Multiplicative Updates & the Winnow Algorithm

Machine Learning

Where are we?

- Still looking at linear classifiers
- Still looking at mistake-bound learning
- We have seen the Perceptron update rule

• Receive an input (\boldsymbol{x}_i, y_i)

• if sgn($\mathbf{w}_t^T \mathbf{x}_i$) $\neq y_i$: Update $\mathbf{w}_{t+1} \leftarrow \mathbf{w}_t + y_i \mathbf{x}_i$

 The Perceptron update is an example of an *additive* weight update

This lecture

- The Winnow Algorithm
- Winnow mistake bound
- Generalizations

This lecture

- The Winnow Algorithm
- Winnow mistake bound
- Generalizations

The setting

- Recall linear threshold units
 - Prediction = +1 if $w^T x \ge \theta$
 - Prediction = -1 if $w^T x < \theta$
- The Perceptron mistake bound is $(R/\gamma)^2$
 - For Boolean functions with n attributes, $R^2 = n$, so basically O(n)

• *Motivating question*:

Suppose we know that even though the number of attributes is n, the number of relevant attributes is k, which is much less than n Can we improve the mistake bound?

- Suppose we know that the true concept is a disjunction of only a small number of features
 - Say only x_1 and x_2 are relevant

- Suppose we know that the true concept is a disjunction of only a small number of features
 - Say only x_1 and x_2 are relevant
- The elimination algorithm will work:
 - Start with h(x) = $x_1 \lor x_2 \lor \cdots \lor x_{1024}$
 - Mistake on a negative example: Eliminate all attributes in the example from your hypothesis function h
 - Suppose we have an example $x_{100} = 1$, $x_{301} = 1$, label = -1
 - Simple update: just eliminate these two variables from the function
 - Will never make mistakes on a positive example. Why?

- Suppose we know that the true concept is a disjunction of only a small number of features
 - Say only x_1 and x_2 are relevant
- The elimination algorithm will work:
 - Start with h(x) = $x_1 \lor x_2 \lor \cdots \lor x_{1024}$
 - Mistake on a negative example: Eliminate all attributes in the example from your hypothesis function h
 - Suppose we have an example $x_{100} = 1$, $x_{301} = 1$, label = -1
 - Simple update: just eliminate these two variables from the function
 - Will never make mistakes on a positive example. Why?
- Makes O(n) updates

- Suppose we know that the true concept is a disjunction of only a small number of features
 - Say only x_1 and x_2 are relevant
- The elimination algorithm will work:
 - Start with h(x) = $x_1 \lor x_2 \lor \cdots \lor x_{1024}$
 - Mistake on a negative example: Eliminate all attributes in the example from your hypothesis function h
 - Suppose we have an example $x_{100} = 1$, $x_{301} = 1$, label = -1
 - Simple update: just eliminate these two variables from the function
 - Will never make mistakes on a positive example. Why?
- Makes O(n) updates
- But we know that our function is a k-disjunction (here k = 2)
 - And there are only $C(n, k) \cdot 2^k \approx n^k 2^k$ such functions
 - The Halving algorithm will make k log(n) mistakes
 - Can we realize this bound with an efficient algorithm?

Multiplicative updates

- Let's use linear classifiers with a different update rule
 - Remember: Perceptron will make O(n) mistakes on Boolean functions
- The idea: Weights should be promoted and demoted via multiplicative, rather than additive, updates

Littlestone 1988

Given a training set D = {(x, y)}, x \in {0,1}ⁿ, $y \in$ {-1,1}

Given a training set D = {(x, y)}, x \in {0,1}ⁿ, $y \in$ {-1,1}

1. Initialize: **w** = (1,1,1,1...,1) $\in \Re^{n, \theta} = n$

Given a training set D = {(x, y)}, $x \in \{0,1\}^n$, $y \in \{-1,1\}$

- 1. Initialize: **w** = (1,1,1,1...,1) $\in \Re^{n, \theta} = n$
- 2. For each training example (x, y):
 - Predict $y' = \operatorname{sgn}(\mathbf{w}^{\mathsf{T}}\mathbf{x} \theta)$

