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An one minute version of the talk

What we did

o Provide a general recipe for many important NLP problems

o Our algorithm: Learning over Constrained Latent Representations
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An one minute version of the talk

What we did

o Provide a general recipe for many important NLP problems

o Our algorithm: Learning over Constrained Latent Representations

Example NLP problems

o

Transliteration (Klementiev and Roth 2008),
Textual entailment (RTE) (Dagan, Glickman, and Magnini 2006)
Paraphrase identification (Dolan, Quirk, and Brockett 2004)
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Question Answering, and many more!
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An one minute version of the talk

What we did

o Provide a general recipe for many important NLP problems

o Our algorithm: Learning over Constrained Latent Representations

Example NLP problems

o

Transliteration (Klementiev and Roth 2008),
Textual entailment (RTE) (Dagan, Glickman, and Magnini 2006)
Paraphrase identification (Dolan, Quirk, and Brockett 2004)
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Question Answering, and many more!

Problems of Interests
Binary classification tasks that require an intermediate representation
=
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Example task: Paraphrase ldentification

Alan Bob o Q: Are sentence 1 and sentence 2 paraphrases
will said of each other?

face Alan

murder will

charges be

’ charged

Bob with

said murder
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Example task: Paraphrase ldentification

Alan Bob o Q: Are sentence 1 and sentence 2 paraphrases
will said of each other?

face Alan o Yes, but why?

murder will o They carry the same information!
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Example task: Paraphrase ldentification

Alan Bob o Q: Are sentence 1 and sentence 2 paraphrases

will said of each other?

face Alan o Yes, but why?

murder will o They carry the same information!

charges be o Justifying the decision requires an
intermediate representation

' charged

Bob with

said murder
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Example task: Paraphrase ldentification

Alan e A Bob o Q: Are sentence 1 and sentence 2 paraphrases
will \\’,'7\ said of each other?
face ~ . A Alan o Yes, but why?

. : . .
murder R \l; will o They carry the same information!
charges ’7" 3 be o Justifying the decision requires an

, intermediate representation
, ,": “ 3 charged

’ \
Bob ‘. ', with
’
said ’ ¥ murder
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Example task: Paraphrase ldentification

Alan e A Bob o Q: Are sentence 1 and sentence 2 paraphrases
will \\’,'7\ said of each other?
face ~ . A Alan o Yes, but why?

. . . .
murder R \l; will o They carry the same information!
charges ’7" 3 be o Justifying the decision requires an

, intermediate representation
, S 3 charged . .

S \‘ o Just an example; the real intermediate
Bob /! . with representation is more complicated
said ~ murder
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Example task: Paraphrase Identification

Alan ~_ A Bob o Q: Are sentence 1 and sentence 2 paraphrases
will \\ ,'7\ said of each other?

face - ’u Alan o Yes, but why?

murder R \l:’ will o They carry the same information!

charges ’7" 3 be o Justifying the decision requires an

AR intermediate representation
S Y % charged . .
‘ . o Just an example; the real intermediate

’

’ ’ A} H
Bob /! . with representation is more complicated
said ~ murder

Problem of interests

o Binary output problem: y € {—1,1}
o Intermediate representation: h

o Some structure that justifies the positive label
o The intermediate representation is latent (not present in the data)
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Limitations of existing approaches: two-stage approach

Most systems: a two-stage approach J

Stage 1: Generate the intermediate representation

Obtain intermediate representation — Fix it (ignore the second stage) !
X—=H
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Limitations of existing approaches: two-stage approach

Most systems: a two-stage approach

Stage 1: Generate the intermediate representation

Obtain intermediate representation — Fix it (ignore the second stage) !
X—=H

Stage 2: Classification based on the intermediate representation

Extract features using the fixed representation and learn:
O(X,H)—=Y

\TIoN Group I
S AT URBANA-CHAMPAIGN
Page. 4/27 N

G S E COMPUTA
Kenppi s, CoMrNT




Limitations of existing approaches: two-stage approach

Most systems: a two-stage approach

J

X —H

Stage 1: Generate the intermediate representation

Obtain intermediate representation — Fix it (ignore the second stage) !

