Proceedings of the National Conference on Artificial Intelligence (AAAI), 2008.
Abstract
Traditionally, text categorization has been studied as the problem of training of a classifier using labeled data. However, people can categorize documents into named categories without any explicit training because we know the meaning of category names. In this paper, we introduce Dataless Classification, a learning protocol that uses world knowledge to induce classifiers without the need for any labeled data. Like humans, a dataless classifier interprets a string of words as a set of semantic concepts. We propose a model for dataless classification and show that the label name alone is often sufficient to induce classifiers. Using Wikipedia as our source of world knowledge, we get 85.29% accuracy on tasks from the 20 Newsgroup dataset and 88.62% accuracy on tasks from a Yahoo! Answers dataset without any labeled or unlabeled data from the datasets. With unlabeled data, we can further improve the results and show quite competitive performance to a supervised learning algorithm that uses 100 labeled examples.
Links
- Link to paper
- Demo (maintained by Cognitive Computation Group, UPenn)
- Slides (presented at AAAI 2008)
- Software
- See on Google Scholar
Bib Entry
@inproceedings{chang2008importance, author = {Chang, Ming-Wei and Ratinov, Lev and Roth, Dan and Srikumar, Vivek}, title = {{Importance of Semantic Represenation: Dataless Classification}}, booktitle = {Proceedings of the National Conference on Artificial Intelligence (AAAI)}, year = {2008} }