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Abstract. Kernel learning is the problem of determining the best kernel (either
from a dictionary of fixed kernels, or from a smooth space of kernel represen-
tations) for a given task. In this paper, we describe a new approach to kernel
learning that establishes connections between the Fourier-analytic representation
of kernels arising out of Bochner’s theorem and a specific kind of feed-forward
network using cosine activations. We analyze the complexity of this space of hy-
potheses and demonstrate empirically that our approach provides scalable kernel
learning superior in quality to prior approaches.

1 Introduction

Kernel methods have been a powerful tool in machine learning for decades and kernel
learning is the problem of learning the “right” or “best” kernel for a given task. Broadly
speaking, we can divide kernel learning methods into two categories. Multiple kernel
learning (MKL) methods largely assume that the desired kernel can be represented as
a combination of a dictionary of fixed kernels, and seeks to learn their mixing weights.
The other approach is based on a Fourier-analytic representation of shift-invariant ker-
nels via Bochner’s theorem: roughly speaking, a kernel can be represented (in dual
form) as a probability distribution, and so the search for a kernel becomes a search over
distributions.

In both approaches, training the model is challenging with many thousands of train-
ing points and hundreds of dimensions. Standard training approaches either employ
some form of convex or alternating optimization (for MKL) or parameterize the space
of distributions in terms of known distributions and try to optimize their parameters.

In this paper, we describe continuous kernel learning (CKL), a new way of tack-
ling this problem by establishing and exploiting a connection to feed-forward net-
works. Working within the Fourier-analytic framework for kernel learning, we propose
to search directly over the space of shift-invariant kernels instead of optimizing the pa-
rameters of a known family of distributions. In doing so, though we lose the ability to
isolate parameters of a single learned kernel, we gain representability in terms of a non-
linear basis of cosines that can be naturally interpreted as activations for a feed-forward
network. This interpretation allows us to deploy the power of backpropagation on this
network to learn the desired kernel representation. In addition, the generalization power
of the cosine representation can be established formally using machinery from learning
theory: this also helps guide the regularization that we use to learn the resulting kernel.
We support these arguments with a suite of experiments on relatively large data sets



(tens of thousands of points, hundreds of dimensions) that demonstrate that our learned
kernels are more accurate than the state-of-the-art MKL methods.

In summary, our main contributions are:

– We develop the continuous kernel learning (CKL) framework, a kernel learning
method that learns an implicit representation of a kernel. We show that we can
interpret the learning task as a feed-forward network. This allows us to utilize recent
advances in optimization technology from deep learning to train a classifier.

– We prove VC-dimension and generalization bounds for a single Fourier embedding,
which yields natural regularization techniques for CKL.

– We show via experiments that CKL outperforms existing scalable MKL methods.

1.1 Technical Overview

The starting point for our work is the representation of any shift-invariant kernel1 as
an infinite linear combination of cosine basis elements via Bochner’s theorem [9], as
first demonstrated by Rahimi and Recht [38]. This representation is typically used to
generate a random low-dimensional embedding of the associated Hilbert space.

If we move away from a random low-dimensional embedding and embrace the en-
tire distribution that we sample from, we reach infinite-width embeddings. Dealing with
infinite-width embeddings simply means that we consider the expectation of the em-
bedding over the distribution. Neal [33] linked infinite-width networks to Gaussian
processes when the distribution is Gaussian. Much later, Cho and Saul [11] applied
the technique to infinite-width rectified linear units (ReLUs), and showed a correspon-
dence to a kernel they called the arc-cosine kernel. Hazan and Jaakkola [20] extended
this result further, and analyzed the kernel corresponding to two infinite layers stacked
in series.In all of this, a specific distribution is chosen in order to obtain a kernel.

In our work, we return to the infinite representation provided by Bochner’s theorem.
Rather than picking a specific distribution over weights, we learn a distribution based on
our training data. This effectively means we learn a representation of a kernel. While
we cannot learn an infinite-width embedding directly, since the space of functions is
itself infinite, we are able to construct approximate representations from a finite number
of Fourier embeddings. Since the learned kernel representations are a form of kernel
learning, we dub our technique continuous kernel learning (CKL).

