
Machine	Learning

Multiplicative	Updates	
&	

the	Winnow	Algorithm

1



Where	are	we?

• Still	looking	at	linear	classifiers
• Still	looking	at	mistake-bound	learning

• We	have	seen	the	Perceptron	update	rule

• The	Perceptron	update	is	an	example	of	an	additive	
weight	update

• Receive	an	input	(xi,	yi)
• if	sgn(wt

Txi)	≠	yi:
Update	wt+1Ã wt +	yi xi

2



This	lecture

• The	Winnow	Algorithm

• Winnow	mistake	bound

• Generalizations

3



This	lecture

• The	Winnow	Algorithm

• Winnow	mistake	bound

• Generalizations

4



The	setting

• Recall	linear	threshold	units
– Prediction	=	+1	if	wTx¸ µ
– Prediction	=	-1	if	wTx <	µ

• The	Perceptron	mistake	bound	is	(R/°)2
– For	Boolean	functions	with	n	attributes,	R2 =	n,	so	basically	O(n)

• Motivating	question:	
Suppose	we	know	that	even	though	the	number	of	attributes	is	n,	
the	number	of	relevant	attributes	is	k,	which	is	much	less	than	n
Can	we	improve	the	mistake	bound?

5



Learning	when	irrelevant	attributes	abound
Example
• Suppose	we	know	that	the	true	concept	is	a	disjunction	of	only	a	small	

number	of	features
– Say	only	x1 and	x2 are	relevant

• The	elimination	algorithm	will	work:	
– Start	with	h(x)	=	x1 Ç x2 Ç ! Ç x1024
– Mistake	on	a	negative	example:	Eliminate	all	attributes	in	the	example	from	your	

hypothesis	function	h
• Suppose	we	have	an	example	x100 =	1,	x301 =	1,	label	=	-1
• Simple	update:	just	eliminate	these	two	variables	from	the	function

– Will	never	make	mistakes	on	a	positive	example.	Why?

• Makes	O(n)		updates

• But	we	know	that	our	function	is	a	k-disjunction	(here	k	=	2)	
– And	there	are	only	C(n,	k)	· 2k ¼ nk2k	such	functions
– The	Halving	algorithm	will	make	k	log(n)	mistakes
– Can	we	realize	this	bound	with	an	efficient	algorithm?

6



Learning	when	irrelevant	attributes	abound
Example
• Suppose	we	know	that	the	true	concept	is	a	disjunction	of	only	a	small	

number	of	features
– Say	only	x1 and	x2 are	relevant

• The	elimination	algorithm	will	work:	
– Start	with	h(x)	=	x1 Ç x2 Ç ! Ç x1024
– Mistake	on	a	negative	example:	Eliminate	all	attributes	in	the	example	from	your	

hypothesis	function	h
• Suppose	we	have	an	example	x100 =	1,	x301 =	1,	label	=	-1
• Simple	update:	just	eliminate	these	two	variables	from	the	function

– Will	never	make	mistakes	on	a	positive	example.	Why?

• Makes	O(n)		updates

• But	we	know	that	our	function	is	a	k-disjunction	(here	k	=	2)	
– And	there	are	only	C(n,	k)	· 2k ¼ nk2k	such	functions
– The	Halving	algorithm	will	make	k	log(n)	mistakes
– Can	we	realize	this	bound	with	an	efficient	algorithm?

7



Learning	when	irrelevant	attributes	abound
Example
• Suppose	we	know	that	the	true	concept	is	a	disjunction	of	only	a	small	

number	of	features
– Say	only	x1 and	x2 are	relevant

• The	elimination	algorithm	will	work:	
– Start	with	h(x)	=	x1 Ç x2 Ç ! Ç x1024
– Mistake	on	a	negative	example:	Eliminate	all	attributes	in	the	example	from	your	

hypothesis	function	h
• Suppose	we	have	an	example	x100 =	1,	x301 =	1,	label	=	-1
• Simple	update:	just	eliminate	these	two	variables	from	the	function

– Will	never	make	mistakes	on	a	positive	example.	Why?

• Makes	O(n)		updates

• But	we	know	that	our	function	is	a	k-disjunction	(here	k	=	2)	
– And	there	are	only	C(n,	k)	· 2k ¼ nk2k	such	functions
– The	Halving	algorithm	will	make	k	log(n)	mistakes
– Can	we	realize	this	bound	with	an	efficient	algorithm?

