Learning Distributional Representations for Structured Output Prediction

Vivek Srikumar

Joint work with Chris Manning

Big picture

- Distributional representations for inputs is a success story
 - Eg. word vectors
- Outputs are discrete objects
 - One of a set of labels (document classification)
 - Label sequences (POS tagging, Chunking, NER)
 - Trees with labeled edges/nodes (Parsing)
 - Arbitrary graphs (Semantic Role Labeling, event extraction)
- Are outputs *really* discrete objects?

Overview

- 1. Background and Notation
- 2. Motivation
 - Why represent structures as dense vectors
- 1. Distributional Structured Output
 - Representing labels by real-valued vectors
 - Building structures by composing label vectors
- 1. Learning
 - Both label vectors and weights
- 2. Experiments

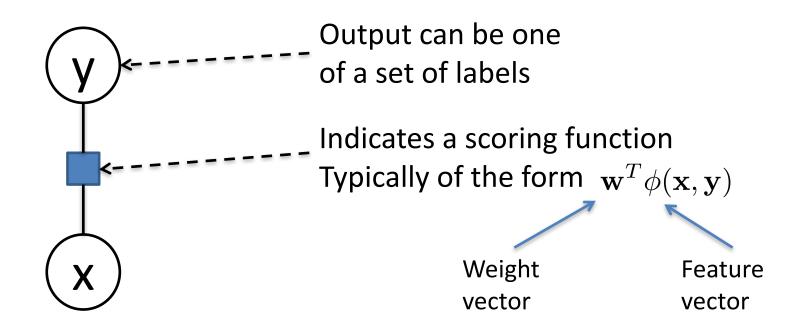
Background and Notation

Notation

- Input: X
 - Documents, sentences, paragraphs, etc

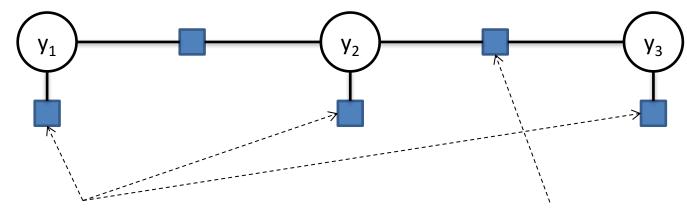
- Output: y
 - One of multiple classes
 - Sequences
 - Trees
 - Generally combinatorial objects

Multiclass classification



Standard definition of feature vector: Feature vector for input conjoined with label **y**

First-order sequence



Emission parts (atomic)

$$\mathbf{w}^T \phi_E(\mathbf{x}, y_i)$$

The usual approach:

For the score of a label, conjoin it with emission features to define feature vector

Transition parts (compositional)

$$\mathbf{w}^T \phi_T(\mathbf{x}, y_{i-1}, y_i)$$

The usual approach:

A score for each pair of labels

That is, conjoin consecutive labels

Components of a structured model

- 1. Identify inputs and the output structure
 - (Sentence, POS sequence), (Document, label), etc.
- Factorize the structure
 - a.k.a define the model (linear chain, grand-parent dependencies, head-driven model, etc) What are the parts that I need to score
- 3. Define the scoring function
 - In NLP, nearly always linear, so effectively, "Define the features for each factor/part"
- 4. Write the inference algorithm
 - Combinatorial optimization: Dynamic programming, ILP, dual decomposition, and the like. Depends on how you do step 2
- 5. The into off-the-shelf learning implementation

 Y₁ uctured ceptron/S (Y₂) red SVIM anditional (Y₃) m Field

Examples

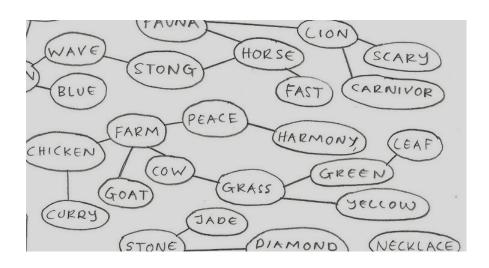
	Document classification	First-order sequence model for POS tagging
Input	Document	Sentence
Output	One of a set of labels	A sequence of labels
Features	Document features conjoined with each label	Emission: Each element of sequence conjoined with word features Transition: Consecutive labels conjoined
Inference	Enumerate labels	Viterbi

Are structures discrete units of meaning?

