Introduction to Bayesian Learning

Machine Learning

What we have seen so far

What does it mean to learn?

- Mistake-driven learning
 - Learning by counting (and bounding) number of mistakes
- PAC learnability
 - Sample complexity and bounds on errors on unseen examples

Various learning algorithms

- Analyzed algorithms under these models of learnability
- In all cases, the algorithm outputs a function that produces a label y for a given input x

Coming up

Another way of thinking about "What does it mean to learn?"

- Bayesian learning

Different learning algorithms in this regime

- Naïve Bayes
- Logistic Regression

Today's lecture

- Bayesian Learning
- Maximum a posteriori and maximum likelihood estimation
- Two examples of maximum likelihood estimation
 - Binomial distribution
 - Normal distribution

Today's lecture

- Bayesian Learning
- Maximum a posteriori and maximum likelihood estimation
- Two examples of maximum likelihood estimation
 - Binomial distribution
 - Normal distribution

Probabilistic Learning

Two different notions of probabilistic learning

Probabilistic Learning

Two different notions of probabilistic learning

- Learning probabilistic concepts
 - The learned concept is a function $c:X \rightarrow [0,1]$
 - c(x) may be interpreted as the probability that the label 1 is assigned to x
 - The learning theory that we have studied before is applicable (with some extensions)

Probabilistic Learning

Two different notions of probabilistic learning

Learning probabilistic concepts

- The learned concept is a function $c:X \rightarrow [0,1]$
- c(x) may be interpreted as the probability that the label 1 is assigned to x
- The learning theory that we have studied before is applicable (with some extensions)

Bayesian Learning: Use of a probabilistic criterion in selecting a hypothesis

- The hypothesis can be deterministic, a Boolean function
- The criterion for selecting the hypothesis is probabilistic

Bayesian Learning: The basics

- Goal: To find the *best* hypothesis from some space H of hypotheses, using the observed data D
- Define best = most probable hypothesis in H

Bayesian Learning: The basics

- Goal: To find the *best* hypothesis from some space H of hypotheses, using the observed data D
- Define best = most probable hypothesis in H
- To do that, we need to assume a probability distribution over the class H

Bayesian Learning: The basics

- Goal: To find the *best* hypothesis from some space H of hypotheses, using the observed data D
- Define best = most probable hypothesis in H
- To do that, we need to assume a probability distribution over the class H
- We also need to know something about the relation between the data observed and the hypotheses
 - As we will see, we can "be Bayesian" about other things. e.g., the parameters of the model

Bayesian methods have multiple roles

- Provide practical learning algorithms
- Combining prior knowledge with observed data
 Guide the model towards something we know
- Provide a conceptual framework
 For evaluating other learners
- Provide tools for analyzing learning

$$P(Y|X) = \frac{P(X|Y)P(Y)}{P(X)}$$

$$P(Y|X) = \frac{P(X|Y)P(Y)}{P(X)}$$

Posterior \propto Likeli*hood* \times Prior

Probability Refresher

Product rule: $P(A \land B) = P(A, B) = P(A \mid B)P(B) = P(B \mid A)P(A)$

Sum rule: $P(A \lor B) = P(A) + P(B) - P(A, B)$

Events A, B are independent if:

$$- P(A,B) = P(A) P(B)$$

- Equivalently, $P(A \mid B) = P(A), P(B \mid A) = P(B)$

Probability Refresher

Product rule: $P(A \land B) = P(A, B) = P(A \mid B)P(B) = P(B \mid A)P(A)$

Sum rule: $P(A \lor B) = P(A) + P(B) - P(A, B)$

Events A, B are independent if:

$$- P(A,B) = P(A) P(B)$$

- Equivalently, $P(A \mid B) = P(A), P(B \mid A) = P(B)$

Theorem of Total probability:

For mutually exclusive events A_1, A_2, \dots, A_n (i.e., $A_i \cap A_j = \emptyset$) with $\sum_i P(A_i) = 1$

$$P(B) = \sum_{i}^{n} P(B \mid A_{i})P(A_{i})$$

Given a dataset D, we want to find the best hypothesis h

What does *best* mean?

Bayesian learning uses P(h | D), the conditional probability of a hypothesis given the data, to define *best*.

Given a dataset D, we want to find the best hypothesis h What does *best* mean?