Stage 2: Classification based on the intermediate representation

Extract features using the fixed representation and learn:
O(X,H)—=Y

Problem: the intermediate representation ignores the binary task
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Limitations of existing approaches: inference

o Observation: decisions on intermediate representation are

interdependent

Alan ~_ Bob
will . said
face 4 Alan
murder will
charges be

' charged
Bob with
said murder
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Limitations of existing approaches: inference

o Observation: decisions on intermediate representation are

interdependent

Alan ~_ Bob
will . said
face 4 Alan
murder will
charges be

' charged
Bob with
said murder

o Many frameworks use custom designed inference procedures

o Difficult to add linguistic intuition/constraints on the intermediate
representation

o Difficult to generalize to other tasks
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Learning Constrained Latent Representation (LCLR)

o Property 1: Jointly learn intermediate representations and labels

X ——>H O(X, H) =— Y
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Learning Constrained Latent Representation

o Property 1: Jointly learn intermediate representations and labels

| X ——H O(X, H) =— Y

’
’, ,

ya
intermediate rep-
resentation
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Learning Constrained Latent Representation

o Property 1: Jointly learn intermediate representations and labels

X — H ¢(X,H)_)y
tl re
’, , kA
.7 . N

Vi
input intermediate rep-
resentation
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Learning Constrained Latent Representation

o Property 1: Jointly learn intermediate representations and labels

X—>H
l 4
,

O(X, H) —— v

—

i3

ya
intermediate rep-
resentation

143

A Y
A Y
features

~

binary label
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Learning Constrained Latent Representation

o Property 1: Jointly learn intermediate representations and labels

feedback
X—H ¢(X=H)—)YF'
’ . , ": ~\

’, ,

A ~
Vi N ~‘
-in ut intermediate rep- _ B
P resentation features __y
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Learning Constrained Latent Representation (LCLR)

o Property 1: Jointly learn intermediate representations and labels
feedback

| X ——H O(X, H) =— Y

L
3
. 7 K B

’
’, ,

~\
’ 2 \\ ~‘
| resentation: |+ [features] [binary label
-ln ut . binary label
P resentation features y

o Find an intermediate representation that helps the binary task
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Learning Constrained Latent Representation

o Property 1: Jointly learn intermediate representations and labels

X—>H
¢ g

’
’, ,
’

feedback

O(X,H) — ¥

—

i3

143

ya
intermediate rep-
resentation

A Y
A Y
features

~
~
~
~
binary label

o Find an intermediate representation that helps the binary task

Property 2: Constraint-based inference for the intermediate representation
@ Uses integer linear programming on latent variables

o Easy to inject constraints on

latent variables

o Easy to generalize to other tasks
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@ Motivation and Contribution
@ Property 1: Jointly learn intermediate representations and labels

(@ Property 2: Constraint-based inference for the intermediate
representation

@ LCLR: Putting Everything Together

(®) Experiments
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Outline

(@ Property 1: Jointly learn intermediate representations and labels
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The intuition behind the joint approach

Alan ~ - Bob
~

will \’I';\ said

face ~. "‘ Alan

~

I .
murder \ \, will

4 \ N
charges e " be

\s

K ,' *, "% charged

, 'l AY .
Bob ‘. ', with
,

. \
said * “ murder
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joint approach

intermediate representation < {1, —1}

‘ s " eni Onl iti les h d
will ~. /-~ said @ Only positive examples have goo
f vy intermediate representations
ace ~ . , o2 Alan
Seo0 ) . : . .
murder ‘:7’,\ will o No negative example has a good intermediate
4