Words are not discrete units of meaning

Dense vectors allow statistical information to be shared across different words

- Example: Word vector representations
- Compare to sparse feature vectors



Are labels discrete units of meaning?

Document

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. In varius nulla vel nisi. Sed interdum nisi id ligula. Nullam sit amet metus. Mauris facilisis ligula ac magna. Aenean sodales. Aliquam erat volutpat.

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. In varius nulla vel nisi. Sed interdum nisi id ligula. Nullam sit amet metus.

```
comp.graphics
comp.os.ms-windows.misc
comp.sys.ibm.pc.hardware
comp.sys.mac.hardware
comp.windows.x
misc.forsale
rec.autos
rec.motorcycles
rec.sport.baseball
rec.sport.hockey
sci.crypt
sci.electronics
sci.med
sci.space
soc.religion.christian
talk.politics.guns
talk.politics.mideast
```

talk.religion.misc

POS tags are not discrete units of meaning

Table 2			
The Penn	Treebank	POS	tagset.

1. CC	Coordinating conjunction	25. TO	to
2. CD	Cardinal number	26. UH	Interjection
3. DT	Determiner	27. VB	Verb, base form
4. EX	Existential there	28. VBD	Verb, past tense
5. FW	Foreign word	29. VBG	Verb, gerund/present
6. IN	Preposition/subordinating		participle
	conjunction	30. VBN	Verb, past participle
7. JJ	Adjective	31. VBP	Verb, non-3rd ps. sing. present
8. JJR	Adjective, comparative	32. VBZ	
9. JJS	Adjective, superlative	33. WDT	
10. LS	List item marker	34. WP	wh-pronoun
11. <u>MD</u>	Modal	35. WP\$	Possessive wh-pronoun
12. NN	Noun, singular or mass	36. WRB	wh-adverb
13. NNS	Noun, plural	37. #	Pound sign
14. NNP	Proper noun, singular	38. \$	Dollar sign
15. NNPS	Proper noun, plural	39	Sentence-final punctuation
16. PDT	Predeterminer	40. ,	Comma
17. POS	Possessive ending	41. :	Colon, semi-colon
18. PRP	Personal pronoun	42. (Left bracket character
19. PP\$	Possessive pronoun	43.	Right bracket character
20. RB	Adverb	44. ″	Straight double quote
21. RBR	Adverb, comparative	45. '	Left open single quote
22. RBS	Adverb, superlative	46. "	Left open double quote
23. RP	Particle	47 . ′	Right close single quote
24. SYM	Symbol (mathematical or scientific)		Right close double quote
			•

Labels are not discrete units of meaning

PropBank semantic role labeling

Labels are A0, A1, A2, A3, A4, A5, etc.

- A0 mostly maps to Agent
- A1 maps to Patient or Theme (rarely also Topic)
- A2 maps to Patient, Recipient, Experiencer, Attribute, ...
- The rest don't necessarily generalize easily

Labels are *cluster concepts* with shared semantics

FrameNet labels have problems

- Abuser, Assailant, Cognizer, etc. are all agentive

Are *structures* discrete units of meaning?

POS tag sequences

- Different kinds of nouns are closer in meaning compared to verbs
- Transition from JJ -> NNS be "similar" to the transition from JJS -> NNP
 - Adjective -> Noun

So some sequences closer in meaning to each other than others

- Compare
 - DT JJ NN VB DT JJ NN
 - DT JJ NNS VB DT JJR NN
 - DT NN– NNS MD VB JJ NN

Are *structures* discrete units of meaning?

Jack **bought** a glove from Mary.

```
Buyer Goods Seller COMMERCE_GOODS_TRANSFER

A0 A1 A2
```

Jack *acquired* a glove from Mary.

Recipient	Theme	Source	ACQUIRE
A0	A1	A 2	

Jack *returned* a glove to Mary.

