A Hardware

All MKL experiments were conducted on Intel® Xeon® E5-2650 v2 CPUs, 2.60GHz with 64GB RAM and eight cores. All CKL and CNN experiments were conducted on a cluster with 32 nodes, each node has Intel® Xeon® E5-2660 CPUs, 2.20GHz with 64GB RAM and eight cores, and two Nvidia Tesla K20m GPUs.

B Proofs

Lemma 3. The decision function $\mathbf{1}_{\text{Im}(z(wx+\beta))\geq 0}$ induces a unique binary labeling for the set $x \in \{1/2^i\}_{i=1}^n$ for every integer value of $w \in [1..2^n]$, and any $\beta \in (0, 2^{-(n+1)})$.

Proof. For any integer $w \in 1...2^n$ and $i \in 1...n$, choose the binary label as 0 if $z(w/2^i + \beta)$ lands in the upper half-plane of \mathbb{C} , and 1 if the lower half-plane. The label can be read as the most significant fractional digit of the binary representation of $w/2^i$, as long as $\beta \in (0, 2^{-(n+1)})^5$. The labeling is then unique for integer values of w up to 2^n .

An example of the proof construction can be seen in Figure 1, for n = 2.

Fig. 1. An example of Lemma 3, with n = 2. The values of w increase from 1 to 4, proceeding left to right. The positive label is represented as a blue point, while negative is red.

Lemma 4. The shatter function of $(\mathbb{R}^d, \mathcal{G}_d(R))$ is $O(R^d n^{d+1})$.

Proof. We can first observe that $\|\omega\|_2 \le R$ implies that $\|\omega\|_{\infty} \le R$. This implies that $|\omega_j| \le R$ for every $j \in [1..d]$. Treating each coordinate separately this way, each term in $\langle \omega, \mathbf{x} \rangle + \beta$ contributes a factor in the growth function.

For a fixed ω , the number of subsets of a set of n points selected by (ω, β, d) -ranges is O(n), because as β changes, at most one point exits or leaves the upper half-plane (because the points all travel at the same speed around the unit circle).

For fixed β , and fixed ω save for some coordinate ω_j , on the other hand, how often a point enters or leaves the upper half-plane as ω_j varies in (0,R] depends upon the value of x_j . For higher values of x_j , the mapped point travels more rapidly. In fact, for x = 1, z takes R revolutions around the circle, so enters and exits the upper half-plane 2R times. The number of subsets is bounded by

$$\sum_{i=1}^{n} 2R|x_i| = 2R\sum_{i=1}^{n} |x_i| \le 2Rn.$$
 (6)

⁵ To avoid ambiguity, we require $\beta > 0$, to prevent $z(w/2^i)$ from landing on the real axis when 2^i divides w.

We take the absolute value because a negative x_i simply changes the direction of tra	ivel
of $z(\omega_j x_i + \beta)$. Everything else remains the same. For ω and β varying independent	ıtly,
we now have the bound stated in the lemma.	