Given a training set D = {(x, y)}, x \in {0,1}ⁿ, $y \in$ {-1,1}

- 1. Initialize: **w** = (1,1,1,1...,1) $\in \Re^{n, \theta} = n$
- 2. For each training example (x, y):
 - Predict $y' = \operatorname{sgn}(\mathbf{w}^{\mathsf{T}}\mathbf{x} \theta)$
 - If y = +1 and y' = -1 then:

Promotion • Update each weight $w_i \leftarrow 2w_i$ only for those features x_i that are 1

Given a training set D = {(x, y)}, x \in {0,1}ⁿ, $y \in$ {-1,1}

- 1. Initialize: **w** = (1,1,1,1...,1) $\in \Re^{n, \theta} = n$
- 2. For each training example (x, y):
 - Predict $y' = \operatorname{sgn}(\mathbf{w}^{\mathsf{T}}\mathbf{x} \theta)$
 - If y = +1 and y' = -1 then:
- Promotion Update each weight $w_i \leftarrow 2w_i$ only for those features x_i that are 1 Else if y = -1 and y' = +1 then:

Demotion • Update each weight $w_i \leftarrow w_i/2$ only for those features x_i that are 1

 $f = x_1 \vee x_2 \vee x_{1023} \vee x_{1024}$ Initialize $\theta = 1024$, w = (1,1,1,1,...,1)

 $f = x_1 \vee x_2 \vee x_{1023} \vee x_{1024}$ Initialize $\theta = 1024$, w = (1,1,1,1,...,1)

Example	Prediction	Error?	Weights
x=(1,1,1,,1), y=+1	$\mathbf{w}^{ extsf{T}} oldsymbol{x} \geq heta$	No	w = (1,1,1,1,1)

 $f = x_1 \vee x_2 \vee x_{1023} \vee x_{1024}$ Initialize $\theta = 1024$, w = (1,1,1,1,...,1)

Example	Prediction	Error?	Weights
<i>x</i> =(1,1,1,,1), <i>y</i> =+1	$\mathbf{w}^{ extsf{T}} oldsymbol{x} \geq heta$	No	w = (1,1,1,1,1)
<i>x</i> =(0,0,0,,0), <i>y</i> =-1	$\mathbf{w}^{T} \boldsymbol{x} < \boldsymbol{ heta}$	No	w = (1,1,1,1,1)

 $f = x_1 \vee x_2 \vee x_{1023} \vee x_{1024}$ Initialize $\theta = 1024$, w = (1,1,1,1...,1)

Example	Prediction	Error?	Weights
<i>x</i> =(1,1,1,,1), <i>y</i> =+1	$\mathbf{w}^{ extsf{T}} oldsymbol{x} \geq heta$	No	w = (1,1,1,1,1)
x=(0,0,0,,0), y=-1	$\mathbf{w}^{T} \mathbf{x} < \mathbf{\theta}$	No	w = (1,1,1,1,1)
x=(0,0,1,1,1,,0), y=-1	$\mathbf{w}^{T} \boldsymbol{x} < \boldsymbol{\theta}$	No	w = (1,1,1,1,1)

No changes until there are mistakes

 $f = x_1 \vee x_2 \vee x_{1023} \vee x_{1024}$ Initialize $\theta = 1024$, w = (1,1,1,1,...,1)

Example	Prediction	Error?	Weights
<i>x</i> =(1,1,1,,1), <i>y</i> =+1	$\mathbf{w}^{ extsf{T}} oldsymbol{x} \geq heta$	No	w = (1,1,1,1,1)
<i>x</i> =(0,0,0,,0), <i>y</i> = -1	$\mathbf{w}^{T} \mathbf{x} < \theta$	No	w = (1,1,1,1,1)
x=(0,0,1,1,1,,0), y=-1	$\mathbf{w}^{T} x < \theta$	No	w = (1,1,1,1,1)
<i>x</i> =(1,0,0,,0), <i>y</i> =+1	$\mathbf{w}^{T} x < heta$	Yes	w = (2 ,1,1,1,1)