Agent	Theme	Recipient		
A0	A1	A2		

Distributional Structured Output

Standard models assume discrete structured output

Allocates a separate part of the parameter vector for scoring each label

Also for compositions of labels (i.e. like transitions in a sequence model)

Ignores the fact that information can be shared across vaguely defined labels

What we want

1. Represent atomic labels to allow sharing of statistical information across them

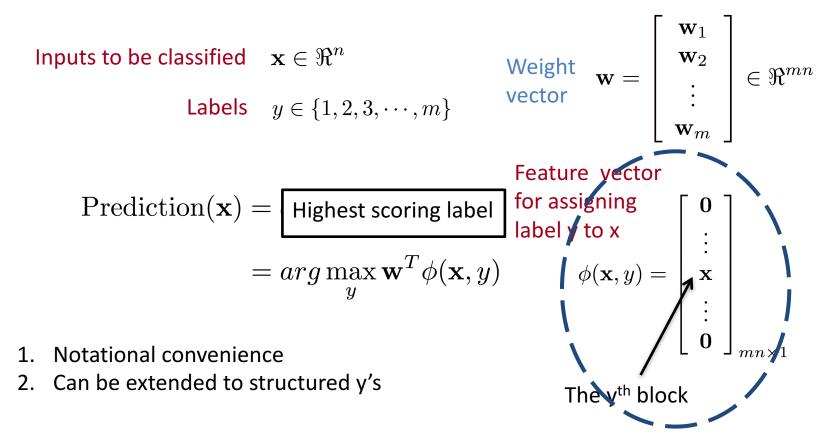
1. Define an operator that allows us to construct compositional structures from atomic labels

2. Use all the advances in structured prediction (eg. inference)

Components of a structured model

- 1. Identify inputs and the output structure
 - (Sentence, POS sequence), (Document, label), etc.
- 2. Factorize the structure
 - a.k.a define the model (linear chain, grand-parent dependencies, head-driven model, etc) What are the parts that I need to score
- 3. Define the scoring function
 - In NLP, nearly always linear, so effectively, "Define the features for each factor/part"
- 4. Write the inference algorithm
 - Combinatorial optimization: Dynamic programming, ILP, dual decomposition, and the like. Depends on how you do step 2
- 5. Throw into off-the-shelf learning implementation
 - Structured perceptron/Structured SVM/Conditional Random Field

Atomic Labels: Multiclass classification



Each label y allocated a different part of the weight space

Let's examine the features ϕ

Define a **one-hot** vector A_v for each label y

We have
$$\mathbf{x}A_y^T = [\mathbf{0} \cdots \mathbf{x} \cdots \mathbf{0}]_{n \times m}$$

We can rewrite the feature vector in terms of the label vectors

$$\phi(\mathbf{x}, y) = vec(\mathbf{x}A_y^T) = vec(\mathbf{x} \otimes A_y)$$

Recall, the usual method calls for a conjunction of x with label y

Vec vectorizes its argument columnwise

A reformulation of multi-class classification

$$\mathbf{w}^T \phi(\mathbf{x}, \mathbf{y}) = \mathbf{w}^T vec(\mathbf{x} \otimes A_y)$$

Inputs to be classified
$$\mathbf{x} \in \Re^n$$

Labels $y \in \{1, 2, 3, \cdots, m\}$

If the label vectors A_y are one-hot vectors, under this scheme, we recover standard multi-class classification

- No sharing of information across labels
- Each label accesses a different part of w

What if they weren't one-hot?

Make the label vectors real valued

With one-hot label vectors:

- Each label associated with separate region of weight space
- Label semantics is ignored

Label vectors do not need to be one-hot

Share weights across labels via the redefinition of features

What we want

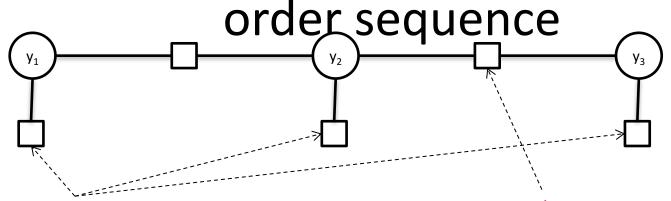
1. Represent atomic labels to allow sharing of statistical information across them