P(h|D)

Given a dataset D, we want to find the best hypothesis h What does *best* mean?

Key insight: Both h and D are events.

- D: The event that we observed *this* particular dataset
- h: The event that the hypothesis h is the true hypothesis

So we can apply the Bayes rule here.

Given a dataset D, we want to find **Bayesian Learning** the best hypothesis h What does *best* mean? $\frac{P(D)}{P(D)}$ *Posterior probability*: What is the probability that h is the hypothesis, given that the data D is observed?

Key insight: Both h and D are events.

- D: The event that we observed *this* particular dataset
- h: The event that the hypothesis h is the true hypothesis

Given a dataset D, we want to find the best hypothesis h What does *best* mean?

Posterior probability: What is the probability that h is the hypothesis, given that the data D is observed?

Prior probability of h: Background knowledge. What do we expect the hypothesis to be even before we see any data? For example, in the absence of any information, maybe the uniform distribution.

Given a dataset D, we want to find the best hypothesis h What does *best* mean?

Posterior probability: What is the probability that h is the hypothesis, given that the data D is observed? Likelihood: What is the probability that this data point (an example or an entire dataset) is observed, given that the hypothesis is h?

Prior probability of h: Background knowledge. What do we expect the hypothesis to be even before we see any data? For example, in the absence of any information, maybe the uniform distribution.

Given a dataset D, we want to find the best hypothesis h What does *best* mean?

Posterior probability: What is the probability that h is the hypothesis, given that the data D is observed? Likelihood: What is the probability that this data point (an example or an entire dataset) is observed, given that the hypothesis is h?

What is the probability that the data D is observed (independent of any knowledge about the hypothesis)? Prior probability of h: Background knowledge. What do we expect the hypothesis to be even before we see any data? For example, in the absence of any information, maybe the uniform distribution.

Today's lecture

- Bayesian Learning
- Maximum a posteriori and maximum likelihood estimation
- Two examples of maximum likelihood estimation
 - Binomial distribution
 - Normal distribution

Given some data, find the most probable hypothesis – The Maximum a Posteriori hypothesis h_{MAP}

$$h_{MAP} = \underset{h \in H}{\operatorname{arg\,max}} P(h|D)$$

Given some data, find the most probable hypothesis – The Maximum a Posteriori hypothesis h_{MAP}

$$h_{MAP} = \arg \max_{h \in H} P(h|D)$$

=
$$\arg \max_{h \in H} \frac{P(D|h)P(h)}{P(D)}$$

=
$$\arg \max_{h \in H} P(D|h)P(h)$$

Given some data, find the most probable hypothesis – The Maximum a Posteriori hypothesis h_{MAP}

$$n_{MAP} = \arg \max_{h \in H} P(h|D)$$

$$= \arg \max_{h \in H} \frac{P(D|h)P(h)}{P(D)}$$

$$= \arg \max_{h \in H} P(D|h)P(h)$$

Posterior \propto Likelihood \times Prior

Given some data, find the most probable hypothesis

– The Maximum a Posteriori hypothesis h_{MAP}

$$h_{MAP} = \underset{h \in H}{\arg\max} P(D|h)P(h)$$

Given some data, find the most probable hypothesis

– The Maximum a Posteriori hypothesis h_{MAP}

$$h_{MAP} = \underset{h \in H}{\arg\max} P(D|h)P(h)$$

If we assume that the prior is uniform i.e. $P(h_i) = P(h_j)$, for all h_i , h_j

- Simplify this to get the Maximum Likelihood hypothesis

$$h_{ML} = \operatorname*{arg\,max}_{h \in H} P(D|h)$$

Given some data, find the most probable hypothesis

– The Maximum a Posteriori hypothesis h_{MAP}

$$h_{MAP} = \underset{h \in H}{\arg\max} P(D|h)P(h)$$

If we assume that the prior is uniform i.e. $P(h_i) = P(h_j)$, for all h_i , h_j

- Simplify this to get the Maximum Likelihood hypothesis

$$h_{ML} = \underset{h \in H}{\arg\max} P(D|h)$$

Often computationally easier to maximize *log likelihood*
Brute force MAP learner

