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Example log key sequence:

25 18 54 57 18 56 … 25 18 54 57 56 18 …

➢ a rigorous set of logic and control flows

➢ a (more structured) natural language

natural language modeling

multi-class classifier: history sequence => next key to appear

A log key is detected to be abnormal if it does not 

follow the prediction.
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Detection: 

In detection stage, DeepLog checks if the actual next log key 

is among its top g probable predictions.



Log Key Anomaly Detection model

57



Log Key Anomaly Detection model

58



Log Key Anomaly Detection model

59



Workflow Construction

Input: log key sequence

25 18 54 57 18 56 … 25 18 54 57 56 18 …

Output:

60



Workflow Construction

61

Method 1: Using Log Key Anomaly Detection model
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Co-occurrence matrix of log keys (𝒌𝒊, 𝒌𝒋) within distance 𝒅

Workflow Construction
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Method 2: A density-based clustering approach

𝑓𝑑(𝑘𝑖 , 𝑘𝑗) : the frequency of (𝑘𝑖 , 𝑘𝑗) appearing together within distance d

𝑓(𝑘𝑖) : the frequency of 𝑘𝑖 in the input sequence

𝑝𝑑(i, 𝑗) : the probability of (𝑘𝑖 , 𝑘𝑗) appearing together within distance d



Example: 

Log messages of a particular log key:

𝒕𝟐: 𝑻𝒐𝒐𝒌 𝟎. 𝟔𝟏 𝒔𝒆𝒄𝒐𝒏𝒅𝒔 𝒕𝒐 𝒅𝒆𝒂𝒍𝒍𝒐𝒄𝒂𝒕𝒆 𝒏𝒆𝒕𝒘𝒐𝒓𝒌 …
𝒕′𝟐: 𝑻𝒐𝒐𝒌 𝟏. 𝟏 𝒔𝒆𝒄𝒐𝒏𝒅𝒔 𝒕𝒐 𝒅𝒆𝒂𝒍𝒍𝒐𝒄𝒂𝒕𝒆 𝒏𝒆𝒕𝒘𝒐𝒓𝒌 …

….

Parameter Value Anomaly Detection model
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Parameter value vectors overtime:

[𝒕𝟐- 𝒕𝟏, 0.61], [𝒕′𝟐- 𝒕′𝟏, 1.1], ….

Multi-variate time series data anomaly detection problem!

Parameter Value Anomaly Detection model
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Multi-variate time series data anomaly detection problem

✓ Leverage LSTM-based approach;

✓ A parameter value vector  is given as input at each time step;

✓ An anomaly is detected if the mean-square-error (MSE) 

between prediction and actual data is too big.

Parameter Value Anomaly Detection model
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Multi-variate time series data anomaly detection problem

✓ Leverage LSTM-based approach;

✓ A parameter value vector  is given as input at each time step;

✓ An anomaly is detected if the mean-square-error (MSE) 

between prediction and actual data is too big.



Parameter Value Anomaly Detection model

prediction

74

time

value history

Multi-variate time series data anomaly detection problem

✓ Leverage LSTM-based approach;

✓ A parameter value vector  is given as input at each time step;

✓ An anomaly is detected if the mean-square-error (MSE) 

between prediction and actual data is too big.
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prediction
value history

Multi-variate time series data anomaly detection problem

✓ Leverage LSTM-based approach;

✓ A parameter value vector  is given as input at each time step;

✓ An anomaly is detected if the mean-square-error (MSE) 

between prediction and actual data is too big.
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prediction
value history

MSE > Threshold ?

Multi-variate time series data anomaly detection problem

✓ Leverage LSTM-based approach;

✓ A parameter value vector  is given as input at each time step;

✓ An anomaly is detected if the mean-square-error (MSE) 

between prediction and actual data is too big.
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Multi-variate time series data anomaly detection problem

✓ Leverage LSTM-based approach;
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history

Multi-variate time series data anomaly detection problem

✓ Leverage LSTM-based approach;

✓ A parameter value vector  is given as input at each time step;

✓ An anomaly is detected if the mean-square-error (MSE) 

between prediction and actual data is too big.
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history

MSE > Threshold ?