Represent labels as dense vectors and define feature vectors appropriately

 Define an operator that allows us to construct compositional structures from atomic labels

2. Use all the advances in structured prediction (eg. inference)

Compositional Structure: A first-



Emission parts (atomic)

ith label conjoined with emission features to get the emission score

$$\mathbf{w}^T \phi_E(\mathbf{x}, y_i)$$

Transition parts (compositional)

Transition scores are associated with conjunctions of consecutive labels

$$\mathbf{w}^T \phi_T(\mathbf{x}, y_{i-1}, y_i)$$

As before

Let $\,A_{y_i}$ represent a one-hot vector for label ${\sf y_i}$

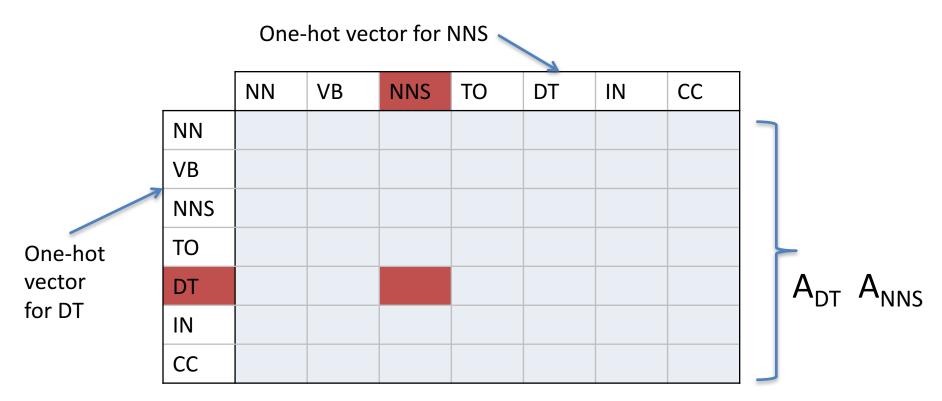
For parts involving multiple labels

$$\mathbf{w}^T vec\left(\phi_E(\mathbf{x}) \otimes A_{y_i}\right)$$

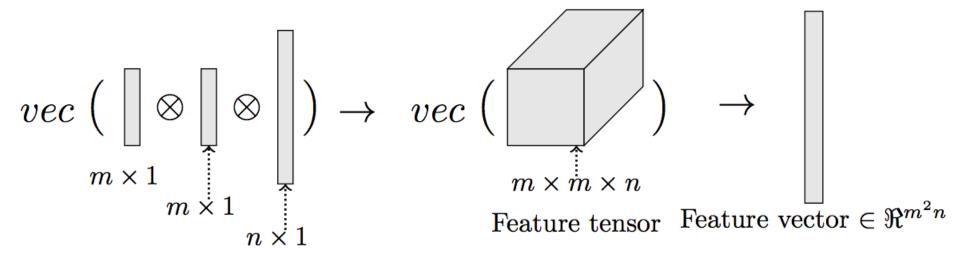
$$\mathbf{w}^T vec\left(\phi_T(\mathbf{x}) \otimes A_{y_{i-1}} \otimes A_{y_i}\right)$$

Because each label vector is one hot, we get back the standard linear model

An example of the transition outer product



Building the feature vector



Definition extends to more complex structures

For atomic parts (like multiclass): single tensor product

Eg:
$$\phi(\text{doc}, \text{alt.atheism}) = A_{\text{alt.atheism}} \phi(\text{doc})$$

For compositional parts (like transitions): As many additional tensor products as compositions

```
\phi(x, NNS \rightarrow NNS) = A_{DT} A_{NNS} \phi(x)

\phi(x, [DT, NNS] \rightarrow NNS) = A_{DT} A_{NNS} A_{NNS} \phi(x)

\phi(x, return \rightarrow A0) = A_{return} A_{A0} \phi(x)

....
```

DIstributional STructured Output (DISTRO)

 Represent atomic labels to allow sharing of statistical information across them

Represent labels as dense vectors and define feature vectors appropriately

 Define an operator that allows us to construct compositional structures from atomic labels

Represent label compositions using tensor products to extend feature vectors for larger parts/structures