. representation
charges ,",{ 3 be P

IR IS
, VARAERY

SN “ % charged

, AY
Bob * ./ ' with
,

. \
said * “ murder
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joint approach

intermediate representation < {1, —1}

. .
will ~. /-~ said o iny pos.ltlve examples have good
”u intermediate representations
face .o Alan
K _ . . .
murder 3\, will o No negatlv.e example has a good intermediate
s representation
charges e T be P y
R RS
’ ,',' . *charged x: a sentence pair
’ AY .
Bob ¢,/ ' with h: an alignment between two sentences
i ’ \ . 3 d
said / Y murder H(x): all possible alignments for x
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joint approach

intermediate representation < {1, —1}
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will “~. /2 said o iny pos.ltlve examples have good
”u intermediate representations
face .o Alan
K _ . . .
murder 3\, will o No negative example has a good intermediate
s representation
charges e " be P y
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’ ,',' . 3 charged x: a sentence pair, weight vector: u
’ AY .
Bob ¢,/ ' with h: an alignment between two sentences
i ’ \ . 3 d
said / Y murder H(x): all possible alignments for x
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joint approach

intermediate representation < {1, —1}

. "
will “~. /2 said o iny pos.ltlve examples have good
”u intermediate representations
face .o Alan
K _ . . .
murder 3\, will o No negative example has a good intermediate
s representation
charges e " be P y
R RS
’ ,',' . 3 charged x: a sentence pair, weight vector: u
’ AY .
Bob ¢,/ ' with h: an alignment between two sentences
i ’ \ . 3 d
said / Y murder H(x): all possible alignments for x

o Pair x; is positive

o There must exist a good explanation that justifies the positive label
o 3h,u” ®(x;,h) >0

o Pair x5 is negative

o No explanation is good enough to justify the positive label
o Yhu"®(x2,h) <0
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Geometric interpretation: the case of two examples

o Pair x; is positive
o There must exist a good explanation that justifies the positive label
o 3h,u”d(xq,h) >0, or maxyu’ d(x;,h) >0
o Pair x5 is negative
o No explanation is good enough to justify the positive label
o Vh,u"®(x2,h) <0, or maxyu’ ®(x2,h) <0
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Geometric interpretation: the case of two examples

o Pair x; is positive
o There must exist a good explanation that justifies the positive label
o Jh,u” ®(x1,h) >0, or maxyu’ ®(x1,h) >0

o Pair x5 is negative
o No explanation is good enough to justify the positive label
o Vh,u"®(x2,h) <0, or maxyu’ ®(x2,h) <0

{®(x1,h) | h € H(x1)}
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Geometric interpretation: the case of two examples

o Pair x; is positive
o There must exist a good explanation that justifies the positive label
o Jh,u” ®(x1,h) >0, or maxyu’ ®(x1,h) >0

o Pair x, is negative
o No explanation is good enough to justify the positive label
o Vh,u"®(x2,h) <0, or maxyu’ ®(x2,h) <0

{®(x1,h) | h € H(x1)}

o The prediction @ h* ,
function: | / - \

maxp, u’ ®(x, h)

{o (Xz,h) | h e H(x2)}
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Outline

@) Property 2: Constraint-based inference for the intermediate
representation
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Integer Linear Programming fo

Declarative Framework '

o Why is a declarative framework important?

o No more custom-designed inference procedures
o Easy to generalize to other tasks
o Easy to inject constraints and linguistic intuition
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o Why is a declarative framework important?

o No more custom-designed inference procedures
o Easy to generalize to other tasks
o Easy to inject constraints and linguistic intuition

plug in
Declarative Framework
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er Linear Programming fo

Declarative Framework '

o Why is a declarative framework important?

o No more custom-designed inference procedures
o Easy to generalize to other tasks
o Easy to inject constraints and linguistic intuition

plug in
Declarative Framework

Model input as graphs. G,: the first sentence. Gp: the second sentence.

