
CS 6355: Structured Prediction

Review: Supervised Learning
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Previous lecture

• A broad overview of structured prediction

• The different aspects of the area
– Basically the syllabus of the class

• Questions?
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Supervised learning, Binary classification

1. Supervised learning: The general setting
2. Linear classifiers
3. The Perceptron algorithm
4. Learning as optimization
5. Support vector machines
6. Logistic Regression
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Where are we?

1. Supervised learning: The general setting
2. Linear classifiers
3. The Perceptron algorithm
4. Learning as optimization
5. Support vector machines
6. Logistic Regression
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Supervised learning: General setting

• Given: Training examples of the form <𝐱, 𝑓 𝐱 >
– The function 𝑓 is an unknown function

• The input 𝐱 is represented in a feature space
– Typically 𝐱 ∈ {0,1}! or 𝐱 ∈ ℜ!

• For a training example 𝐱, the value of 𝑓 𝐱 is called its label

• Goal: Find a good approximation for 𝑓
• Different kinds of problems

– Binary classification: 𝑓 𝐱 ∈ {−1, 1}
– Multiclass classification: 𝑓 𝐱 ∈ {1, 2,⋯ , 𝑘}
– Regression: 𝑓 𝐱 ∈ ℜ
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Nature of applications

• There is no human expert
– Eg: Identify DNA binding sites

• Humans can perform a task, but can’t describe how 
they do it
– Eg: Object detection in images

• The desired function is hard to obtain in closed form
– Eg: Stock market
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Where are we?

1. Supervised learning: The general setting
2. Linear classifiers
3. The Perceptron algorithm
4. Learning as optimization
5. Support vector machines
6. Logistic Regression
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Linear Classifiers

• Input is a n dimensional vector x
• Output is a label 𝑦 ∈ {−1, 1}

• Linear threshold units classify an example 𝒙 using 
the classification rule
sgn 𝑏 + 𝒘!𝒙 = sgn(𝑏 + ∑"𝑤"𝑥")
• 𝑏 + 𝒘!𝒙 ≥ 0 ) Predict y = 1
• 𝑏 + 𝒘!𝒙 < 0) Predict y = -1 
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For now



The geometry of a linear classifier
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XOR is not linearly separable
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Even these functions can be made linear

The trick: Change the representation
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These points are not separable in 1-dimension by a line

What is a one-dimensional line, by the way?

Not all functions are linearly separable



Even these functions can be made linear
The trick: Use feature conjunctions
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Transform points: Represent each point x in 2 dimensions by (x, x2)

Now the data is linearly separable in this space!

Not all functions are linearly separable



Linear classifiers are an expressive hypothesis class

• Many functions are linear
– Conjunctions, disjunctions
– At least m-of-n functions

• Often a good guess for a hypothesis space
– If we know a good feature representation

• Some functions are not linear
– The XOR function
– Non-trivial Boolean functions
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We will see in the 
coming weeks that 
structured predictors 
can also be defined via 
linear functions.



Where are we?

1. Supervised learning: The general setting
2. Linear classifiers
3. The Perceptron algorithm
4. Learning as optimization
5. Support vector machines
6. Logistic Regression
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The Perceptron algorithm

• Rosenblatt 1958

• The goal is to find a separating hyperplane
– For separable data, guaranteed to find one

• An online algorithm
– Processes one example at a time

• Several variants exist
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The algorithm

Given a training set 𝐷 = 𝐱" , 𝑦" where 𝐱" ∈ ℜ# , 𝑦" ∈ −1, 1

1. Initialize 𝐰 = 𝟎 ∈ ℜ#

2. For epoch in 1⋯𝑇:
1. Shuffle the data
2. For each training example 𝐱" , 𝑦" ∈ 𝐷:
• If 𝑦"𝐰$𝐱" ≤ 0, then:

– update 𝐰 ← 𝐰+ 𝑟𝑦"𝐱"
3. Return 𝐰

Prediction on a new example with features 𝐱: sgn 𝐰$𝐱
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T is a hyper-parameter to the algorithm

Another way of writing that 
there is an error



Convergence theorem 

If there exist a set of weights that are consistent with 
the data (i.e. the data is linearly separable), the 
perceptron algorithm will converge after a finite 
number of updates. 
– [Novikoff 1962]
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Beyond the separable case

• The good news
– Perceptron makes no assumption about data distribution
– Even adversarial
– After a fixed number of mistakes, you are done. Don’t even 

need to see any more data

• The bad news: Real world is not linearly separable
– Can’t expect to never make mistakes again
– What can we do: more features, try to be linearly 

separable if you can
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Variants of the algorithm

• The original version: Return the final weight vector

• Averaged perceptron
– Returns the average weight vector from the entire training 

time (i.e longer surviving weight vectors get more say)

– Widely used 

– A practical approximation of the Voted Perceptron
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Where are we?