8



Learning	when	irrelevant	attributes	abound
Example
• Suppose	we	know	that	the	true	concept	is	a	disjunction	of	only	a	small	

number	of	features
– Say	only	x1 and	x2 are	relevant

• The	elimination	algorithm	will	work:	
– Start	with	h(x)	=	x1 Ç x2 Ç ! Ç x1024
– Mistake	on	a	negative	example:	Eliminate	all	attributes	in	the	example	from	your	

hypothesis	function	h
• Suppose	we	have	an	example	x100 =	1,	x301 =	1,	label	=	-1
• Simple	update:	just	eliminate	these	two	variables	from	the	function

– Will	never	make	mistakes	on	a	positive	example.	Why?

• Makes	O(n)		updates

• But	we	know	that	our	function	is	a	k-disjunction	(here	k	=	2)	
– And	there	are	only	C(n,	k)	· 2k ¼ nk2k	such	functions
– The	Halving	algorithm	will	make	k	log(n)	mistakes
– Can	we	realize	this	bound	with	an	efficient	algorithm?

9



Multiplicative	updates

• Let’s	use	linear	classifiers	with	a	different	update	rule
– Remember:	Perceptron	will	make	O(n)	mistakes	on	
Boolean	functions

• The	idea:	Weights	should	be	promoted	and	demoted	
via	multiplicative,	rather	than	additive,	updates

10



The	Winnow	algorithm

Given	a	training	set	D	=	{(x,	y)},	x 2 {0,1}n,	y 2 {-1,1}
1. Initialize:	w =	(1,1,1,1…,1)	2 <n, µ =	n

2. For	each	training	example	(x,	y):	
– Predict	y’	=	sgn(wTx – µ)
– If	y =	+1	and	y’ =	-1	then:

• Update	each	weight	wiÃ 2wi only	for	those	features	xi that	are	1
Else	if	y =	-1	and	y’ =	+1	then:
• Update	each	weight	wiÃ wi/2	only for	those	features	xi that	are	1

Promotion

Demotion

11

Littlestone 1988



The	Winnow	algorithm

Given	a	training	set	D	=	{(x,	y)},	x 2 {0,1}n,	y 2 {-1,1}
1. Initialize:	w =	(1,1,1,1…,1)	2 <n, µ =	n

2. For	each	training	example	(x,	y):	
– Predict	y’	=	sgn(wTx – µ)
– If	y =	+1	and	y’ =	-1	then:

• Update	each	weight	wiÃ 2wi only	for	those	features	xi that	are	1
Else	if	y =	-1	and	y’ =	+1	then:
• Update	each	weight	wiÃ wi/2	only for	those	features	xi that	are	1

Promotion

Demotion

12

Littlestone 1988



The	Winnow	algorithm

Given	a	training	set	D	=	{(x,	y)},	x 2 {0,1}n,	y 2 {-1,1}
1. Initialize:	w =	(1,1,1,1…,1)	2 <n, µ =	n

2. For	each	training	example	(x,	y):	
– Predict	y’	=	sgn(wTx – µ)
– If	y =	+1	and	y’ =	-1	then:

• Update	each	weight	wiÃ 2wi only	for	those	features	xi that	are	1
Else	if	y =	-1	and	y’ =	+1	then:
• Update	each	weight	wiÃ wi/2	only for	those	features	xi that	are	1

Promotion

Demotion

13

Littlestone 1988



The	Winnow	algorithm

Given	a	training	set	D	=	{(x,	y)},	x 2 {0,1}n,	y 2 {-1,1}
1. Initialize:	w =	(1,1,1,1…,1)	2 <n, µ =	n

2. For	each	training	example	(x,	y):	
– Predict	y’	=	sgn(wTx – µ)
– If	y =	+1	and	y’ =	-1	then:

• Update	each	weight	wiÃ 2wi only	for	those	features	xi that	are	1
Else	if	y =	-1	and	y’ =	+1	then:
• Update	each	weight	wiÃ wi/2	only for	those	features	xi that	are	1

Promotion

Demotion

14

Littlestone 1988



The	Winnow	algorithm

Given	a	training	set	D	=	{(x,	y)},	x 2 {0,1}n,	y 2 {-1,1}
1. Initialize:	w =	(1,1,1,1…,1)	2 <n, µ =	n