Input: Data D and a hypothesis set H

1. Calculate the posterior probability for each h 2 H

$$P(h|\mathbf{D}) = \frac{P(\mathbf{D}|h)P(h)}{P(\mathbf{D})}$$

2. Output the hypothesis with the highest posterior probability

$$h_{MAP} = \underset{h \in H}{\arg\max} P(D|h)P(h)$$

Brute force MAP learner

Input: Data D and a hypothesis set H

1. Calculate the posterior probability for each h 2 H

$$P(h|\mathbf{D}) = \frac{P(\mathbf{D}|h)P(h)}{P(\mathbf{D})}$$

Difficult to compute, except for the most simple hypothesis spaces

2. Output the hypothesis with the highest posterior probability

$$h_{MAP} = \underset{h \in H}{\arg\max} P(D|h)P(h)$$

Today's lecture

- Bayesian Learning
- Maximum a posteriori and maximum likelihood estimation
- Two examples of maximum likelihood estimation
 - <u>Bernoulli trials</u>
 - Normal distribution

Maximum Likelihood estimation

Maximum Likelihood estimation (MLE) $h_{ML} = \operatorname*{arg\,max}_{h \in H} P(D|h)$

What we need in order to define learning:

- 1. A hypothesis space H
- 2. A model that says how data D is generated given h

Example 1: Bernoulli trials

The CEO of a startup hires you for your first consulting job

- CEO: My company makes light bulbs. I need to know what is the probability they are faulty.
- *You*: Sure. I can help you out. Are they all identical?
- *CEO*: Yes!
- You: Excellent. I know how to help. We need to experiment...

Faulty lightbulbs

The experiment:

Try out 100 lightbulbs 80 work, 20 don't

You: The probability is P(failure) = 0.2

CEO: But how do you know?

You: Because...

- P(failure) = p, P(success) = 1 p

- Each trial is i.i.d
 - Independent and identically distributed

P(failure) = p, P(success) = 1 - p

- Each trial is i.i.d
 - Independent and identically distributed
- You have seen D = {80 work, 20 don't}

$$P(D|p) = {\binom{100}{80}} p^{20} (1-p)^{80}$$

P(failure) = p, P(success) = 1 - p

- Each trial is i.i.d
 - Independent and identically distributed
- You have seen D = {80 work, 20 don't}

$$P(D|p) = {\binom{100}{80}} p^{20} (1-p)^{80}$$

• The most likely value of p for this observation is?

P(failure) = p, P(success) = 1 - p

- Each trial is i.i.d
 - Independent and identically distributed
- You have seen D = {80 work, 20 don't}

$$P(D|p) = {\binom{100}{80}} p^{20} (1-p)^{80}$$

• The most likely value of p for this observation is?

$$\underset{p}{\operatorname{argmax}} P(D|p) = \underset{p}{\operatorname{argmax}} {\binom{100}{80}} p^{20} (1-p)^{80}$$

Say you have *a* Not-Work and b Work $p_{best} = \underset{p}{\operatorname{argmax}} P(D|h)$

Calculus 101: Set the derivative to zero

$$p_{best} = \frac{a}{a+b}$$

The model we assumed is Bernoulli. *You could assume a different model!* Next we will consider other models and see how to learn their parameters.

Today's lecture

- Bayesian Learning
- Maximum a posteriori and maximum likelihood estimation
- Two examples of maximum likelihood estimation
 - Bernoulli trials
 - Normal distribution

Maximum Likelihood estimation

Maximum Likelihood estimation (MLE) $h_{ML} = \operatorname*{arg\,max}_{h \in H} P(D|h)$

What we need in order to define learning:

- 1. A hypothesis space H
- 2. A model that says how data D is generated given h

Suppose H consists of real valued functions

Inputs are vectors $x \in \Re^d$ and the output is a real number $y \in \Re$

Suppose H consists of real valued functions Inputs are vectors $x \in \Re^d$ and the output is a real number $y \in \Re$

Suppose the training data is generated as follows:

- An input **x**_i is drawn randomly (say uniformly at random)
- The true function f is applied to get f(**x**_i)
- This value is then perturbed by noise e_i
 - Drawn independently according to an unknown Gaussian with zero mean

Suppose H consists of real valued functions Inputs are vectors $x \in \Re^d$ and the output is a real number $y \in \Re$

Suppose the training data is generated as follows:

- An input **x**_i is drawn randomly (say uniformly at random)
- The true function f is applied to get f(**x**_i)
- This value is then perturbed by noise e_i
 - Drawn independently according to an unknown Gaussian with zero mean

$$y_i = f(x_i) + e_i$$

Suppose H consists of real valued functions Inputs are vectors $x \in \Re^d$ and the output is a real number $y \in \Re$

Suppose the training data is generated as follows:

- An input **x**_i is drawn randomly (say uniformly at random)
- The true function f is applied to get f(**x**_i)
- This value is then perturbed by noise e_i
 - Drawn independently according to an unknown Gaussian with zero mean

$$y_i = f(x_i) + e_i$$

Say we have m training examples (x_i, y_i) generated by this process

Suppose we have a hypothesis h. We want to know what is the probability that a particular label y_i was generated by this hypothesis as $h(x_i)$?

The error for this example is $y_i - h(x_i)$

Suppose we have a hypothesis h. We want to know what is the probability that a particular label y_i was generated by this hypothesis as $h(x_i)$?

The error for this example is $y_i - h(x_i)$

Suppose we assume that this error is from a Gaussian distribution with zero mean and standard deviation= σ

We can compute the probability of observing one data point (x_i, y_i) , if it were generated using the function h

$$p(y_i|h, x_i) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(y_i - h(\mathbf{x}_i))^2}{2\sigma^2}}$$

Probability of observing one data point (x_i, y_i) , if it were generated using the function h

$$p(y_i|h, x_i) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(y_i - h(\mathbf{x}_i))^2}{2\sigma^2}}$$

Probability of observing one data point (x_i, y_i) , if it were generated using the function h

$$p(y_i|h, x_i) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(y_i - h(\mathbf{x}_i))^2}{2\sigma^2}}$$

Each example in our dataset $D = \{(x_i, y_i)\}$ is generated *independently* by this process

$$p(D|h) = \prod_{i=1}^{m} p(y_i, x_i|h) \propto \prod_{i=1}^{m} p(y_i|h, x_i)$$

 $h_{ML} = \operatorname*{arg\,max}_{h \in H} P(D|h)$

Our goal is to find the most likely hypothesis

$$h_{ML} = \arg\max_{h \in H} p(D|h) = \arg\max_{h \in H} \prod_{i=1}^{m} p(y_i|h, x_i)$$

 $h_{ML} = \underset{h \in H}{\operatorname{arg\,max}} P(D|h)$

Our goal is to find the most likely hypothesis

 $h \in H$ $i=1 \sigma \sqrt{2\pi}$

$$h_{ML} = \arg\max_{h \in H} p(D|h) = \arg\max_{h \in H} \prod_{i=1}^{m} p(y_i|h, x_i)$$
$$= \arg\max_{h \in H} \frac{1}{\sqrt{2}} e^{-\frac{(y_i - h(\mathbf{x}_i))^2}{2\sigma^2}}$$

 $h_{ML} = \underset{h \in H}{\operatorname{arg\,max}} P(D|h)$

Our goal is to find the most likely hypothesis

$$h_{ML} = \arg\max_{h \in H} p(D|h) = \arg\max_{h \in H} \prod_{i=1}^{m} p(y_i|h, x_i)$$
$$= \arg\max_{h \in H} \prod_{i=1}^{m} \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(y_i - h(\mathbf{x}_i))^2}{2\sigma^2}}$$

How do we maximize this expression? Any ideas?

 $h_{ML} = \underset{h \in H}{\operatorname{arg\,max}} P(D|h)$

Our goal is to find the most likely hypothesis

$$h_{ML} = \arg\max_{h \in H} p(D|h) = \arg\max_{h \in H} \prod_{i=1}^{m} p(y_i|h, x_i)$$
$$= \arg\max_{h \in H} \prod_{i=1}^{m} \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(y_i - h(\mathbf{x}_i))^2}{2\sigma^2}}$$

How do we maximize this expression? Any ideas?