1. Supervised learning: The general setting
2. Linear classifiers
3. The Perceptron algorithm
4. Learning as optimization

1. The general idea
2. Stochastic gradient descent
3. Loss functions

5. Support vector machines
6. Logistic Regression
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Learning as loss minimization

• Collect some annotated data. More is generally better

• Pick a hypothesis class (also called model)
– Eg: linear classifiers, deep neural networks
– Also, decide on how to impose a preference over hypotheses

• Choose a loss function
– Eg: negative log-likelihood, hinge loss
– Decide on how to penalize incorrect decisions

• Minimize the expected loss
– Eg: Set derivative to zero and solve on paper, typically a more complex 

algorithm
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Learning as loss minimization
• The setup 

– Examples x drawn from a fixed, unknown distribution D
– Hidden oracle classifier f labels examples
– We wish to find a hypothesis h that mimics f

• The ideal situation
– Define a function L that penalizes bad hypotheses
– Learning: Pick a function h 2 H to minimize expected loss

• Instead, minimize empirical loss on the training set

23

But distribution D is unknown
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Empirical loss minimization

Learning = minimize empirical loss on the training set

We need something that biases the learner towards simpler 
hypotheses
• Achieved using a regularizer, which penalizes complex 

hypotheses
• Capacity control for better generalization
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Is there a problem here? Overfitting! 



Regularized loss minimization

• Learning: min
"∈$

regularizer(w) + C %
&
∑' 𝐿(ℎ 𝑥' , 𝑦')

• With L2 regularization: min
(

%
) 𝑤

!𝑤 + 𝐶 ∑' 𝐿(𝐹 𝑥', 𝑤 , 𝑦')
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Regularized loss minimization

• Learning: min
"∈$

regularizer(w) + C %
&
∑' 𝐿(ℎ 𝑥' , 𝑦')

• With L2 regularization: min
(

%
) 𝑤

!𝑤 + 𝐶 ∑' 𝐿(𝐹 𝑥', 𝑤 , 𝑦')

• What is a loss function?
– Loss functions should penalize mistakes
– We are minimizing average loss over the training data

28



How do we train in such a regime?

• Suppose we have a predictor F that maps inputs x to a 
score F(x, w) that is thresholded to get a label
– Here w are the parameters that define the function
– Say F is a differentiable function

• How do we use a labeled training set to learn the weights 
i.e. solve this minimization problem?

min
!

$
"

𝐿(𝐹 𝑥" , 𝑤 , 𝑦")

• We could compute the gradient of F and decend the 
gradient to minimize the loss
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How do we train in such a regime?

• Suppose we have a predictor F that maps inputs x to a 
score F(x, w) that is thresholded to get a label
– Here w are the parameters that define the function
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$
"

𝐿(𝐹 𝑥" , 𝑤 , 𝑦")

• We could compute the gradient of the loss and descend 
along that direction to minimize

30



Stochastic gradient descent

Given a training set S = 𝐱𝑖, 𝑦𝑖 , 𝐱 ∈ ℜ#

1. Initialize parameters w
2. For epoch = 1 … T:

1. Shuffle the training set
2. For each training example 𝐱𝑖, 𝑦𝑖 ∈ S:

• Treat this example as the entire dataset 
Compute the gradient of the loss 𝛻𝐿(𝑁𝑁 𝒙!, 𝒘 , 𝑦!)

• Update: 𝒘 ← 𝒘− 𝛾"𝛻𝐿(𝑁𝑁 𝒙!, 𝒘 , 𝑦!))

3. Return w
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𝛾!: learning rate, 
many tweaks possible

The objective is not convex. 
Initialization can be important

min
𝒘

-
"

𝐿(𝐹 𝑥" , 𝑤 , 𝑦")



A more general form

Suppose we want to minimize a function that is the sum of 
other functions

𝑓 𝑥 =$
"$%

&

𝑓"(𝑥)

• Initialize 𝑥
• Loop till convergence:

– Pick 𝑖 randomly from {1, 2,⋯ , 𝑛}
– Update 𝑥 ← 𝑥 − 𝑠𝑡𝑒𝑝𝑠𝑖𝑧𝑒 ⋅ 𝛻𝑓"(𝑥)

• Return 𝑥
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In practice…

• There are many variants of this idea

• Several named learning algorithms
– AdaGrad, AdaDelta, RMSProp, Adam

• But the key components are the same. We need to…
1. …sample a tiny subset of the data at each step 
2. …compute the gradient of the loss using this subset
3. …take a step in the negative direction of the gradient
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Standard loss functions

We need to think about the problem we have at hand

Is it a…
1. Binary classification problem?
2. Regression problem?
3. Multi-class classification problem?
4. Or something else?