Promote x₁

 $f = x_1 \vee x_2 \vee x_{1023} \vee x_{1024}$ Initialize $\theta = 1024$, w = (1,1,1,1,...,1)

Example	Prediction	Error?	Weights
<i>x</i> =(1,1,1,,1), <i>y</i> =+1	$\mathbf{w}^{ extsf{T}} oldsymbol{x} \geq heta$	No	w = (1,1,1,1,1)
<i>x</i> =(0,0,0,,0), <i>y</i> = -1	$\mathbf{w}^{T} x < \theta$	No	w = (1,1,1,1,1)
<i>x</i> =(0,0,1,1,1,,0), <i>y</i> =-1	$\mathbf{w}^{T} x < \theta$	No	w = (1,1,1,1,1)
<i>x</i> =(1,0,0,,0), <i>y</i> =+1	$\mathbf{w}^{T} x < \theta$	Yes	w = (2 ,1,1,1,1)
<i>x</i> =(0,1,0,,0), <i>y</i> =+1	$\mathbf{w}^{T} x < \theta$	Yes	w = (2, 2 ,1,1,1)

Promote x₂

 $f = x_1 \vee x_2 \vee x_{1023} \vee x_{1024}$ Initialize $\theta = 1024$, w = (1,1,1,1,...,1)

Example	Prediction	Error?	Weights
<i>x</i> =(1,1,1,,1), <i>y</i> =+1	$\mathbf{w}^{ extsf{T}} oldsymbol{x} \geq heta$	No	w = (1,1,1,1,1)
<i>x</i> =(0,0,0,,0), <i>y</i> = -1	$\mathbf{w}^{T} \mathbf{x} < \mathbf{\theta}$	No	w = (1,1,1,1,1)
<i>x</i> =(0,0,1,1,1,,0), <i>y</i> =-1	$\mathbf{w}^{T} x < \theta$	No	w = (1,1,1,1,1)
<i>x</i> =(1,0,0,,0), <i>y</i> =+1	$\mathbf{w}^{T} x < \theta$	Yes	w = (2 ,1,1,1,1)
<i>x</i> =(0,1,0,,0), <i>y</i> =+1	$\mathbf{w}^{T} x < \theta$	Yes	w = (2, 2 ,1,1,1)
<i>x</i> =(1,1,1,,0), <i>y</i> =+1	$\mathbf{w}^{T} x < \theta$	Yes	w = (4 , 4 , 2 ,1,1)

Promote x₁, x₂ and x₃

...

 $f = x_1 \vee x_2 \vee x_{1023} \vee x_{1024}$ Initialize $\theta = 1024$, w = (1,1,1,1...,1)

Example	Prediction	Error?	Weights
<i>x</i> =(1,1,1,,1), <i>y</i> =+1	$\mathbf{w}^{ extsf{T}} oldsymbol{x} \geq heta$	No	w = (1,1,1,1,1)
<i>x</i> =(0,0,0,,0), <i>y</i> = -1	$\mathbf{w}^{T} \mathbf{x} < \mathbf{\theta}$	No	w = (1,1,1,1,1)
x=(0,0,1,1,1,,0), y=-1	$\mathbf{w}^{T} \mathbf{x} < \mathbf{\theta}$	No	w = (1,1,1,1,1)
<i>x</i> =(1,0,0,,0), <i>y</i> =+1	$\mathbf{w}^{T} \mathbf{x} < \theta$	Yes	w = (2 ,1,1,1,1)
<i>x</i> =(0,1,0,,0), <i>y</i> =+1	$\mathbf{w}^{T} \mathbf{x} < \mathbf{\theta}$	Yes	w = (2, 2 ,1,1,1)
<i>x</i> =(1,1,1,,0), <i>y</i> =+1	$\mathbf{w}^{T} \mathbf{x} < \theta$	Yes	w = (4 , 4 , 2 ,1,1)
<i>x</i> =(1,0,0,,1), <i>y</i> =+1	$\mathbf{w}^{T} \mathbf{x} < \mathbf{\theta}$	Yes	w = (8 ,4,2,1, 2)

...