2. For	each	training	example	(x,	y):	
– Predict	y’	=	sgn(wTx – µ)
– If	y =	+1	and	y’ =	-1	then:

• Update	each	weight	wiÃ 2wi only	for	those	features	xi that	are	1
Else	if	y =	-1	and	y’ =	+1	then:
• Update	each	weight	wiÃ wi/2	only for	those	features	xi that	are	1

Promotion

Demotion

15

Littlestone 1988



Example	run	of	the	algorithm

Example Prediction Error? Weights
x=(1,1,1,…,1), y=+1 wTx¸ µ No w =	(1,1,1,1…,1)
x=(0,0,0,…,0), y=-1 wTx < µ No w =	(1,1,1,1…,1)

x=(0,0,1,1,1,…,0), y=-1 wTx < µ No w =	(1,1,1,1…,1)
x=(1,0,0,…,0), y=+1 wTx < µ Yes w =	(2,1,1,1…,1)
x=(0,1,0,…,0), y=+1 wTx < µ Yes w =	(2,2,1,1…,1)
x=(1,1,1,…,0), y=+1 wTx < µ Yes w =	(4,4,2,1…,1)
x=(1,0,0,…,1), y=+1 wTx < µ Yes w =	(8,4,2,1…,2)

... … … …

w =	(512,256,512,512…,512)
x=(0,0,1,1,…,0), y=-1 wTx¸ µ Yes w =	(512,256,256,256…,512)
x=(0,0,0,…,1), y=+1 wTx < µ Yes w =	(512,256,256,256…,1024)

16

f	=	x1 Ç x2 Ç x1023 Ç x1024 Initialize	µ =	1024,	w =	(1,1,1,1…,1)

Final	weight	vector	could	be	w =	(1024,1024,128,32…,1024,1024)



Example	run	of	the	algorithm

Example Prediction Error? Weights
x=(1,1,1,…,1), y=+1 wTx¸ µ No w =	(1,1,1,1…,1)
x=(0,0,0,…,0), y=-1 wTx < µ No w =	(1,1,1,1…,1)

x=(0,0,1,1,1,…,0), y=-1 wTx < µ No w =	(1,1,1,1…,1)
x=(1,0,0,…,0), y=+1 wTx < µ Yes w =	(2,1,1,1…,1)
x=(0,1,0,…,0), y=+1 wTx < µ Yes w =	(2,2,1,1…,1)
x=(1,1,1,…,0), y=+1 wTx < µ Yes w =	(4,4,2,1…,1)
x=(1,0,0,…,1), y=+1 wTx < µ Yes w =	(8,4,2,1…,2)

... … … …

w =	(512,256,512,512…,512)
x=(0,0,1,1,…,0), y=-1 wTx¸ µ Yes w =	(512,256,256,256…,512)
x=(0,0,0,…,1), y=+1 wTx < µ Yes w =	(512,256,256,256…,1024)

17

f	=	x1 Ç x2 Ç x1023 Ç x1024 Initialize	µ =	1024,	w =	(1,1,1,1…,1)

Final	weight	vector	could	be	w =	(1024,1024,128,32…,1024,1024)



Example	run	of	the	algorithm

Example Prediction Error? Weights
x=(1,1,1,…,1), y=+1 wTx¸ µ No w =	(1,1,1,1…,1)
x=(0,0,0,…,0), y=-1 wTx < µ No w =	(1,1,1,1…,1)

x=(0,0,1,1,1,…,0), y=-1 wTx < µ No w =	(1,1,1,1…,1)
x=(1,0,0,…,0), y=+1 wTx < µ Yes w =	(2,1,1,1…,1)
x=(0,1,0,…,0), y=+1 wTx < µ Yes w =	(2,2,1,1…,1)
x=(1,1,1,…,0), y=+1 wTx < µ Yes w =	(4,4,2,1…,1)
x=(1,0,0,…,1), y=+1 wTx < µ Yes w =	(8,4,2,1…,2)

... … … …

w =	(512,256,512,512…,512)
x=(0,0,1,1,…,0), y=-1 wTx¸ µ Yes w =	(512,256,256,256…,512)
x=(0,0,0,…,1), y=+1 wTx < µ Yes w =	(512,256,256,256…,1024)

18

f	=	x1 Ç x2 Ç x1023 Ç x1024 Initialize	µ =	1024,	w =	(1,1,1,1…,1)

Final	weight	vector	could	be	w =	(1024,1024,128,32…,1024,1024)