Uses all the advances in structured prediction (eg. inference)

Related ideas

- Two layer neural network for multi-class classification
 - Effectively learn a representation for each label
- Nati Srebro's thesis for multi-class classification
 - Looks at this as matrix factorization
- Paul Smolensky (1990), Geoff Hinton 1986, Tony Plate thesis (mid-90's)

Learning

- We still need to learn the weight vector
- Also, for each label, we learn a vector representation
- Need to specify the dimensionality of the vector
 - Side note: if dimensionality = number of labels, we might as well use one-hot vectors

The learning setting

Input: A dataset (x,y)

y is a structure composed of discrete labels

Need a to specify the shape of the structure as with any CRF/Struct SVM

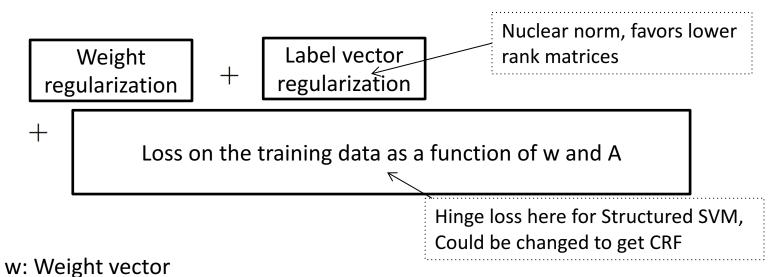
- Linear sequence model for POS
- Tree for a dependency parse

Need to specify inference algorithm

That is, same setting as standard structured learning

The learning objective

Label vectors specify the feature representation of a structure Learn by minimizing



A: Matrix composed of label vectors as columns

Learning weights and label vectors

Objective is non convex (For multiclass classification, bilinear in w and A)

- An alternating algorithm
 - 1. Initialize w and A
 - 2. Iterate
 - 1. Fix A, solve for w using SGD
 - 2. Fix w, solve for A using SGD with proximal step

Experiments

Dense labels help document classification

20 newsgroups classification

Setting	Accuracy
Structured SVM (one-hot vectors)	81.4
DISTRO	84.0
DISTRO (15 dim vectors)	83.1
DISTRO (11 dim vectors)	80.9

- 11-19 dimensional vectors generally good
- Not sensitive to initialization because loss driven