...

...

...

 $f = x_1 \vee x_2 \vee x_{1023} \vee x_{1024}$ Initialize $\theta = 1024$, w = (1,1,1,1...,1)

Example	Prediction	Error?	Weights
<i>x</i> =(1,1,1,,1), <i>y</i> =+1	$\mathbf{w}^{ extsf{T}} oldsymbol{x} \geq heta$	No	w = (1,1,1,1,1)
<i>x</i> =(0,0,0,,0), <i>y</i> = -1	$\mathbf{w}^{T} \mathbf{x} < \mathbf{\theta}$	No	w = (1,1,1,1,1)
x=(0,0,1,1,1,,0), y=-1	$\mathbf{w}^{T} x < \theta$	No	w = (1,1,1,1,1)
<i>x</i> =(1,0,0,,0), <i>y</i> =+1	$\mathbf{w}^{T} x < \theta$	Yes	w = (2 ,1,1,1,1)
<i>x</i> =(0,1,0,,0), <i>y</i> =+1	$\mathbf{w}^{T} x < \theta$	Yes	w = (2, 2 ,1,1,1)
<i>x</i> =(1,1,1,,0), <i>y</i> =+1	$\mathbf{w}^{T} x < \theta$	Yes	w = (4 , 4 , 2 ,1,1)
<i>x</i> =(1,0,0,,1), <i>y</i> =+1	$\mathbf{w}^{T} \mathbf{x} < \mathbf{\theta}$	Yes	w = (8 ,4,2,1, 2)

...

Suppose after many steps, **w** = (512,256,512,512...,512)

...

...

 $f = x_1 \vee x_2 \vee x_{1023} \vee x_{1024}$ Initialize $\theta = 1024$, w = (1,1,1,1...,1)

Example	Prediction	Error?	Weights
<i>x</i> =(1,1,1,,1), <i>y</i> =+1	$\mathbf{w}^{ extsf{T}} oldsymbol{x} \geq heta$	No	w = (1,1,1,1,1)
x=(0,0,0,,0), y=-1	$\mathbf{w}^{T} x < \theta$	No	w = (1,1,1,1,1)
x=(0,0,1,1,1,,0), y=-1	$\mathbf{w}^{T} x < \theta$	No	w = (1,1,1,1,1)
<i>x</i> =(1,0,0,,0), <i>y</i> =+1	$\mathbf{w}^{T} x < \theta$	Yes	w = (2 ,1,1,1,1)
<i>x</i> =(0,1,0,,0), <i>y</i> =+1	$\mathbf{w}^{T} x < \theta$	Yes	w = (2, 2 ,1,1,1)
<i>x</i> =(1,1,1,,0), <i>y</i> =+1	$\mathbf{w}^{T} x < \theta$	Yes	w = (4 , 4 , 2 ,1,1)
<i>x</i> =(1,0,0,,1), <i>y</i> =+1	$\mathbf{w}^{T} \mathbf{x} < \theta$	Yes	w = (8 ,4,2,1, 2)
		•••	
			w = (512,256 ,512,512, 512)
<i>x</i> =(0,0,1,1,,0), <i>y</i> =-1	$\mathbf{w}^{ extsf{T}} oldsymbol{x} \geq heta$	Yes	w = (512,256, 256 , 256 ,512)

Demote x_3 and x_4

 $f = x_1 \vee x_2 \vee x_{1023} \vee x_{1024}$ Initialize $\theta = 1024$, w = (1,1,1,1...,1)