Paraphrasing

o Each vertex in G, can be mapped to at most one vertex in G (vice versa)
o Each edge in G, can be mapped to at most one edge in G, (vice versa)

o Edge mapping is active iff the corresponding node mappings are active
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Integer Linear Programming fo

Declarative Framework '

o Why is a declarative framework important?

No more custom-designed inference procedures
Easy to generalize to other tasks

Easy to inject constraints and linguistic intuition
Check out the CCM tutorial!

plug in
Declarative Framework

Model input as graphs. G,: the first sentence. Gp: the second sentence.

© ©6 0 o

Paraphrasing

o Each vertex in G, can be mapped to at most one vertex in G, (vice versa)
o Each edge in G, can be mapped to at most one edge in G, (vice versa)

o Edge mapping is active iff the corresponding node mappings are active
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Finding intermediate representation using ILP

’ Sentence 1 ‘ ’ Sentence 2 ‘
Alan Bob o We need this because of the
will said formulation. You do not need to
face Alan parse the symbols in this page
murder will
charges be
' charged
Bob with

said murder
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Finding intermediate representation using ILP

’ Sentence 1 ‘ ’ Sentence 2 ‘

Alan Bob o We need this because of the

will said formulation. You do not need to

face Alan parse the symbols in this page
murder will o [(x), the set of all “parts” that x can
charges be generate |[(X)| = 8x8 = 64

' charged
Bob with
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Finding intermediate representation using ILP

’ Sentence 1 ‘ ’ Sentence 2 ‘
Alan Bob o We need this because of the
will said formulation. You do not need to
face Alan parse the symbols in this page
murder will o I(x), the set of all “parts” that x can
charges be generate |[(X)| = 8x8 = 64
, charged © Rewrite h € {0,1}°* as a binary vector
Bob with h:{070707"°717050a171}

said murder

docn P E ComruraTion Group ]
Q STTY OF TLLINOTS AT URBANA-CHAMPAIGN Page. 13/27



Finding intermediate representation using ILP

’ Sentence 1 ‘ ’ Sentence 2 ‘
Alan Bob o We need this because of the
will said formulation. You do not need to
face Alan parse the symbols in this page
murder will o [(x), the set of all “parts” that x can
charges be generate |[(X)| = 8x8 = 64
' charged © Rewrite h € {0,1}°* as a binary vector
Bob with h:{070707"°717050a171}
said murder o A feature vector ®(x) for every part hs
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Finding intermediate representation using ILP

’ Sentence 1 ‘ ’ Sentence 2 ‘
Alan Bob o We need this because of the
will said formulation. You do not need to
face Alan parse the symbols in this page
murder will o [(x), the set of all “parts” that x can
charges be generate |[(X)| = 8x8 = 64
' charged © Rewrite h € {0,1}°* as a binary vector
Bob with h:{070707"°717050a171}
said murder o A feature vector ®(x) for every part hs

Inference Problem = ILP formulation (pink box)

T _ T
LT1ea7?{(u ®(x,h) = Lrg;(u Z hs®s(x)
sel(x)
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@ LCLR: Putting Everything Together
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LCLR: The objective function

o Review: Logistic Regression and
Support Vector Machine

o Decision Function: f(x,u) >0
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LCLR: The objective function

o Review: Logistic Regression and
Support Vector Machine

o Decision Function: f(x,u) >0
o Objective Function:

)
o1 >
min 2 Jull* + €3 i F(xu))

i=1
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LCLR: The objective function

o Review: Logistic Regression and
Support Vector Machine

o Decision Function: u’®(x) >0
o Objective Function:

I
N T T
min 2 ul? + €32 -y o) )

i=1
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LCLR: The objective function

o Review: Logistic Regression and P—

—  hinge loss ,

Support Vector Machine 2} :squ;;z;:g/;fss // 7
o Decision Function: u’®(x) >0 151 ]

o Objective Function: s i

1 / o5 N

min —|uf|* + CY U(—yiu"o(x)) o |

i=1 I ! I ! I I
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LCLR: The objective function

o Learning over Constrained Latent Representations
o Decision Function (ILP): f(x,u)> 0
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LCLR: The objective function

o Learning over Constrained Latent Representations
o Decision Function (ILP): f(x,u)> 0
o Objective Function