2 Prior Kernel Learning Work

2.1 Multiple Kernel Learning (MKL)

Multiple Kernel Learning, or MKL, is an extension to kernelized support vector ma-
chines (SVMs) that employs a combination of kernels to extend the space of possible
kernel functions. MKL algorithms learn not only the parameters of the SVM, but also
the parameters of the kernel combination. In this sense, MKL algorithms seek to find

1 A kernel κ(x,y) expressible as κ(x,y) = k(x− y).



the correct kernel function for the training data instead of relying on a predefined kernel
function.

Lanckriet et al. [25] describe several convex optimization problems that learn the
coefficients of a linear combination of kernel functions κγ(·, ·) = ∑i γiκi(·, ·). There are
several algorithms to solve the MKL problem, including [1, 3, 16, 17, 39]. In addition to
solving the MKL problem, MWUMKL [31] and SPG-GMKL [21] also work at scale.

2.2 Approaches Utilizing Bochner’s Theorem

The key mathematical tool that drives much of kernel learning work is Bochner’s theo-
rem:

Theorem 1 (Bochner [9]). A continuous function k :Rd→R is positive-definite iff k(·)
is the Fourier transform of a non-negative measure.

Several papers have been published that explore the connection between Bochner’s
theorem and learning a kernel. A Bayesian view produces an interpretation of this op-
timization as learning the kernel of a Gaussian process (GP). Wilson and Adams [43]
equate stationary (shift-invariant) kernels to the spectral density function of a GP. They
observe that linear combinations of squared-exponential kernels are dense in the space
of stationary kernels. The resulting kernel has few parameters and is relatively easy to
interpret.

Yang et al. [48] extend the ideas in [43] and combine it with the principles from
Fastfood [26]. The authors also discuss variants of their algorithms such as computing
a piecewise linear kernel. Similarly, the BaNK method by Oliva et al. [34] learns a
kernel using the GP technique and trains the kernel using MCMC. Finally in the GP
vein, Wilson et al. [44] integrate a deep network as input to the GP, treating the GP as
an “infinite-dimensional” layer of the network, and optimize the parameters of the GP
simultaneously with the parameters of the network using backpropagation.

Băzăvan et al. [10], in contrast, optimize Fourier embeddings, but decompose each
ωi into a parameter σi multiplied by a nonlinear function of a uniform random variable
to represent the sample. The uniform variable is resampled during optimization as the
parameter is learned.

3 Continuous Kernel Learning

3.1 Bochner’s Theorem

A couple observations must be made in order for Theorem 1 to be relevant to our setting.
First, we observe that (for the purposes of this paper) a positive definite function k(·)
is a positive definite kernel κ(·, ·) when κ(x,x′) = k(x− x′). A kernel of this type is a
shift-invariant kernel. Examples include the Gaussian or RBF kernel (e−‖x−x′‖2/σ2

) and
the Laplacian kernel (e−λ‖x−x′‖).

Next, any non-negative measure µ : Rd → R+ can be converted to a probability
distribution if we normalize by Z =

∫
Rd dµ . Since Fourier transforms are linear, we can

normalize the kernel by the same factor Z and maintain the equivalence. So without



loss of generality, we can assume that the measure µ is a probability measure. This
equivalence between shift-invariant kernel and distribution is important in the rest of
this paper.

3.2 Fourier Embeddings

Rahimi and Recht [38] built on Bochner’s theorem by observing that the Fourier trans-
form of µ is also an expectation:

k(x−x′) =
∫

Rd
eiω>(x−x′) fµ(ω) dω (1)

= Eω [ζω(x)ζω(x′)], (2)

if ζω(x) = eiω>x and ω ∼ Dµ , where Dµ is the probability distribution over Borel
sets on Rd with measure µ . This shows that ζω(x)ζω(x′) is an unbiased estimate
of k(x− x′). Because k(x− x′) is real, we know that Eω [ζω(x)ζω(x′)] has no imag-
inary component. A straightforward Chernoff-type argument [see 32, Ch. 4] shows
that averaging ζω(x)ζω(x′) over D samples of ω produces a bound on the error of
the estimate that diminishes exponentially in D. The lifting map then becomes Φ(x) =√

1/D(ζω1(x), . . . ,ζωD(x)). The inner product 〈Φ(x),Φ(x′)〉 is obviously the desired
average.