Example	run	of	the	algorithm

Example Prediction Error? Weights
x=(1,1,1,…,1), y=+1 wTx¸ µ No w =	(1,1,1,1…,1)
x=(0,0,0,…,0), y=-1 wTx < µ No w =	(1,1,1,1…,1)

x=(0,0,1,1,1,…,0), y=-1 wTx < µ No w =	(1,1,1,1…,1)
x=(1,0,0,…,0), y=+1 wTx < µ Yes w =	(2,1,1,1…,1)
x=(0,1,0,…,0), y=+1 wTx < µ Yes w =	(2,2,1,1…,1)
x=(1,1,1,…,0), y=+1 wTx < µ Yes w =	(4,4,2,1…,1)
x=(1,0,0,…,1), y=+1 wTx < µ Yes w =	(8,4,2,1…,2)

... … … …

w =	(512,256,512,512…,512)
x=(0,0,1,1,…,0), y=-1 wTx¸ µ Yes w =	(512,256,256,256…,512)
x=(0,0,0,…,1), y=+1 wTx < µ Yes w =	(512,256,256,256…,1024)

19

f	=	x1 Ç x2 Ç x1023 Ç x1024 Initialize	µ =	1024,	w =	(1,1,1,1…,1)

Final	weight	vector	could	be	w =	(1024,1024,128,32…,1024,1024)

No	changes	until	there	are	mistakes



Example	run	of	the	algorithm

Example Prediction Error? Weights
x=(1,1,1,…,1), y=+1 wTx¸ µ No w =	(1,1,1,1…,1)
x=(0,0,0,…,0), y=-1 wTx < µ No w =	(1,1,1,1…,1)

x=(0,0,1,1,1,…,0), y=-1 wTx < µ No w =	(1,1,1,1…,1)
x=(1,0,0,…,0), y=+1 wTx < µ Yes w =	(2,1,1,1…,1)
x=(0,1,0,…,0), y=+1 wTx < µ Yes w =	(2,2,1,1…,1)
x=(1,1,1,…,0), y=+1 wTx < µ Yes w =	(4,4,2,1…,1)
x=(1,0,0,…,1), y=+1 wTx < µ Yes w =	(8,4,2,1…,2)

... … … …

w =	(512,256,512,512…,512)
x=(0,0,1,1,…,0), y=-1 wTx¸ µ Yes w =	(512,256,256,256…,512)
x=(0,0,0,…,1), y=+1 wTx < µ Yes w =	(512,256,256,256…,1024)

20

f	=	x1 Ç x2 Ç x1023 Ç x1024 Initialize	µ =	1024,	w =	(1,1,1,1…,1)

Final	weight	vector	could	be	w =	(1024,1024,128,32…,1024,1024)

Promote	x1



Example	run	of	the	algorithm

Example Prediction Error? Weights
x=(1,1,1,…,1), y=+1 wTx¸ µ No w =	(1,1,1,1…,1)
x=(0,0,0,…,0), y=-1 wTx < µ No w =	(1,1,1,1…,1)

x=(0,0,1,1,1,…,0), y=-1 wTx < µ No w =	(1,1,1,1…,1)
x=(1,0,0,…,0), y=+1 wTx < µ Yes w =	(2,1,1,1…,1)
x=(0,1,0,…,0), y=+1 wTx < µ Yes w =	(2,2,1,1…,1)
x=(1,1,1,…,0), y=+1 wTx < µ Yes w =	(4,4,2,1…,1)
x=(1,0,0,…,1), y=+1 wTx < µ Yes w =	(8,4,2,1…,2)

... … … …

w =	(512,256,512,512…,512)
x=(0,0,1,1,…,0), y=-1 wTx¸ µ Yes w =	(512,256,256,256…,512)
x=(0,0,0,…,1), y=+1 wTx < µ Yes w =	(512,256,256,256…,1024)

21

f	=	x1 Ç x2 Ç x1023 Ç x1024 Initialize	µ =	1024,	w =	(1,1,1,1…,1)

Final	weight	vector	could	be	w =	(1024,1024,128,32…,1024,1024)

