space H of hypotheses, using 
the observed data D

• Define best  =  most probable hypothesis in H

• To do that, we need to assume a probability distribution over the class H

• We  also need to know something about the relation between the data 
observed and the hypotheses 
– As we will see, we can “be Bayesian” about other things. e.g., the 

parameters of the model 
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Bayesian methods have multiple roles

• Provide practical learning algorithms

• Combining prior knowledge with observed data
– Guide the model towards something we know

• Provide a conceptual framework 
– For evaluating other learners

• Provide tools for analyzing learning
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Bayes Theorem 
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𝑃 𝑌 𝑋 =
𝑃 𝑋 𝑌 𝑃(𝑌)

𝑃(𝑋)
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𝑃 𝑌 𝑋 =
𝑃 𝑋 𝑌 𝑃(𝑌)

𝑃(𝑋)

∀𝑥, 𝑦	 𝑃 𝑌 = 𝑦 𝑋 = 𝑥 =
𝑃 𝑋 = 𝑥 𝑌 = 𝑦 𝑃(𝑌 = 𝑦)

𝑃(𝑋 = 𝑥)



Bayes Theorem 

15



Bayes Theorem 

Prior probability: What is 
our belief in Y before we 
see X?

16



Bayes Theorem 

Likelihood: What is the 
likelihood of observing X 
given a specific Y?

Prior probability: What is 
our belief in Y before we 
see X?
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Bayes Theorem 
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Posterior ∝ 	Likeliℎ𝑜𝑜𝑑	×	Prior



Probability Refresher

Product rule: 𝑃 𝐴 ∧ 𝐵 = 𝑃 𝐴, 𝐵 = 𝑃 𝐴 𝐵 𝑃 𝐵 = 𝑃 𝐵 𝐴 𝑃 𝐴

Sum rule: 𝑃 𝐴 ∨ 𝐵 = 𝑃 𝐴 + 𝑃 𝐵 − 𝑃(𝐴, 𝐵)

Events A, B are independent if:  
– P(𝐴, 𝐵) 	= 	𝑃(𝐴)	𝑃(𝐵)
– Equivalently, 𝑃(𝐴 ∣ 	𝐵) 	= 	𝑃(𝐴), 𝑃(𝐵	|	𝐴) 	= 	𝑃(𝐵)

Theorem of Total probability: 
For mutually exclusive events 𝐴!, 𝐴", ⋯ , 𝐴#	(i. e., 𝐴$ ∩ 𝐴% = ∅) with 
∑$𝑃 𝐴$ = 1

𝑃 𝐵 =8
$

#

𝑃 𝐵 𝐴$ 𝑃 𝐴$
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Bayesian Learning

22

Given a dataset D, we want to find the best hypothesis h

What does best mean?

Bayesian learning uses 𝑃 ℎ	 𝐷), the conditional 
probability of a hypothesis given the data, to define best.



Bayesian Learning
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Given a dataset D, we want to find 
the best hypothesis h
What does best mean?



Bayesian Learning
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Posterior probability: What 
is the probability that h is 
the hypothesis, given that 
the data D is observed?

Given a dataset D, we want to find 
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What does best mean?



Bayesian Learning
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Posterior probability: What 
is the probability that h is 
the hypothesis, given that 
the data D is observed?

Given a dataset D, we want to find 
the best hypothesis h
What does best mean?

Key insight: Both h and D are events.
• D: The event that we observed this particular dataset
• h: The event that the hypothesis h is the true hypothesis

So we can apply the Bayes rule here.
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Bayesian Learning
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Posterior probability: What 
is the probability that h is 
the hypothesis, given that 
the data D is observed?

Prior probability of h: 
Background knowledge. 
What do we expect the 
hypothesis to be even 
before we see any data?
For example, in the 
absence of any 
information, maybe the 
uniform distribution.

Given a dataset D, we want to find 
the best hypothesis h
What does best mean?



Bayesian Learning
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Posterior probability: What 
is the probability that h is 
the hypothesis, given that 
the data D is observed?