We can avoid complex numbers by using zω,b(x) =
√

2cos(ω>x+b) with ω ∼Dµ
and b∼U [0,2π), which offers the same unbiased estimate (see [38]). The lifting map in
this case is Φ(x) =

√
2/D(zω1,b1(x), . . . ,zωD,bD(x)). In this work we will refer to these

maps (of the real or complex type) as Fourier embeddings. In [38] these embeddings
are called random Fourier features, because they are selected at random from the distri-
bution that is Fourier-dual to the approximated kernel. We will demonstrate that Fourier
embeddings of this type need not be selected at random, and can in fact be optimized.

Our approach. Our approach is most similar to that in Băzăvan et al. [10]. Like the
authors of [10], we recognize that we can optimize the parameters {ω i} of a Fourier
embedding. Băzăvan et al. decompose ω i as follows:

ω i = σ i�h(ui), (3)

where σ i is the parameter of a shift-invariant kernel, h is a nonlinear function (essen-
tially an inverse CDF), and ui is a sample drawn from a multivariate uniform distri-
bution (cube). The procedure is to optimize σ i and periodically resample ui. This has
the advantage of being able to represent the kernel with its parameter σ i, which adds
to clarity, but the kernel must be one of a particular class of shift-invariant kernels that
decomposes into this form. A Gaussian kernel, however, does decompose this way.

In contrast, we sample the vectors ω i from the distribution Dµ , and then optimize
them directly. The weights {ω i} become different vectors {ω ′i} ⊂ Rd – and are now
very unlikely to be drawn i.i.d. from the distribution Dµ anymore. As in prior ap-
proaches, by learning the embeddings, we learn the kernel, because the Bochner equiv-
alence between distributions and kernels guarantees this. We use backpropagation to



learn the weights, avoiding the need to resample at every step, and allowing us to take
advantage of recent neural network technology to perform scalable optimization. While
other approaches focus on decomposing the representation of the kernels into individual
kernel components and learn their parameters, we avoid this and focus only on produc-
ing the final weights ω ′i. We lose the clarity and sparsity of individual kernel parameters
but gain the flexibility of learning a representation of a shift-invariant kernel free of in-
dividual base kernels, and recent technology allows us to do this training quickly.

For brevity, we refer to the d×D matrices W (for the {ω i}) and W′ (for the {ω ′i}),
since there are D samples from Rd .

3.3 Generalization Bounds in Fourier Embeddings

We now examine the capacity of this class of kernels by analyzing its VC-dimension.
Note that the cosine function complicates this analysis since it has nontrivial gradient
almost everywhere.

Fortunately we can exploit an observation already well-known in kernel learning
that a narrow kernel function, for example, a Gaussian kernel with a small variance, is
more likely to overfit (and therefore have higher capacity). This is because a narrow
kernel function only allows the model to examine a very small range around each point,
so a new point is unlikely to be affected by the model at all. Because the kernel is the
Fourier transform of a distribution, a narrow kernel function corresponds to a distri-
bution with high variance – using the same example, a Gaussian kernel with variance
parameter σ2 is the Fourier transform of a Gaussian distribution with variance 1/σ2.
So a small variance in the kernel corresponds to a high variance in the distribution, and
vice-versa.

In fact, we can demonstrate that if the norm of the embedding parameter ω is high,
then this translates to higher capacity. Let z(x) = e2πix, Re(z) and Im(z) be the real and
imaginary components of z, respectively, and let 1P(x) be the indicator (or characteris-
tic) function of P : R→{0,1}.
Definition 1. An (ω,β ,d)-range is the set {x ∈ Rd | Im(z(ω · x+ β )) ≥ 0, ‖x‖ < 1}
where d ≥ 1 is an integer, ω ∈ Rd , and β ∈ [0,1).

Definition 2. Let Gd(R) be the set of all (ω,β ,d)-ranges such that ‖ω‖2 ≤ R.

Clearly, every (ω,β ,d)-range corresponds to a binary classifier and the range space
(Rd ,Gd(R)) is the hypothesis space of interest. We denote the unbounded range space
∪RGd(R) by Gd(∞).

VC-dimension of (ω,β ,d)-ranges.

Theorem 2. The VC-dimension of the range space (Rd ,Gd(R)) is Θ(max{d logR,d +
1}).