Example	Prediction	Error?	Weights
<i>x</i> =(1,1,1,,1), <i>y</i> =+1	$\mathbf{w}^{ extsf{T}} oldsymbol{x} \geq heta$	No	w = (1,1,1,1,1)
<i>x</i> =(0,0,0,,0), <i>y</i> = -1	$\mathbf{w}^{T} x < \theta$	No	w = (1,1,1,1,1)
x=(0,0,1,1,1,,0), y=-1	$\mathbf{w}^{T} x < \theta$	No	w = (1,1,1,1,1)
<i>x</i> =(1,0,0,,0), <i>y</i> =+1	$\mathbf{w}^{T} x < \theta$	Yes	w = (2 ,1,1,1,1)
<i>x</i> =(0,1,0,,0), <i>y</i> =+1	$\mathbf{w}^{T} \mathbf{x} < \mathbf{\theta}$	Yes	w = (2, 2 ,1,1,1)
<i>x</i> =(1,1,1,,0), <i>y</i> =+1	$\mathbf{w}^{T} \mathbf{x} < \mathbf{\theta}$	Yes	w = (4 , 4 , 2 ,1,1)
<i>x</i> =(1,0,0,,1), <i>y</i> =+1	$\mathbf{w}^{T} \mathbf{x} < \mathbf{\theta}$	Yes	w = (8 ,4,2,1, 2)
	•••	•••	
			w = (512,256 ,512,512, 512)
<i>x</i> =(0,0,1,1,,0), <i>y</i> =-1	$\mathbf{w}^{ extsf{T}} oldsymbol{x} \geq heta$	Yes	w = (512,256, 256 , 256 ,512)
<i>x</i> =(0,0,0,,1), <i>y</i> =+1	$\mathbf{w}^{T} \mathbf{x} < \mathbf{\theta}$	Yes	w = (512,256,256,256, 1024)

 $f = x_1 \lor x_2 \lor x_{1023} \lor x_{1024}$ Initialize $\theta = 1024$, w = (1,1,1,1...,1)

Example	Prediction	Error?	Weights
<i>x</i> =(1,1,1,,1), <i>y</i> =+1	$\mathbf{w}^{ extsf{T}} oldsymbol{x} \geq heta$	No	w = (1,1,1,1,1)
<i>x</i> =(0,0,0,,0), <i>y</i> = -1	$\mathbf{w}^{T} x < \theta$	No	w = (1,1,1,1,1)
x=(0,0,1,1,1,,0), y=-1	$\mathbf{w}^{T} x < \theta$	No	w = (1,1,1,1,1)
<i>x</i> =(1,0,0,,0), <i>y</i> =+1	$\mathbf{w}^{T} x < \theta$	Yes	w = (2 ,1,1,1,1)
<i>x</i> =(0,1,0,,0), <i>y</i> =+1	$\mathbf{w}^{T} x < \theta$	Yes	w = (2, 2 ,1,1,1)
<i>x</i> =(1,1,1,,0), <i>y</i> =+1	$\mathbf{w}^{T} x < \theta$	Yes	w = (4 , 4 , 2 ,1,1)
<i>x</i> =(1,0,0,,1), <i>y</i> =+1	$\mathbf{w}^{T} x < \theta$	Yes	w = (8 ,4,2,1, 2)
	•••	•••	
			w = (512,256 ,512,512, 512)
<i>x</i> =(0,0,1,1,,0), <i>y</i> =-1	$\mathbf{w}^{ extsf{T}} oldsymbol{x} \geq heta$	Yes	w = (512,256, 256 , 256 ,512)
<i>x</i> =(0,0,0,,1), <i>y</i> =+1	$\mathbf{w}^{T} x < \theta$	Yes	w = (512,256,256,256, 1024)

Eventually, the algorithm will converge to something like w = (1024,1024,16,2..., 1024,1024)

The multiplicative update

Widely used (and re-re-discovered) in various fields

- Winnow (and the Majority Weighted algorithm)
- We will see the AdaBoost algorithm
- Shows up in economics and game theory (from the 1950s)
- Computational Geometry
- Operations research
- Many more...