!
A TS
min > ull? + €3~ -y Flx,u))

i=1
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LCLR: The objective function

o Learning over Constrained Latent Representations

o Decision Function (ILP): maxheru’ 3 hs®s(x)> 0

sel(x)
o Objective Function

m|nf|\u|\ +CZ€ —yi maxu Z hs®s(x) )

selr(x)
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LCLR: The objective function

o Learning over Constrained Latent Representations

o Decision Function (ILP): maxheru’ 3 ) hs®s(x)> 0

sel(x
o Objective Function

I
1o _ T
min EHUH +C ;:1 U~y maxu E hs®s(x) )

selr(x)

Beyond standard LR/SVM

Solves an inference problem (max) to select h (also affect features)
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Challenges in optimizing the objective function

. I
miny 3{[ull? + C Xiy A=y maxu” Y ocppy hs®s(x) )

[Not a regular LR/SVMJ

o LCLR has an inference procedure inside the minimization problem
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Challenges in optimizing the objective function

. I
miny 3{[ull? + C Xiy A=y maxu” Y ocppy hs®s(x) )

[Not a regular LR/SVMJ

©

LCLR has an inference procedure inside the minimization problem

No shortcut

Find the best representation for all examples

©

©

Obtain a new weight vector using a LR/SVM package with the
updated representations.

o Repeat.
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Challenges in optimizing the objective function

. I
miny 3{[ull? + C Xiy A=y maxu” Y ocppy hs®s(x) )

[Not a regular LR/SVMJ

©

LCLR has an inference procedure inside the minimization problem

No shortcut

Find the best representation for all examples

©

©

Obtain a new weight vector using a LR/SVM package with the
updated representations.

o Repeat.

Does not minimize the objective function
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LCLR: optimization procedure

Algorithm

1: Find the best intermediate representations for positive examples
2: Find the weight vector with this intermediate representation

o Still need to do inference for negative examples
o Not a regular SVM problem even in this step!

3: Repeat!
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LCLR: optimization procedure

Algorithm

1: Find the best intermediate representations for positive examples
2: Find the weight vector with this intermediate representation

o Still need to do inference for negative examples
o Not a regular SVM problem even in this step!

3: Repeat!

This algorithm converges when £ is monotonically increasing and convex. )
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LR: optimization procedure

Algorithm

1: Find the best intermediate representations for positive examples
2: Find the weight vector with this intermediate representation

o Still need to do inference for negative examples
o Not a regular SVM problem even in this step!

3: Repeat!

This algorithm converges when £ is monotonically increasing and convex. |

Properties of the algorithm: Asymmetric nature

o Asymmetry between positive and negative examples

o Converting a non-convex problem into a series of smaller convex
problems
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Comparison to other latent variable frameworks

Inference procedure

o Other frameworks often use application-specific inference.
o LCLR allows you to add constraints and generalize to other tasks.
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Comparison to other latent variable frameworks

Inference procedure

o Other frameworks often use application-specific inference.
o LCLR allows you to add constraints and generalize to other tasks.

o Not only for SVM. Many different loss functions can be used.

o Dual coordinate descent methods and cutting plane method
o Fewer parameters to tune. Allows parallel inference procedure.
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Comparison to other latent variable frameworks

Inference procedure

o Other frameworks often use application-specific inference.

o LCLR allows you to add constraints and generalize to other tasks.

Learning

o Not only for SVM. Many different loss functions can be used.

o Dual coordinate descent methods and cutting plane method
o Fewer parameters to tune. Allows parallel inference procedure.