Answer: Take the logarithm to simplify

 $h_{ML} = \underset{h \in H}{\arg\max} P(D|h)$

Our goal is to find the most likely hypothesis

$$h_{ML} = \arg\max_{h \in H} p(D|h) = \arg\max_{h \in H} \prod_{i=1}^{m} p(y_i|h, x_i)$$

$$= \arg \max_{h \in H} \prod_{i=1}^{n} \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(y_i - h(\mathbf{x}_i))^2}{2\sigma^2}}$$
$$= \arg \max_{h \in H} \sum_{i=1}^{m} \log \frac{1}{\sigma\sqrt{2\pi}} - \frac{(y_i - h(\mathbf{x}_i))^2}{2\sigma^2}$$

 $h_{ML} = \underset{h \in H}{\arg\max} P(D|h)$

Our goal is to find the most likely hypothesis

$$h_{ML} = \arg \max_{h \in H} p(D|h) = \arg \max_{h \in H} \prod_{i=1}^{m} p(y_i|h, x_i)$$

$$= \arg \max_{h \in H} \prod_{i=1}^{m} \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(y_i - h(\mathbf{x}_i))^2}{2\sigma^2}}$$

$$= \arg \max_{h \in H} \sum_{i=1}^{m} \log \frac{1}{\sigma\sqrt{2\pi}} - \frac{(y_i - h(\mathbf{x}_i))^2}{2\sigma^2}$$

$$= \arg \max_{h \in H} - \sum_{i=1}^{m} \frac{(y_i - h(\mathbf{x}_i))^2}{2\sigma^2}$$

 $h_{ML} = \underset{h \in H}{\operatorname{arg\,max}} P(D|h)$

Our goal is to find the most likely hypothesis

 $h \in H$

$$h_{ML} = \arg \max_{h \in H} p(D|h) = \arg \max_{h \in H} \prod_{i=1}^{m} p(y_i|h, x_i)$$

$$= \arg \max_{h \in H} \prod_{i=1}^{m} \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(y_i - h(\mathbf{x}_i))^2}{2\sigma^2}}$$

$$= \arg \max_{h \in H} \sum_{i=1}^{m} \log \frac{1}{\sigma\sqrt{2\pi}} - \frac{(y_i - h(\mathbf{x}_i))^2}{2\sigma^2}$$

$$= \arg \max_{h \in H} - \sum_{i=1}^{m} \frac{(y_i - h(\mathbf{x}_i))^2}{2\sigma^2}$$
Because we assumed that the

 $\arg \min \sum (y_i - n(\mathbf{x}_i))$ standard deviation is a constant.

69

The most likely hypothesis is

$$h_{ML} = \underset{h \in H}{\operatorname{arg\,min}} \sum_{i=1}^{m} \left(y_i - h(\mathbf{x}_i) \right)^2$$

The most likely hypothesis is

$$h_{ML} = \underset{h \in H}{\operatorname{arg\,min}} \sum_{i=1}^{m} \left(y_i - h(\mathbf{x}_i) \right)^2$$

If we consider the set of linear functions as our hypothesis space: $h(\mathbf{x}_i) = \mathbf{w}^T \mathbf{x}_i$

$$h_{ML} = \underset{\mathbf{w}}{\operatorname{arg\,min}} \sum_{i=1}^{m} \left(y_i - \mathbf{w}^T \mathbf{x}_i \right)^2$$

The most likely hypothesis is

$$h_{ML} = \underset{h \in H}{\operatorname{arg\,min}} \sum_{i=1}^{m} \left(y_i - h(\mathbf{x}_i) \right)^2$$

If we consider the set of linear functions as our hypothesis space: $h(\mathbf{x}_i) = \mathbf{w}^T \mathbf{x}_i$

$$h_{ML} = \underset{\mathbf{w}}{\operatorname{arg\,min}} \sum_{i=1}^{m} (y_i - \mathbf{w}^T \mathbf{x}_i)^2$$

This is the probabilistic explanation for least squares regression
Linear regression: Two perspectives

Loss minimization perspective

We want to minimize the difference between the squared loss error of our prediction

Minimize the total squared loss

Bayesian perspective

We believe that the errors are Normally distributed with zero mean and a fixed variance

Find the linear regressor using the maximum likelihood principle

$$rgmin_{\mathbf{w}}\sum_{i=1}^{m} \left(y_i - \mathbf{w}^T \mathbf{x}_i\right)^2$$

This lecture: Summary

- Bayesian Learning
 - Another way to ask: What is the best hypothesis for a dataset?
 - Two answers to the question: Maximum a posteriori (MAP) and maximum likelihood estimation (MLE)
- We saw two examples of maximum likelihood estimation
 - Binomial distribution, normal distribution
 - You should be able to apply both MAP and MLE to simple problems