Each case is naturally paired with a different loss function
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The ideal case for binary classification: 
The 0-1 loss

Penalize classification mistakes between true label y and prediction y’ 

𝐿!"#(𝑦, 𝑦$) = -1 if 𝑦 ≠ 𝑦$,
0 if 𝑦 = 𝑦$.

More generally, suppose we have a prediction function of the form 
sgn(𝐹(𝑥, 𝑤))

– Note that F need not be linear

𝐿!"#(𝑦, 𝑦$) = -1 if 𝑦𝐹 𝑥,𝑤 ≤ 0,
0 if 𝑦𝐹 𝑥,𝑤 > 0.

Minimizing 0-1 loss is intractable. Need surrogates
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The loss function zoo

Many loss functions exist
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For binary classification

min
#∈%

regularizer(w) + C
1
𝑚
-
"

𝐿(𝐹 𝑥" , 𝑤 , 𝑦")

Perceptron 𝐿#$%&$'"%() 𝑦, 𝑥, 𝑤 = max(0, −𝑦𝐹 𝑥,𝑤 )

Hinge (SVM) 𝐿*!)+$ 𝑦, 𝑥, 𝑤 = max(0, 1 − 𝑦𝐹 𝑥,𝑤 )

Exponential (Adaboost) 𝐿,-'()$)"!./ 𝑦, 𝑥, 𝑤 = 𝑒012 -,4

Logistic loss 𝐿5(+!6"!& 𝑦, 𝑥, 𝑤 = log(1 + 𝑒012 -,4 ) )



The loss function zoo
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𝑦𝐹(𝑥,𝑤)

Loss

min
#∈%

regularizer(w) + C
1
𝑚
-
"

𝐿(𝐹 𝑥" , 𝑤 , 𝑦")



The loss function zoo
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Zero-one

Loss

min
#∈%

regularizer(w) + C
1
𝑚
-
"

𝐿(𝐹 𝑥" , 𝑤 , 𝑦")

𝑦𝐹(𝑥,𝑤)



The loss function zoo
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Hinge: SVM

Zero-one

Loss

min
#∈%

regularizer(w) + C
1
𝑚
-
"

𝐿(𝐹 𝑥" , 𝑤 , 𝑦")

𝑦𝐹(𝑥,𝑤)

𝐿&"'() 𝑦, 𝑥, 𝑤 = max(0, 1 − 𝑦𝐹 𝑥, 𝑤 )



The loss function zoo
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Perceptron

Hinge: SVM

Zero-one

Loss

min
#∈%

regularizer(w) + C
1
𝑚
-
"

𝐿(𝐹 𝑥" , 𝑤 , 𝑦")

𝑦𝐹(𝑥,𝑤)

𝐿*)+,)-.+/' 𝑦, 𝑥, 𝑤 = max(0, −𝑦𝐹 𝑥, 𝑤 )

𝐿&"'() 𝑦, 𝑥, 𝑤 = max(0, 1 − 𝑦𝐹 𝑥, 𝑤 )



The loss function zoo
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Perceptron

Hinge: SVM

Exponential: AdaBoost

Zero-one

Loss

min
#∈%

regularizer(w) + C
1
𝑚
-
"

𝐿(𝐹 𝑥" , 𝑤 , 𝑦")

𝑦𝐹(𝑥,𝑤)

𝐿&"'() 𝑦, 𝑥, 𝑤 = max(0, 1 − 𝑦𝐹 𝑥, 𝑤 )

𝐿*)+,)-.+/' 𝑦, 𝑥, 𝑤 = max(0, −𝑦𝐹 𝑥, 𝑤 )

𝐿01-/')'."23 𝑦, 𝑥, 𝑤 = 𝑒456 1,8



The loss function zoo
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Perceptron

Hinge: SVM

Logistic regression

Exponential: AdaBoost

Zero-one

Loss

min
#∈%

regularizer(w) + C
1
𝑚
-
"

𝐿(𝐹 𝑥" , 𝑤 , 𝑦")