Multi-variate time series data anomaly detection problem

✓ Leverage LSTM-based approach;

✓ A parameter value vector  is given as input at each time step;

✓ An anomaly is detected if the mean-square-error (MSE) 

between prediction and actual data is too big.
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Multi-variate time series data anomaly detection problem

✓ Leverage LSTM-based approach;

✓ A parameter value vector  is given as input at each time step;

✓ An anomaly is detected if the mean-square-error (MSE) 

between prediction and actual data is too big.



LSTM model online update

Q: How to handle false positive?
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LSTM model online update

history current
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Anomaly?
Yes

update model using this case: “history -> current”

False 

positive?

Yes

Log sequence:

prediction

Q: How to handle false positive?
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Evaluation results on HDFS log data [1]. 
(over a million log entries with labeled anomalies)

[1] PCA (SOSP’09), IM (UsenixATC’10), N-gram (baseline language model)

Evaluation – log key anomaly detection
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Evaluation – parameter value anomaly detection

Evaluation results on OpenStack cloud log

with different confidence intervals (CIs)

MSE: 

mean square error
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Evaluation – parameter value anomaly detection

MSE: 

mean square error

generated on CloudLab; 

VM creation/deletion operations; 

injected performance anomalies.

Evaluation results on OpenStack cloud log

with different confidence intervals (CIs)
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Evaluation – LSTM model online update

Evaluation on Blue Gene/L log, 

with and without online model update.

U
p

 i
s
 g

o
o

d

95



Evaluation – LSTM model online update

Evaluation on Blue Gene/L log, 

with and without online model update.
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HPC log with labeled anomalies;

Available at

https://www.usenix.org/cfdr-data
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https://www.usenix.org/cfdr-data


Evaluation – case study: network security log
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Dataset: IEEE VAST Challenge 2011 
(Mini Challenge 2 – Computer Networking Operations)

The dataset contains firewall log, IDS log, etc.
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Dataset: IEEE VAST Challenge 2011 
(Mini Challenge 2 – Computer Networking Operations)

The dataset contains firewall log, IDS log, etc.

Detection results.



Evaluation – case study: network security log
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Dataset: IEEE VAST Challenge 2011 
(Mini Challenge 2 – Computer Networking Operations)

The dataset contains firewall log, IDS log, etc.

Detection results.
Could be fixed with prior knowledge 

of “documented IP”



Evaluation – workflow construction

Constructed workflow of VM Creation.
(previously generated OpenStack cloud log)
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Evaluation – workflow construction

How does it help to 

diagnose anomalies?

Constructed workflow of VM Creation.
(previously generated OpenStack cloud log)
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Evaluation – workflow construction

Parameter value 

anomaly

How does it help to 

diagnose anomalies?

Constructed workflow of VM Creation.
(previously generated OpenStack cloud log)
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Evaluation – workflow construction

Time difference 

(performance) anomaly

Parameter value 

anomaly

How does it help to 

diagnose anomalies?

Constructed workflow of VM Creation.
(previously generated OpenStack cloud log)
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Evaluation – workflow construction

How does it help to 

diagnose anomalies?

Constructed workflow of VM Creation.
(previously generated OpenStack cloud log)
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Identified anomaly:
Instance took too long to build 

because of the transition 

from 52 -> 53



Evaluation – workflow construction

How does it help to 

diagnose anomalies?

Identified anomaly:
Instance took too long to build 

because of the transition 

from 52 -> 53

Injected anomaly: 
During VM creation, 

network speed from controller 

to compute node is throttled.
Constructed workflow of VM Creation.

(previously generated OpenStack cloud log)
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Summary

DeepLog

➢ A realtime system log anomaly detection framework.

➢ LSTM is used to model system execution paths and log parameter values.

➢ Workflow models are built to help anomaly diagnosis.

➢ It supports online model update.

Min Du

mind@cs.utah.edu

Feifei Li

lifeifei@cs.utah.edu
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Thank you!