Promote	x2



Example	run	of	the	algorithm

Example Prediction Error? Weights
x=(1,1,1,…,1), y=+1 wTx¸ µ No w =	(1,1,1,1…,1)
x=(0,0,0,…,0), y=-1 wTx < µ No w =	(1,1,1,1…,1)

x=(0,0,1,1,1,…,0), y=-1 wTx < µ No w =	(1,1,1,1…,1)
x=(1,0,0,…,0), y=+1 wTx < µ Yes w =	(2,1,1,1…,1)
x=(0,1,0,…,0), y=+1 wTx < µ Yes w =	(2,2,1,1…,1)
x=(1,1,1,…,0), y=+1 wTx < µ Yes w =	(4,4,2,1…,1)
x=(1,0,0,…,1), y=+1 wTx < µ Yes w =	(8,4,2,1…,2)

... … … …

w =	(512,256,512,512…,512)
x=(0,0,1,1,…,0), y=-1 wTx¸ µ Yes w =	(512,256,256,256…,512)
x=(0,0,0,…,1), y=+1 wTx < µ Yes w =	(512,256,256,256…,1024)

22

f	=	x1 Ç x2 Ç x1023 Ç x1024 Initialize	µ =	1024,	w =	(1,1,1,1…,1)

Final	weight	vector	could	be	w =	(1024,1024,128,32…,1024,1024)

Promote	x1,	x2 and	x3



Example	run	of	the	algorithm

Example Prediction Error? Weights
x=(1,1,1,…,1), y=+1 wTx¸ µ No w =	(1,1,1,1…,1)
x=(0,0,0,…,0), y=-1 wTx < µ No w =	(1,1,1,1…,1)

x=(0,0,1,1,1,…,0), y=-1 wTx < µ No w =	(1,1,1,1…,1)
x=(1,0,0,…,0), y=+1 wTx < µ Yes w =	(2,1,1,1…,1)
x=(0,1,0,…,0), y=+1 wTx < µ Yes w =	(2,2,1,1…,1)
x=(1,1,1,…,0), y=+1 wTx < µ Yes w =	(4,4,2,1…,1)
x=(1,0,0,…,1), y=+1 wTx < µ Yes w =	(8,4,2,1…,2)

... … … …

x=(0,0,1,1,…,0), y=-1 wTx¸ µ Yes w =	(512,256,256,256…,512)
x=(0,0,0,…,1), y=+1 wTx < µ Yes w =	(512,256,256,256…,1024)

23

f	=	x1 Ç x2 Ç x1023 Ç x1024 Initialize	µ =	1024,	w =	(1,1,1,1…,1)

Final	weight	vector	could	be	w =	(1024,1024,128,32…,1024,1024)



Example	run	of	the	algorithm

Example Prediction Error? Weights
x=(1,1,1,…,1), y=+1 wTx¸ µ No w =	(1,1,1,1…,1)
x=(0,0,0,…,0), y=-1 wTx < µ No w =	(1,1,1,1…,1)

x=(0,0,1,1,1,…,0), y=-1 wTx < µ No w =	(1,1,1,1…,1)
x=(1,0,0,…,0), y=+1 wTx < µ Yes w =	(2,1,1,1…,1)
x=(0,1,0,…,0), y=+1 wTx < µ Yes w =	(2,2,1,1…,1)
x=(1,1,1,…,0), y=+1 wTx < µ Yes w =	(4,4,2,1…,1)
x=(1,0,0,…,1), y=+1 wTx < µ Yes w =	(8,4,2,1…,2)

... … … …

w =	(512,256,512,512…,512)
x=(0,0,1,1,…,0), y=-1 wTx¸ µ Yes w =	(512,256,256,256…,512)
x=(0,0,0,…,1), y=+1 wTx < µ Yes w =	(512,256,256,256…,1024)

24

f	=	x1 Ç x2 Ç x1023 Ç x1024 Initialize	µ =	1024,	w =	(1,1,1,1…,1)

Final	weight	vector	could	be	w =	(1024,1024,128,32…,1024,1024)

Suppose	after	many	steps,



Example Prediction Error? Weights
x=(1,1,1,…,1), y=+1 wTx¸ µ No w =	(1,1,1,1…,1)
x=(0,0,0,…,0), y=-1 wTx < µ No w =	(1,1,1,1…,1)

x=(0,0,1,1,1,…,0), y=-1 wTx < µ No w =	(1,1,1,1…,1)
x=(1,0,0,…,0), y=+1 wTx < µ Yes w =	(2,1,1,1…,1)
x=(0,1,0,…,0), y=+1 wTx < µ Yes w =	(2,2,1,1…,1)
x=(1,1,1,…,0), y=+1 wTx < µ Yes w =	(4,4,2,1…,1)
x=(1,0,0,…,1), y=+1 wTx < µ Yes w =	(8,4,2,1…,2)