See: Sanjeev Arora, Elad Hazan and Satyen Kale, *The Multiplicative Weights Update Method: a Meta Algorithm and Applications,* for a survey

This lecture

- The Winnow Algorithm
- Winnow mistake bound
- Generalizations

Given a training set D = {(\boldsymbol{x}, y)}, $\boldsymbol{x} \in \Re^n$, $y \in$ {-1,1}

- 1. Initialize: **w** = (1,1,1,1...,1) $\in \Re^{n, \theta} = n$
- 2. For each training example (x, y):
 - Predict $y' = \operatorname{sgn}(\mathbf{w}^{\mathsf{T}} \mathbf{x} \theta)$
 - If y = +1 and y' = -1 then:
 - Update each weight $\mathbf{w}_i \leftarrow 2\mathbf{w}_i$ only for those features x_i that are 1 Else if y = -1 and y' = +1 then:
 - Update each weight $\mathbf{w}_{\mathsf{i}} \leftarrow \mathbf{w}_{\mathsf{i}}/2$ only for those features x_i that are 1

Winnow mistake bound

We will analyze the simple case of *k*-*disjunctions*

Theorem

The Winnow algorithm learns the class of k-disjunctions with n Boolean variables in the Mistake bound model, making O(k log n) mistakes.

Winnow mistake bound

We will analyze the simple case of *k*-*disjunctions*

Theorem

The Winnow algorithm learns the class of k-disjunctions with n Boolean variables in the Mistake bound model, making O(k log n) mistakes.

Implications:

- 1. Recall: The Perceptron mistake bound is O(n), "throwing lots of features at the problem" can hurt learning
- Winnow is *attribute efficient* because it only has a log dependency on n.
 Only a small penalty for trying out lots of features

Proof

Theorem: Winnow will make at most O(k log n) mistakes with k-disjunctions

Our target functions are k-disjunctions

Strategy

Total mistakes = mistakes on positive examples

+

mistakes on negative examples

Get mistake bound by upper bounding each separately

Theorem: Winnow will make at most O(k log n) mistakes with k-disjunctions

Our target functions are k-disjunctions

Strategy Total mistakes = mistakes on positive examples m^+ + mistakes on negative examples m^-

Proof

Get mistake bound by upper bounding each separately

1. Mistakes on positives

(The true label is positive, the prediction is negative)

Theorem: Winnow will make at most O(k log n) mistakes with k-disjunctions

Our target functions are k-disjunctions

- A mistake on a positive example will double the weights for *at least* one of the relevant attributes. Why?
 Because a positive example will have at least one relevant attribute
- We initialized our weight vector with 1's and the threshold θ is always fixed to n
- How many times can a relevant attribute get promoted (i.e. doubled) before it hits n?
 - 1 + log(n) times. After that, it will cross θ

Number of mistakes on positive examples $m^+ \leq k \left(1 + \log(n)\right)$

2. Mistakes on negatives

(The true label is negative, the prediction is positive)

Theorem: Winnow will make at most O(k log n) mistakes with k-disjunctions

Our target functions are k-disjunctions

There is *no relevant feature* in the example, yet the dot product of weights and features was more than n

Halve all the weights of the features in this example. *No relevant feature* will ever get demoted.

But will irrelevant features ever get promoted (i.e their weights doubled)?

Yes. If an irrelevant feature shows up in a positive example, it may get promoted

Contrast: Relevant features will only get promoted and never demoted We need a different way to count mistakes on negatives

2. Mistakes on negatives

Let's use a different strategy

Theorem: Winnow will make at most O(k log n) mistakes with k-disjunctions

Our target functions are k-disjunctions

Track the sum of all weights over time: $TW_t = \sum_{i=1}^{n} w_i^t$

- 1. The weights are never negative, neither is their sum $TW_t > 0$
- 2. The initial value of the sum is n (because all weights are initialized to 1)

 $TW_0 = n$

Let's use a different strategy

Theorem: Winnow will make at most O(k log n) mistakes with k-disjunctions

Our target functions are k-disjunctions

Track the sum of all weights over time: $TW_t = \sum_{i=1}^{t} w_i^t$

3. What happens to TW_t when there is a mistake on a positive example? $TW_{t+1} < TW_t + n$ Why?

Total increase because of positive examples $< nm^+$

Let's use a different strategy

Theorem: Winnow will make at most O(k log n) mistakes with kdisjunctions

Our target functions are k-disjunctions

Track the sum of all weights over time: $TW_t = \sum_{i=1}^{t} w_i^t$

4. What happens to TW_t when there is a mistake on a negative example?

$$TW_{t+1} < TW_t - \frac{\pi}{2}$$
 Why?