CRF-like latent variable framework

o LCLR can use logistic regression and have a probabilistic
interpretation

o LCLR solves the “max” problem. CRF-like models solves the “sum”
problem. “Max” enables adding constraints. @5
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Outline

(& Experiments
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Experimental setting

o Transliteration: Is named entity B a transliteration of A?

o Textual Entailment: Can sentence A entail sentence B?
o Paraphrase ldentification

Goal of experiments

o Determine if a joint approach be better than a two-stage approach?

Two-stage approach versus LCLR

o Exactly the same features and definition of latent structures

o Our two-stage approach uses a domain-dependent heuristic to find
an intermediate representation
o LCLR finds the intermediate representation automatically

o Initialization of LCLR: two-stage

ComruraTion Grourp I
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Experimental results

Transliteration System Joint | ILP | Acc | MRR
(Goldwasser and Roth 2008) *

Our two-stage *

Our LCLR * *
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(Goldwasser and Roth 2008) * N/A | 89.4
Our two-stage * 80.0 85.7
Our LCLR * *

roc:rw,f/ﬁ ComruraTion Grourp I
Q2o PPWs 1Ty OF TLLINOTS AT URBAN A TCHAMPAIG N
Page. 21/27 N



Experimental results

Transliteration System Joint | ILP | Acc | MRR
(Goldwasser and Roth 2008) * N/A | 89.4
Our two-stage * 80.0 85.7
Our LCLR * * 923 | 95.4
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Experimental results

Transliteration System Joint | ILP | Acc | MRR
(Goldwasser and Roth 2008) * N/A | 89.4
Our two-stage * 80.0 85.7
Our LCLR * * | 923 | 95.4
Entailment System Joint | ILP | Acc
Median of TAC 2009 systems 61.5
Our two-stage *
Our LCLR * *
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Experimental results

Transliteration System Joint | ILP | Acc | MRR
(Goldwasser and Roth 2008) * N/A | 89.4
Our two-stage * 80.0 85.7
Our LCLR * * | 923 | 95.4
Entailment System Joint | ILP | Acc
Median of TAC 2009 systems 61.5
Our two-stage * 65.0
Our LCLR * *
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Experimental results

Transliteration System Joint | ILP | Acc | MRR
(Goldwasser and Roth 2008) * N/A | 89.4
Our two-stage * 80.0 85.7
Our LCLR * * | 923 | 95.4
Entailment System Joint | ILP | Acc
Median of TAC 2009 systems 61.5
Our two-stage * 65.0
Our LCLR * * | 06.8
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Paraphrase Identification

Paraphrase System | Joint [ ILP | Acc
Experiments using (Dolan, Quirk, and Brockett 2004)
(Qiu, Kan, and Chua 2006) 72.00
(Das and Smith 2009) * 73.86
(Wan, Dras, Dale, and Paris 2006) 75.60
Our two-stage *
Our LCLR * *

oc WLy E ComruraTion Grourp ]
LS 1Ty OF TLLINOIS AT URBANA-CHAMPAIGN Page. 22/27 i



Paraphrase Identification

Paraphrase System | Joint [ ILP | Acc
Experiments using (Dolan, Quirk, and Brockett 2004)
(Qiu, Kan, and Chua 2006) 72.00
(Das and Smith 2009) * 73.86
(Wan, Dras, Dale, and Paris 2006) 75.60
Our two-stage * | 76.23
Our LCLR * * 76.41
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Paraphrase Identification

Paraphrase System | Joint [ ILP | Acc
Experiments using (Dolan, Quirk, and Brockett 2004)
(Qiu, Kan, and Chua 2006) 72.00
(Das and Smith 2009) * 73.86
(Wan, Dras, Dale, and Paris 2006) 75.60
Our two-stage * | 76.23
Our LCLR * * | 76.41
Experiments using Noisy data set
Our two-stage *
Our LCLR * *
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Paraphrase Identification