We split the proof of this theorem into two lemmas:

Lemma 1. The VC-dimension of (Rd ,Gd(R)) is at least d max{blog2 Rc,1}+1.

Lemma 2. The VC-dimension of (Rd ,Gd(R)) is O(d logR).



Proof of Lemma 1. We first prove Lemma 1 by using the following lemma (proved in
Appendix B):

Lemma 3. The decision function 1Im(z(wx+β ))≥0 induces a unique binary labeling for
the set x ∈ {1/2i}n

i=1 for every integer value of w ∈ [1..2n], and any β ∈ (0,2−(n+1)).

Proof of Lemma 1. Let n = blog2 Rc, for R ≥ 2. We now construct a set of dn points.
Along each axis of Rd , place n points with corresponding coordinate from the set
{1/2i}n

i=1. From Lemma 3, we know that we can induce a binary labeling on every
axis-restricted set, using integers 1..2n. Given ω ∈ [1..2n]d , each ω j ∈ 1..2n will give a
unique labeling to the points on axis j ∈ 1..d, independent of any other axis j. Therefore
we can uniquely label the whole set of dn points, for all possible labelings.

To add one more point to the set, we select a point c, the d-dimensional vector
with all coordinates equal to a constant c, and make sure that we can find values β+

and β− so that 〈c,ω〉+ β+ ≥ 0 and 〈c,ω〉+ β− < 0, independently of ω . Observe
that 〈c,ω〉 = c∑ j ω j, and that d ≤ ∑ j ω j ≤ d2n. For 〈c,ω〉+ β− < 0 we need that
β+ < −〈c,ω〉 for all ω , since the choice of β must be independent of ω . This means
that first, c < 0 since β− > 0 and ∑ j ω j > 0. Then−cd ≤−〈c,ω〉 ≤−cd2n, so we need
to pick β+ <−cd. Similarly, we require β+ ≥−cd2n, and since β+ < 2−(n+1), we need
−c < 1/d2−(2n+1). Set c =−1/d22n+2, β+ = 2−(n+2), and β− = 2−(2n+3). We can now
uniquely label dn+1 points for all possible labelings, when R > 2.

Regardless of the value of R, there is always a unique labeling of d + 1 points in-
duced by the range space, since we can restrict to a ball small enough that Im(z(ωx+
β )) = sin(2π(ωx+β )) is monotonic for appropriate values of β . Within the ball, the
range space is effectively the range of half-spaces, which has VC-dimension d+1.

Lemma 1 yields a VC-dimension bound for the set of all ranges:

Corollary 1. The VC-dimension of the range space (Rd ,Gd(∞)) is unbounded.

Proof of Lemma 2. To prove Lemma 2, we require another lemma and proceed via
the shatter function of (Rd ,Gd(R)) [19]. For a positive integer n, the shatter function of
a range space is the maximum highest number of subsets induced by the range space
on any set of n points Xn. That is, any range R induces a subset of Xn simply by the
intersection R∩Xn, and the shatter function counts all unique subsets of this type. The
shatter function gives an idea of the power of a range space (and therefore the power of
its associated hypothesis classes). The following lemma (proved in Appendix B) gives
the shatter function:

Lemma 4. The shatter function of (Rd ,Gd(R)) is O(Rdnd+1).

The proof of Lemma 2 follows directly from the relation between the shatter func-
tion and VC-dimension [19] but we provide a proof for completeness:

Proof of Lemma 2. We begin by observing that if the VC-dimension is δ , then 2δ ≤
cRdδ d+1, by the definitions of shatter function and VC-dimension. This inequality
shows that δ cannot be polynomial in R, and cannot have any more than one log factor.
Suppose that δ is O(g(R,d) log2 Rd), for some g(R,d) = o(logRd). Then 2δ = Rd·g(R,d),
so we know further that g(R,d)≤ 1. Therefore δ is O(d logR).