Total *decrease* because of negative examples $< \frac{n}{2}m^{-1}$

2. Mistakes on negatives

Let's use a different strategy

Theorem: Winnow will make at most O(k log n) mistakes with k-disjunctions

Our target functions are k-disjunctions

What we know:

 $TW_t > 0 \qquad TW_0 = n$

Total increase because of positive examples $< nm^+$

Total decrease because of negative examples $< \frac{n}{2}m^{-}$

Putting these together: $0 < TW_t < n + nm^+ - \frac{n}{2}m^-$

Number of mistakes on negative examples $m^- < 2(1 + m^+)$

3. Mistake bound

Theorem: Winnow will make at most O(k log n) mistakes with k-disjunctions

Our target functions are k-disjunctions

Mistakes on positive examples: $m^+ \le k (1 + \log(n))$ Mistakes on negative examples: $m^- < 2(1 + m^+)$

Total number of mistakes =
$$m^+ + m^- < m^+ + 2(1 + m^+)$$

 $< 2 + 3k (1 + \log(n))$

Number of mistakes Winnow will make on k-disjunctions = $O(k \log(n))$

This lecture

- The Winnow Algorithm
- Winnow mistake bound
- Generalizations

What can Winnow represent?

The version we saw can only learn monotone functions

- Why?

Balanced Winnow

- Duplicate the variables
 - If x_i^+ represents a Boolean variable, then, introduce a new variable x_i^- to denote its negation
 - That is, learn a monotone function over the 2n variables ($w^{\rm +}_{i}$ for each $x^{\rm +}_{i}$ and $w^{\rm -}_{i}$ for each $x^{\rm -}_{i}$)
 - Effective weight vector is the difference of the two. That is, prediction is performed as:
 - Prediction = +1 if $(\mathbf{w}^+ \mathbf{w}^-)^T \mathbf{x} \ge \theta$, else prediction = -1
 - Modify the update rule so that whenever w_i is promoted, $w^{\text{-}}_i$ should be demoted and vice versa.
- Can learn any linear threshold unit

Balanced Winnow

Given a training set D = {($m{x}, y$)}, $m{x} \in \Re^n$, $y \in$ {-1,1}

- 1. Initialize: $w^+ = (1, 1, 1, 1, ..., 1), w^- = (1, 1, 1, 1, ..., 1) \in \Re^{n, \theta} = n$
- 2. For each training example (x, y):
 - Predict $y' = \operatorname{sgn}((\mathbf{w}^+ \mathbf{w}^-)^T x \theta)$
 - If y = +1 and y' = -1 then:
 - Update weight $\mathbf{w}_{i}^{+} \leftarrow 2\mathbf{w}_{i}^{+}$ only for those features x_{i} that are 1
 - Update weight $\mathbf{w}_i \leftarrow \mathbf{w}_i/2$ only for those features x_i that are 1 Else if y = -1 and y' = +1 then:
 - Update weight $\mathbf{w}_{i}^{+} \leftarrow \mathbf{w}_{i}^{+}/2$ only for those features x_{i} that are 1
 - Update weight $\mathbf{w}_i \leftarrow 2\mathbf{w}_i$ only for those features x_i that are 1

Downsides of this approach?

Perceptron and Winnow

- Both are:
 - Mistake bound algorithms
 - Learn linear threshold units
 - Are generally robust
- Which algorithm should you use??
 - Multiplicative algorithms: If you believe that the hidden target function is sparse
 - Additive algorithms: If you believe that your target function could be a dense vector
 - What if the target function is a dense vector but each example is sparse? (If time permits, we will see additive algorithms that are designed for this regime)

Summary: What Winnow so far?

- A multiplicative update algorithm
 - Learns a linear classifier when very few attributes are relevant
 - Mistake bound only weakly (logarithmically) depends on the number of attributes
- Robust to both classification and attribute noise
 - In general, instead of multiplying and dividing by 2, we could do so by $(1 + \epsilon)$ for some small ϵ