Prior probability of h: 
Background knowledge. 
What do we expect the 
hypothesis to be even 
before we see any data?
For example, in the 
absence of any 
information, maybe the 
uniform distribution.

Likelihood: What is the 
probability that this data 
point (an example or an 
entire dataset) is observed, 
given that the hypothesis 
is h?

Given a dataset D, we want to find 
the best hypothesis h
What does best mean?



Bayesian Learning
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Posterior probability: What 
is the probability that h is 
the hypothesis, given that 
the data D is observed?

Prior probability of h: 
Background knowledge. 
What do we expect the 
hypothesis to be even 
before we see any data?
For example, in the 
absence of any 
information, maybe the 
uniform distribution.

What is the probability 
that the data D is observed 
(independent of any 
knowledge about the 
hypothesis)?

Likelihood: What is the 
probability that this data 
point (an example or an 
entire dataset) is observed, 
given that the hypothesis 
is h?

Given a dataset D, we want to find 
the best hypothesis h
What does best mean?



Today’s lecture

• Bayesian Learning

• Maximum a posteriori and maximum likelihood 
estimation

• Two examples of maximum likelihood estimation
– Binomial distribution
– Normal distribution
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Choosing a hypothesis

Given some data, find the most probable hypothesis
– The Maximum a Posteriori hypothesis hMAP
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Posterior ∝ 	Likelihood	×	Prior



Choosing a hypothesis

Given some data, find the most probable hypothesis
– The Maximum a Posteriori hypothesis hMAP

If we assume that the prior is uniform 
– Simplify this to get the Maximum Likelihood hypothesis

34

i.e. P(hi) = P(hj), for all hi, hj

Often computationally easier to maximize log likelihood
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Brute force MAP learner

Input: Data D and a hypothesis set H
1. Calculate the posterior probability for each h 2 H

2. Output the hypothesis with the highest posterior probability
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Brute force MAP learner

Input: Data D and a hypothesis set H
1. Calculate the posterior probability for each h 2 H

2. Output the hypothesis with the highest posterior probability
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Difficult to compute, 
except for the most 

simple hypothesis spaces



Today’s lecture

• Bayesian Learning

• Maximum a posteriori and maximum likelihood 
estimation

• Two examples of maximum likelihood estimation
– Bernoulli trials
– Normal distribution
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Maximum Likelihood estimation

Maximum Likelihood estimation (MLE)

What we need in order to define learning:
1. A hypothesis space H
2. A model that says how data D is generated given h

40



Example 1: Bernoulli trials

The CEO of a startup hires you for your first consulting job

• CEO: My company makes light bulbs. I need to know 
what is the probability they are faulty.

• You: Sure. I can help you out. Are they all identical?

• CEO: Yes! 

• You: Excellent. I know how to help. We need to 
experiment…
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Faulty lightbulbs

The experiment: 
Try out  100 lightbulbs
80 work, 20 don’t

You:  The probability is P(failure) = 0.2

CEO: But how do you know?

You: Because…
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Bernoulli trials

• P(failure) = p, P(success) = 1 – p

• Each trial is i.i.d
– Independent and identically distributed

• You have seen D = {80 work, 20 don’t}

• The most likely value of p for this observation is?
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𝑃 𝐷 𝑝 = 100
80 𝑝!" 1 − 𝑝 #"

argmax	
$

𝑃 𝐷 𝑝 = argmax
$

100
80 𝑝!" 1 − 𝑝 #"
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The “learning” algorithm

Say you have a Not-Work and b Work

Calculus 101: Set the derivative to zero
    Pbest = b/(a + b) 
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The model we assumed is Bernoulli. You could assume a different model! 
Next we will consider other models and see how to learn their parameters.