With Lemmas 1 and 2, we have proven Theorem 2. The VC dimension also gives
us a generalization bound, due to Bartlett and Mendelson [4]:

Theorem 3. Let F be a class of ±1-valued functions defined on a set X. Let P be a
probability distribution on X×{±1}, and suppose that (X1,Y1), . . . ,(Xn,Yn) and (X ,Y )
are chosen independently according to P. Then for any positive integer n, w.p. (1−δ )
over samples of length n, every f ∈ F satisfies

P(Y 6= f (X))≤ (4)

1
n

n

∑
i=1

1Yi 6= f (Xi)+O

(√
max{d logR,d +1}

n
+

√
ln1/δ

n

)

Regularization. Theorems 2 and 3 immediately suggest three regularization techniques:
First, we limit the norm of the Fourier weights with weight decay (a.k.a. L2 regulariza-
tion). Alternatively, we simply cap the norm of each Fourier weight vector to some
constant at each round of the training. We can further control the initial capacity by
setting the variance of the initializing distribution.

4 From an embedding to a feed-forward network

We now return to the single Fourier embedding

zω,b =
√

2cos(ω>x+b)

If we fix an input x, then we can view the mapping zω,b as a neuron with a cosine
activation function and biases of the form b ∈ [0,2π). We call this type of neuron a
cosine neuron: such a neuron (with a cutoff to ensure zero support outside an interval)
was introduced in [15].

Consider a layer of such cosine neurons, each with associated weight vector ω j.
Each of these weights can be viewed as a sample from some distribution, and there-
fore the entire ensemble is a (dual) representation of some shift-invariant kernel by
Bochner’s theorem. We can then write the associated classifier for such a combination.
Denoting the bias vector by b and the collection of all the weight vectors ω j by W ,
the resulting classifier (with a softmax layer to combine the individual activations and
logarithmic loss), can be written as

`log(softmax(cos(W ·xi +β )),yi), (5)

where softmax(r) j = er j/∑k erk , and `log is the log loss.
What we now have is a standard (shallow) 2-layer network that we can train using

backpropagation and stochastic gradient descent.

5 Experiments

We have designed our experiments to answer the following questions: (1) Does al-
lowing the learning algorithm to pick an arbitrary kernel improve performance over



standard MKL techniques that are only allowed to select from a fixed library of ker-
nels? (2) How does the learning algorithm for CKL adapt to large datasets and higher
dimensions?

5.1 MKL vs. CKL on Small Datasets

Since CKL is proposed as an alternative to MKL, we compare CKL to two scalable
MKL algorithms, namely SPG-GMKL [21] and MWUMKL [31].

Data Sets. All of the datasets used for the experiments are taken from the libsvm

repository2. See Table 1 for details of the datasets.

Dataset Features Examples

Liver 6 345
Diabetes 8 768
Cod-RNA 8 59535
Breast Cancer 10 683
German-Numeric 24 1000
Mushroom 112 8192
Adult 123 32561
Gisette 5000 6000

Table 1. Datasets for comparison of MKL and CKL

Experimental Procedure. The data for Adult and Mushroom datasets consist of binary
features (one-hot representations of categorical features), so no scaling was applied.
Features were scaled to the range [-1, 1] for other datasets.

For MKL experiments, we used the Scikit-Learn Python package [37] for much
of the testing infrastructure. For testing with MKL methods, the training data is split
randomly into 75% training and 25% validation data. The random splits were repeated
100 times for all sets except Mushroom, Gisette, and Adult, which received 20 splits for
considerations of time. The C parameter was selected through cross validation and for
MWUMKL, the ε parameter was chosen to be 0.005, to achieve high accuracy while
allowing all of the experiments to complete (the number of iterations of the algorithm
in [31] is proportional to 1/ε). We use two kernels: a linear kernel and a Gaussian
kernel. For the Gaussian kernel, a wide range of γ are tried and the the best accuracy
observed is used in the results.

For CKL experiments, the same test/train split was applied, and additionally, the
training portion was split further into 75% training and 25% validation. We apply early
stopping and momentum, and random searches for: the width (h0) of the hidden layer, a
parameter (σ ) used for initializing the weights of the hidden layer, and the learning rate

2 https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html



(`) hyperparameters. Training was stopped if the validation objective did not decrease
within 100 epochs and was otherwise permitted to run for up to 10,000 epochs. Mo-
mentum was applied from the first epoch with a value of 0.5 that was increased to 0.99
over the course of 10 epochs.

Values for h0 were selected from {2i} with i sampled uniformly from [0..9], except
for Gisette, where i was sampled uniformly from [0..14]. The weights of the hidden
layer were sampled from a Gaussian distribution with variance σ selected from {2i}
where i was sampled uniformly from [−6..0]. The weights of the softmax layer were
selected from U [−0.1,0.1]. Finally ` was sampled from LU [10−5,0.2)3. 100 models
with random hyperparameters were trained, and then the one with the highest perfor-
mance was chosen and validated with 100 random splits (as described in the previous
paragraph).