... … … …

w =	(512,256,512,512…,512)
x=(0,0,1,1,…,0), y=-1 wTx¸ µ Yes w =	(512,256,256,256…,512)
x=(0,0,0,…,1), y=+1 wTx < µ Yes w =	(512,256,256,256…,1024)

Final	weight	vector	could	be	w =	(1024,1024,128,32…,1024,1024)
Demote	x3 and	x4

25

Example	run	of	the	algorithm
f	=	x1 Ç x2 Ç x1023 Ç x1024 Initialize	µ =	1024,	w =	(1,1,1,1…,1)



Example	run	of	the	algorithm

Example Prediction Error? Weights
x=(1,1,1,…,1), y=+1 wTx¸ µ No w =	(1,1,1,1…,1)
x=(0,0,0,…,0), y=-1 wTx < µ No w =	(1,1,1,1…,1)

x=(0,0,1,1,1,…,0), y=-1 wTx < µ No w =	(1,1,1,1…,1)
x=(1,0,0,…,0), y=+1 wTx < µ Yes w =	(2,1,1,1…,1)
x=(0,1,0,…,0), y=+1 wTx < µ Yes w =	(2,2,1,1…,1)
x=(1,1,1,…,0), y=+1 wTx < µ Yes w =	(4,4,2,1…,1)
x=(1,0,0,…,1), y=+1 wTx < µ Yes w =	(8,4,2,1…,2)

... … … …

w =	(512,256,512,512…,512)
x=(0,0,1,1,…,0), y=-1 wTx¸ µ Yes w =	(512,256,256,256…,512)
x=(0,0,0,…,1), y=+1 wTx < µ Yes w =	(512,256,256,256…,1024)

26

f	=	x1 Ç x2 Ç x1023 Ç x1024 Initialize	µ =	1024,	w =	(1,1,1,1…,1)

Final	weight	vector	could	be	w =	(1024,1024,128,32…,1024,1024)



Example	run	of	the	algorithm

Example Prediction Error? Weights
x=(1,1,1,…,1), y=+1 wTx¸ µ No w =	(1,1,1,1…,1)
x=(0,0,0,…,0), y=-1 wTx < µ No w =	(1,1,1,1…,1)

x=(0,0,1,1,1,…,0), y=-1 wTx < µ No w =	(1,1,1,1…,1)
x=(1,0,0,…,0), y=+1 wTx < µ Yes w =	(2,1,1,1…,1)
x=(0,1,0,…,0), y=+1 wTx < µ Yes w =	(2,2,1,1…,1)
x=(1,1,1,…,0), y=+1 wTx < µ Yes w =	(4,4,2,1…,1)
x=(1,0,0,…,1), y=+1 wTx < µ Yes w =	(8,4,2,1…,2)

... … … …

w =	(512,256,512,512…,512)
x=(0,0,1,1,…,0), y=-1 wTx¸ µ Yes w =	(512,256,256,256…,512)
x=(0,0,0,…,1), y=+1 wTx < µ Yes w =	(512,256,256,256…,1024)

27

f	=	x1 Ç x2 Ç x1023 Ç x1024 Initialize	µ =	1024,	w =	(1,1,1,1…,1)

Final	weight	vector	could	be	w =	(1024,1024,128,32…,1024,1024)Eventually,	the	algorithm	will	converge	to	something	like	
w =	(1024,1024,16,2…, 1024,1024)



The	multiplicative	update

Widely	used	(and	re-re-discovered)	in	various	fields
– Winnow	(and	the	Majority	Weighted	algorithm)
– We	will	see	the	AdaBoost algorithm
– Shows	up	in	economics	and	game	theory	(from	the	1950s)
– Computational	Geometry	
– Operations	research
– Many	more…

28

See:	Sanjeev Arora,	Elad Hazan and	Satyen Kale,	The	Multiplicative	Weights	
Update	Method:	a	Meta	Algorithm	and	Applications, for	a	survey



This	lecture

• The	Winnow	Algorithm

• Winnow	mistake	bound

• Generalizations

29



The	Winnow	algorithm

Given	a	training	set	D	=	{(x,	y)},	x 2 <n,	y 2 {-1,1}
1. Initialize:	w =	(1,1,1,1…,1)	2 <n, µ =	n

2. For	each	training	example	(x,	y):	
– Predict	y’	=	sgn(wTx – µ)
– If	y =	+1	and	y’ =	-1	then:

• Update	each	weight	wiÃ 2wi only	for	those	features	xi that	are	1
Else	if	y =	-1	and	y’ =	+1	then:
• Update	each	weight	wiÃ wi/2	only for	those	features	xi that	are	1

30

Littlestone 1988



Winnow	mistake	bound

We	will	analyze	the	simple	case	of	k-disjunctions

Theorem
The	Winnow	algorithm	learns	the	class	of	k-disjunctions	
with	n	Boolean	variables	in	the	Mistake	bound	model,	
making	O(k	log	n)	mistakes.