Final label similarities

Label	ld	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
alt.atheism	1	1.000	0.369	-0.023	-0.173	-0.037	0.336	-0.052	0.365	-0.240	-0.051	0.253	-0.081	-0.032	0.000	-0.044	-0.054	-0.020	0.353	-0.054	-0.211
talk.politics.guns	2	0.369	1.000	-0.075	-0.065	-0.108	0.360	-0.060	-0.006	-0.070	-0.091	0.251	0.015	-0.086	-0.034	-0.074	-0.097	-0.057	0.343	-0.124	-0.047
sci.crypt	3	-0.023	-0.075	1.000	0.355	0.332	-0.040	-0.154	-0.012	-0.063	0.352	-0.055	-0.043	-0.169	-0.151	-0.075	-0.089	-0.126	-0.063	-0.107	-0.087
sci.space	4	-0.173	-0.065	0.355	1.000	0.336	-0.012	-0.120	0.002	-0.098	0.336	-0.026	-0.116	-0.143	-0.045	-0.079	-0.101	-0.116	-0.069	-0.127	-0.129
sci.med	5	-0.037	-0.108	0.332	0.336	1.000	-0.027	-0.197	-0.005	-0.119	0.312	-0.070	-0.051	-0.152	-0.063	-0.130	-0.124	-0.129	-0.041	-0.139	-0.097
talk.politics.mideast	6	0.336	0.360	-0.040	-0.012	-0.027	1.000	-0.077	-0.047	-0.043	-0.101	0.303	-0.054	-0.094	-0.057	-0.044	-0.057	-0.072	0.368	-0.039	-0.024
comp.sys.ibm.pc.hardware	7	-0.052	-0.060	-0.154	-0.120	-0.197	-0.077	1.000	-0.019	-0.134	-0.236	-0.074	-0.159	-0.051	-0.086	-0.120	-0.146	0.169	-0.057	-0.001	-0.059
soc.religion.christian	8	0.365	-0.006	-0.012	0.002	-0.005	-0.047	-0.019	1.000	0.016	-0.156	0.309	-0.171	-0.171	-0.250	0.024	-0.029	0.014	-0.055	-0.020	0.054
rec.sport.baseball	9	-0.240	-0.070	-0.063	-0.098	-0.119	-0.043	-0.134	0.016	1.000	-0.098	-0.082	-0.067	-0.080	0.260	0.212	0.308	-0.120	-0.044	-0.127	-0.236
sci.electronics	10	-0.051	-0.091	0.352	0.336	0.312	-0.101	-0.236	-0.156	-0.098	1.000	-0.048	-0.111	-0.195	-0.109	-0.106	-0.129	-0.203	-0.074	-0.183	-0.156
talk.religion.misc	11	0.253	0.251	-0.055	-0.026	-0.070	0.303	-0.074	0.309	-0.082	-0.048	1.000	0.003	-0.064	-0.007	-0.152	-0.078	-0.272	0.332	-0.111	-0.036
misc.forsale	12	-0.081	0.015	-0.043	-0.116	-0.051	-0.054	-0.159	-0.171	-0.067	-0.111	0.003	1.000	-0.156	-0.103	-0.102	-0.150	-0.180	-0.099	-0.131	-0.102
comp.graphics	13	-0.032	-0.086	-0.169	-0.143	-0.152	-0.094	-0.051	-0.171	-0.080	-0.195	-0.064	-0.156	1.000	-0.201	-0.079	-0.120	-0.033	-0.062	0.195	-0.077
rec.sport.hockey	14	0.000	-0.034	-0.151	-0.045	-0.063	-0.057	-0.086	-0.250	0.260	-0.109	-0.007	-0.103	-0.201	1.000	0.365	0.288	-0.123	-0.060	-0.064	-0.061
rec.motorcycles	15	-0.044	-0.074	-0.075	-0.079	-0.130	-0.044	-0.120	0.024	0.212	-0.106	-0.152	-0.102	-0.079	0.365	1.000	0.283	-0.126	-0.032	-0.130	-0.103
rec.autos	16	-0.054	-0.097	-0.089	-0.101	-0.124	-0.057	-0.146	-0.029	0.308	-0.129	-0.078	-0.150	-0.120	0.288	0.283	1.000	-0.154	-0.047	-0.117	-0.111
comp.sys.mac.hardware	17	-0.020	-0.057	-0.126	-0.116	-0.129	-0.072	0.169	0.014	-0.120	-0.203	-0.272	-0.180	-0.033	-0.123	-0.126	-0.154	1.000	-0.130	0.022	-0.004
talk.politics.misc	18	0.353	0.343	-0.063	-0.069	-0.041	0.368	-0.057	-0.055	-0.044	-0.074	0.332	-0.099	-0.062	-0.060	-0.032	-0.047	-0.130	1.000	-0.049	-0.016
comp.windows.x	19	-0.054	-0.124	-0.107	-0.127	-0.139	-0.039	-0.001	-0.020	-0.127	-0.183	-0.111	-0.131	0.195	-0.064	-0.130	-0.117	0.022	-0.049	1.000	-0.038
comp.os.ms- windows.misc	20	-0.211	-0.047	-0.087	-0.129	-0.097	-0.024	-0.059	0.054	-0.236	-0.156	-0.036	-0.102	-0.077	-0.061	-0.103	-0.111	-0.004	-0.016	-0.038	1.000

Compositional structure: POS tagging

• English: Penn Treebank, 45 labels

Setting	Accuracy
Structured SVM (45 dim one-hot vectors)	96.2
DISTRO (5 dim vectors)	95.1
DISTRO (20 dim vectors)	96.7

Basque: CoNLL 2007 shared task data, 64 labels

Setting	Accuracy
Structured SVM (64 dim one-hot vectors)	91.5
DISTRO	92.4

Summary

- Structures aren't always discrete units of meaning
 - Dense representations

- A method for using dense vector representations of labels for arbitrary structured prediction
- An objective for learning label vectors and weights together