Log likelihood
𝑝%&'( = argmax
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𝑎 𝑝) 1 − 𝑝 %
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𝑎 log 𝑝 + 𝑏	log(1 − 𝑝)



Today’s lecture

• Bayesian Learning

• Maximum a posteriori and maximum likelihood 
estimation

• Two examples of maximum likelihood estimation
– Bernoulli trials
– Normal distribution
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Maximum Likelihood estimation

Maximum Likelihood estimation (MLE)

What we need in order to define learning:
1. A hypothesis space H
2. A model that says how data D is generated given h
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Maximum Likelihood and least squares 

Suppose H consists of real valued functions
Inputs are vectors 𝒙 ∈ ℜ𝒅 and the output is a real number 𝑦 ∈ ℜ
Suppose the training data is generated as follows:
• An input xi is drawn randomly (say uniformly at random)
• The true function f is applied to get f(xi)
• This value is then perturbed by noise ei 

– Drawn independently according to an unknown Gaussian with zero mean

Say we have m training examples (xi, yi) generated by this process
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Maximum Likelihood and least squares 

The error for this example is 𝑦$ − ℎ 𝑥$

We believe that this error is from a Gaussian distribution with mean = 0 and 
standard deviation= ¾

We can compute the probability of observing one data point (xi, yi), if it were 
generated using the function h

59

Example: 

Suppose we have a hypothesis h. We want to know what is the probability 
that a particular label 𝑦$ was generated by this hypothesis as ℎ(𝑥$)?



Maximum Likelihood and least squares 

The error for this example is 𝑦$ − ℎ 𝑥$

Suppose we assume that this error is from a Gaussian distribution with zero 
mean and standard deviation= 𝜎

We can compute the probability of observing one data point (xi, yi), if it were 
generated using the function h
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Example: 

Suppose we have a hypothesis h. We want to know what is the probability 
that a particular label 𝑦$ was generated by this hypothesis as ℎ(𝑥$)?



Maximum Likelihood and least squares 

Probability of observing one data point (xi, yi), if it were 
generated using the function h

Each example in our dataset D = {(xi, yi)} is generated 
independently by this process
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Maximum Likelihood and least squares 

Probability of observing one data point (xi, yi), if it were 
generated using the function h

Each example in our dataset D = {(xi, yi)} is generated 
independently by this process
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Our goal is to find the most likely hypothesis

Maximum Likelihood and least squares 
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Our goal is to find the most likely hypothesis
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Maximum Likelihood and least squares 

Our goal is to find the most likely hypothesis
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Example: 

How do we maximize this expression? Any ideas?



Maximum Likelihood and least squares 

Our goal is to find the most likely hypothesis
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Example: 

How do we maximize this expression? Any ideas?

Answer: Take the logarithm to simplify



Maximum Likelihood and least squares 

Our goal is to find the most likely hypothesis
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Our goal is to find the most likely hypothesis
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Maximum Likelihood and least squares 

Our goal is to find the most likely hypothesis
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Example: 

Because we assumed that the 
standard deviation is a constant. 



Maximum Likelihood and least squares 

The most likely hypothesis is

If we consider the set of linear functions as our 
hypothesis space: h(xi) = wT xi
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Example: 

This is the probabilistic explanation for least squares regression
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If we consider the set of linear functions as our 
hypothesis space: ℎ 𝐱F = 𝐰G𝐱F
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Maximum Likelihood and least squares 

The most likely hypothesis is

If we consider the set of linear functions as our 
hypothesis space: ℎ 𝐱F = 𝐰G𝐱F
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Example: 

This is the probabilistic explanation for least squares regression



Linear regression: Two perspectives
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Bayesian perspective
We believe that the errors are 
Normally distributed with zero 
mean and a fixed variance

Find the linear regressor using the 
maximum likelihood principle

Loss minimization perspective
We want to minimize the 
difference between the squared 
loss error of our prediction

Minimize the total squared loss



This lecture: Summary

• Bayesian Learning
– Another way to ask: What is the best hypothesis for a 

dataset?
– Two answers to the question: Maximum a posteriori (MAP) 

and maximum likelihood estimation (MLE)

• We saw two examples of maximum likelihood 
estimation
– Binomial distribution, normal distribution
– You should be able to apply both MAP and MLE to simple 

problems
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