𝑦𝐹(𝑥,𝑤)

𝐿&"'() 𝑦, 𝑥, 𝑤 = max(0, 1 − 𝑦𝐹 𝑥, 𝑤 )

𝐿*)+,)-.+/' 𝑦, 𝑥, 𝑤 = max(0, −𝑦𝐹 𝑥, 𝑤 )

𝐿01-/')'."23 𝑦, 𝑥, 𝑤 = 𝑒456 1,8

𝐿9/(":.", 𝑦, 𝑥, 𝑤 = log(1 + 𝑒456 1,8 ) )



What if we have a regression task

Real valued outputs
– That is, our model is a function F(x, w) that maps inputs x 

to a real number
– Parameterized by w
– The ground truth y is also a real number

A natural loss function for this situation is the squared 
loss

𝐿 𝑥, 𝑦, 𝑤 = 𝑦 − 𝐹 𝑥,𝑤
>
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Where are we?

1. Supervised learning: The general setting
2. Linear classifiers
3. The Perceptron algorithm
4. Learning as optimization
5. Support vector machines
6. Logistic Regression
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Margin

The margin of a hyperplane for a dataset is the distance between 
the hyperplane and the data point nearest to it.
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Learning strategy

Find the linear separator that maximizes the margin
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Maximizing margin and minimizing loss
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Maximize margin Penalty for the prediction: 
The Hinge loss

Find the linear separator that maximizes the margin



SVM objective function
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Regularization term: 
• Maximize the margin
• Imposes a preference over the 

hypothesis space and pushes for 
better generalization

Empirical Loss: 
• Hinge loss 
• Penalizes weight vectors that make 

mistakes

A hyper-parameter that 
controls the tradeoff 
between a large margin and 
a small hinge-loss



Where are we?

1. Supervised learning: The general setting
2. Linear classifiers
3. The Perceptron algorithm
4. Learning as optimization
5. Support vector machines
6. Logistic Regression
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Regularized loss minimization: Logistic 
regression

• Learning:

• With linear classifiers:

• SVM uses the hinge loss

• Another loss function: The logistic loss
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The probabilistic interpretation

Suppose we believe that the labels are distributed as 
follows given the input:

Predict label = 1 if P(1 | x, w) > P(-1 | x, w)
– Equivalent to predicting 1 if wTx ¸ 0
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The probabilistic interpretation

Suppose we believe that the labels are distributed as 
follows given the input:

The log-likelihood of seeing a dataset D = {(xi, yi)} if the 
true weight vector was w: 
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Regularized logistic regression

What is the probability of weights w being the true ones for a 
dataset D = {<xi, yi>}?

𝑃 𝒘 𝐷) ∝ 𝑃 𝐰,𝐷 = 𝑃 𝐷 𝒘 𝑃( 𝒘)
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Prior distribution over the weight vectors

A prior balances the tradeoff between the likelihood of 
the data and existing belief about the parameters
– Suppose each weight wi is drawn independently from the 

normal distribution centered at zero with variance 𝜎)
• Bias towards smaller weights

– Probability of the entire weight vector:

60

Source: Wikipedia



Regularized logistic regression

What is the probability of weights w being the true ones for a 
dataset D = {<xi, yi>}?

𝑃 𝒘 𝐷) ∝ 𝑃 𝐰,𝐷 = 𝑃 𝐷 𝒘 𝑃( 𝒘)

Learning: Find weights by maximizing the posterior 
distribution 𝑃 𝐰 𝐷

− log𝑃 𝐰 𝐷 =
1
2𝜎8

𝐰9𝐰+E
!

log 1 + exp −𝑦𝐰9𝐱 + constants

Once again, regularized loss minimization! This is the Bayesian interpretation 
of regularization
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Regularized loss minimization

Learning objective for both SVM & logistic regression: 
“loss over training data + regularizer”

– Different loss functions
• Hinge loss vs. logistic loss

– Same regularizer, but different interpretation
• Margin vs prior

– Hyper-parameter controls tradeoff between the loss and 
regularizer

– Other regularizers/loss functions also possible
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Review of supervised binary classification

1. Supervised learning: The general setting
2. Linear classifiers
3. The Perceptron algorithm
4. Support vector machine
5. Learning as optimization
6. Logistic Regression
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What if we have more than two labels?
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Reading for next lecture: 
– Erin L. Allwein, Robert E. Schapire, Yoram Singer, Reducing 

Multiclass to Binary: A Unifying Approach for Margin 
Classifiers, ICML 2000.
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