31



Winnow	mistake	bound

We	will	analyze	the	simple	case	of	k-disjunctions

Theorem
The	Winnow	algorithm	learns	the	class	of	k-disjunctions	
with	n	Boolean	variables	in	the	Mistake	bound	model,	
making	O(k	log	n)	mistakes.

32

Implications:	
1. Recall:	The	Perceptron	mistake	bound	is	O(n),	“throwing	lots	of	features	at	

the	problem”	can	hurt	learning

2. Winnow	is	attribute	efficient	because	it	only	has	a	log	dependency	on	n.	
Only	a	small	penalty	for	trying	out	lots	of	features



Proof

Strategy
Total	mistakes	=	mistakes	on	positive	examples	

+	
mistakes	on	negative	examples

Get	mistake	bound	by	upper	bounding	each	separately

33

Theorem:	Winnow	will	make	at	
most	O(k	log	n)	mistakes	with	k-
disjunctions

Our	target	functions	are	k-disjunctions



Proof

Strategy
Total	mistakes	=	mistakes	on	positive	examples	

+	
mistakes	on	negative	examples

Get	mistake	bound	by	upper	bounding	each	separately

34

Theorem:	Winnow	will	make	at	
most	O(k	log	n)	mistakes	with	k-
disjunctions

Our	target	functions	are	k-disjunctions



1.	Mistakes	on	positives

• A	mistake	on	a	positive	example	will	double	the	weights	for	at	
least	one	of	the	relevant	attributes.	Why?
Because	a	positive	example	will	have	at	least	one	relevant	attribute

• We	initialized	our	weight	vector	with	1’s	and	the	threshold	µ is	
always	fixed	to	n

• How	many	times	can	a	relevant	attribute	get	promoted	(i.e.	
doubled)	before	it	hits	n?
• 1	+	log(n)	times.	After	that,	it	will	cross	µ

Number	of	mistakes	on	positive	examples

35

Theorem:	Winnow	will	make	at	
most	O(k	log	n)	mistakes	with	k-
disjunctions

Our	target	functions	are	k-disjunctions(The	true	label	is	positive,	the	prediction	is	negative)



2.	Mistakes	on	negatives

There	is	no	relevant	feature	in	the	example,	yet	the	dot	product	of	
weights	and	features	was	more	than	n

Halve	all	the	weights	of	the	features	in	this	example.	No	relevant	feature	will	
ever	get	demoted.

But	will	irrelevant	features	ever	get	promoted	(i.e their	weights	
doubled)?

Yes.	If	an	irrelevant	feature	shows	up	in	a	positive	example,	it	may	get	
promoted

Contrast:	Relevant	features	will	only	get	promoted	and	never	demoted
We	need	a	different	way	to	count	mistakes	on	negatives

36

Theorem:	Winnow	will	make	at	
most	O(k	log	n)	mistakes	with	k-
disjunctions

Our	target	functions	are	k-disjunctions(The	true	label	is	negative,	the	prediction	is	positive)



2.	Mistakes	on	negatives

Track	the	sum	of	all	weights	over	time:

1. The	weights	are	never	negative,	neither	is	their	sum

2. The	initial	value	of	the	sum	is	n	(because	all	weights	
are	initialized	to	1)

37

Theorem:	Winnow	will	make	at	
most	O(k	log	n)	mistakes	with	k-
disjunctions

Our	target	functions	are	k-disjunctionsLet’s	use	a	different	strategy



2.	Mistakes	on	negatives

Track	the	sum	of	all	weights	over	time:

3. What	happens	to	TWt when	there	is	a	mistake	on	a	
positive example?

Why?

Total	increase	because	of	positive	examples

38

Theorem:	Winnow	will	make	at	
most	O(k	log	n)	mistakes	with	k-
disjunctions

Our	target	functions	are	k-disjunctionsLet’s	use	a	different	strategy



2.	Mistakes	on	negatives

Track	the	sum	of	all	weights	over	time:

4. What	happens	to	TWt when	there	is	a	mistake	on	a	
negative example?

Why?