Paraphrase System | Joint [ ILP | Acc
Experiments using (Dolan, Quirk, and Brockett 2004)
(Qiu, Kan, and Chua 2006) 72.00
(Das and Smith 2009) * 73.86
(Wan, Dras, Dale, and Paris 2006) 75.60
Our two-stage * | 76.23
Our LCLR * * | 76.41
Experiments using Noisy data set
Our two-stage * 72.00
Our LCLR * * | 72.75
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Conclusions
= 'Constraint—based Inference‘ +' Large Margin Learning‘

Contributions

o LCLR joint approach is better than two-stage approaches
o LCLR allows the use of constraints on latent variables

o A novel learning framework
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Conclusions
= 'Constraint—based Inference‘ +' Large Margin Learning‘

Contributions

o LCLR joint approach is better than two-stage approaches
LCLR allows the use of constraints on latent variables

©

©

A novel learning framework

Bonus: Learning Structures with Indirect Supervision

©

Easy to get binary labeled data can be used to improve learning
structures!

©

Check out our ICML paper this year!
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Thank you!

o Our learning code is available: the JLIS package

O http://12r.cs.uiuc.edu/~cogcomp/software.php
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Main Idea: Learning with indirect supervision

unlabeled
examples

labeled
structures

training

training machine

learning
model

testing

testing data
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Main Idea: Learning with indirect supervision

indirect supervision

training

unlabeled
examples

labeled testing data
structures

Indirect supervision: the supervision form that does not tell you the J

training

machine
learning
model

training testing

target output directly
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Main Idea: Learning with indirect supervision

examples

training
labeled testing data
structures

Indirect supervision: the supervision form that does not tell you the
target output directly

training

machine
learning
model

training testing

Advantage of using indirect supervision

o Can directly use human/domain knowledge to improve the model

o Allow us to use supervision signals that are a lot easier to obtain
than labeling structures

o Use existing labeled data for the related tasks
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Main Idea: Learning with indirect supervision

indirect supervision

training

unlabeled
examples

labeled testing data
structures

Indirect supervision: the supervision form that does not tell you the
target output directly

training

machine
learning
model

training testing

Advantage of using indirect supervision

o Can directly use human/domain knowledge to improve the model

o Allow us to use supervision signals that are a lot easier to obtain
than labeling structures

o Use existing labeled data for the related tasks

[Indirect supervision ereatlv reduce the supervision effort!
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Compared to CRF-like latent variable framework

CRF-like latent variable framework

= 1lx) = _ x) = Zh exp(uTgi)(x,h,y: 1))
Py = 1| )—}th(y 1, h|x) >, SBETHE N, y))

LCLR with logistic loss

B ~ maxpexp(u’ ¢(x, h))
Ply =1ix) = 1 + maxy exp(u” é(x, h))

o Difference 1: LCLR only models the “goodness”

o This is important for many NLP problems, where only positive
examples have good representations.

o Difference 2: LCLR only need to solve the max inference
o Sometimes calculating sum is a lot harder!!
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Paraphrase Identification: Revisited

’Sentence 1 ‘ ’ Sentence 2‘
Alan ~ - Bob o Left: The intermediate representation is
. R AN not expressive enough
will ~._, nsaid F e “word ordering” i
< or example, “word ordering” is a
face ~. S 74 Alan ¢ xampie, -word ordering 1
TR problem
murder . will .
\\\ RIPLTeN o The real setting
(SRS )
charges Ravs be o Input: two word sequence — two
“ s
v 0 s T3 charged graphs.
¢ ! N
Bob ¢ ,* © with o We used Stanford Parser to construct
i R 3y q dependency parse trees for each
sai murder sentence

Integer Linear Programming to solve the graph matching problem

o Four types of sub-structure: node matching, node-deletion, edge
matching, edge-deletion

o Add constraints to enforce consistency
o edge matching if and only if the corresponding nodes are matched
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