Total	decrease	because	of	negative	examples

39

Theorem:	Winnow	will	make	at	
most	O(k	log	n)	mistakes	with	k-
disjunctions

Our	target	functions	are	k-disjunctionsLet’s	use	a	different	strategy



2.	Mistakes	on	negatives

What	we	know:

Putting	these	together:

Number	of	mistakes	on	negative	examples

40

Theorem:	Winnow	will	make	at	
most	O(k	log	n)	mistakes	with	k-
disjunctions

Our	target	functions	are	k-disjunctionsLet’s	use	a	different	strategy

Total	increase	because	of	positive	examples

Total	decrease	because	of	negative	examples



3.	Mistake	bound

Mistakes	on	positive	examples:
Mistakes	on	negative	examples:

Total	number	of	mistakes	=

Number	of	mistakes	Winnow	will	make	on	k-disjunctions	=

41

Theorem:	Winnow	will	make	at	
most	O(k	log	n)	mistakes	with	k-
disjunctions

Our	target	functions	are	k-disjunctions



This	lecture

• The	Winnow	Algorithm

• Winnow	mistake	bound

• Generalizations

42



What	can	Winnow	represent?

The	version	we	saw	can	only	learn	monotone	functions
– Why?
– Only	multiplying	and	dividing	the	weights	will	never	get	us	
any	negative	weights

43

x1 Ç x2	
x2

(0,0)

(0,1) (1,1)

(1,0)

Will	learn
¬ x2
x1 Ç ¬ x2

(0,0)

(0,1) (1,1)

(1,0)

Will	not	learn



Balanced	Winnow

• Duplicate	the	variables
– If	x+i represents	a	Boolean	variable,	then,	introduce	a	new	

variable	x-i to	denote	its	negation
– That	is,	learn	a	monotone	function	over	the	2n	variables	(w+

i for	
each	x+i and	w-

i for	each	x-i)

– Effective	weight	vector	is	the	difference	of	the	two.	That	is,	
prediction	is	performed	as:
• Prediction	=	+1	if	(w+ - w-)Tx¸ µ,	else	prediction	=	-1

– Modify	the	update	rule	so	that	whenever	wi is	promoted,	w-
i

should	be	demoted	and	vice	versa.

• Can	learn	any	linear	threshold	unit

44



Balanced	Winnow

Given	a	training	set	D	=	{(x,	y)},	x 2 <n,	y 2 {-1,1}
1. Initialize:	w+ =	(1,1,1,1…,1),	w- =	(1,1,1,1…,1) 2 <n, µ =	n

2. For	each	training	example	(x,	y):	
– Predict	y’	=	sgn((w+-w-)Tx – µ)
– If	y =	+1	and	y’ =	-1	then:

• Update	weight	w+
iÃ 2w+

i only	for	those	features	xi that	are	1
• Update	weight	w-

iÃ w-
i/2	only	for	those	features	xi that	are	1

Else	if	y =	-1	and	y’ =	+1	then:
• Update	weight	w+

iÃ w+
i/2	only	for	those	features	xi that	are	1

• Update	weight	w-
iÃ 2w-

i only	for	those	features	xi that	are	1

45

Downsides	of	this	approach?



Perceptron	and	Winnow

• Both	are:
– Mistake	bound	algorithms
– Learn	linear	threshold	units
– Are	generally	robust

• Which	algorithm	should	you	use??
– Multiplicative	algorithms:	If	you	believe	that	the	hidden	target	

function	is	sparse
– Additive	algorithms:	If	you	believe	that	your	target	function	

could	be	a	dense	vector
• What	if	the	target	function	is	a	dense	vector	but	each	example	is	
sparse?	(If	time	permits,	we	will	see	additive	algorithms	that	are	
designed	for	this	regime)

46



Summary:	What	Winnow	so	far?

• A	multiplicative	update	algorithm
– Learns	a	linear	classifier	when	very	few	attributes	are	
relevant

– Mistake	bound	only	weakly	(logarithmically)	depends	on	
the	number	of	attributes

• Robust	to	both	classification	and	attribute	noise
– In	general,	instead	of	multiplying	and	dividing	by	2,	we	
could	do	so	by	(1	+	²)	for	some	small	²

47