Results. The results are shown in Table 2. CKL is not different in any significant capac-
ity from either GMKL or MWUMKL on very small datasets. Letting the learning al-
gorithm pick an arbitrary kernel improves performance over standard MKL techniques
that only choose a mixture of kernels. Additionally, we see that CKL adapts to large
datasets and higher dimensions better than MKL.

Small Datasets GMKL MWUMKL CKL

Liver 67.78% (4.78%) 59.34% (6.04%) 66.45% (6.19%)
Diabetes 77.06% (2.66%) 75.59% (2.92%) 76.08% (2.95%)
Cod-RNA 87.31% (0.13%) 72.42% (7.30%) 85.7% (1.14%)
Breast Cancer 97.14% (1.20%) 91.89% (2.22%) 96.87% (1.22%)
German-Numeric 73.05% (3.25%) 74.40% (3.01%) 76.14% (2.57%)
Mushroom 99.80% (0.08%) 99.93% (0.04%) 100% (0.0042%)
Adult Income 83.94% (0.28%) 76.90% (0.82%) 84.80% (0.35%)
Gisette 95.15% (0.53%) 93.50% (0.72%) 96.90% (0.52%)

Million Song Dataset GMKL MWUMKL CKL

Genre 1 77.62% (0.36%) 68.14% (1.06%) 81.68% (0.39%)
Genre 2 69.12% (0.33%) 53.02% (0.55%) 74.16% (0.36%)
Year Pred. 75.38% (0.1%) 57.72% (1.64%) 77.57% (0.11%)

Table 2. Mean accuracies (standard deviations) for various datasets on MKL and CKL. If a
mean, minus the standard deviation, is greater than all other means plus standard deviations in
the row, then the mean is bold.

5.2 MKL vs. CKL on Million Song Datasets

In this section, we compare MKL methods with CKL on the Million Song Dataset [6].
The Million Song Dataset consists of audio features and metadata of one million con-
temporary popular music tracks. For the experiments, we utilized three different subsets

3 A random variable X is drawn from LU [a,b] if X = eY , where Y ∼U [ln(a), ln(b)).



of the Million Song Dataset, all binary. The features are the average and covariance of
the pitch and timbre vectors for each track:

– Genre 1: The two most common genres in Million Song Dataset - “classic pop and
rock” and “folk.” The tracks which have both genres as tags are removed to avoid
confusion.

– Genre 2: The ten most common genres in the Million Song Dataset. Since the
“classic pop and rock” genre has significantly more tracks than any other genre,
“classic pop and rock” is considered as one class and everything else together as
another class.

– Year Prediction: Taken from the UCI Machine Learning Repository. All tracks
prior to the year 2000 are considered as one class and all tracks after and including
the year 2000 are considered as the other class.

The dimensions of the dataset are summarized in Table 3.

Name Dimensions Examples Notes

Genre 1 182 37,037 “Classic pop and rock”
vs. “folk”

Genre 2 182 59,485 “Classic pop and rock”
vs. everything else

Year pred. 90 515,345 < 2000 vs. ≥ 2000
Table 3. Summary of Million Song Datasets

Results. The results are shown in Table 2. CKL is clearly superior to the scalable MKL
methods that we tested against, adding to the evidence that higher-dimensional and
larger datasets can benefit from our technique.

5.3 MKL vs. CKL on Images

We compare MKL and CKL on CIFAR10. CIFAR10 [24] is a labeled image dataset
containing 60,000 1,024-dimensional (32×32) images and 10 classes used extensively
for testing image classification algorithms. While image classification is an important
benchmark for neural networks, we wish to point out that our objective is not to clas-
sify the CIFAR10 dataset better than all other previous techniques. Instead, we wish to
provide comparisons between the methods described in this paper on a large and very
challenging task using a simple convolutional neural architecture.

Preprocessing. We first centered the CIFAR10 training set by mean, and then used
Pylearn2 [18] to apply two transformations: global contrast normalization [12] and ZCA
whitening [5]4. We applied the same transformations computed for the training set to
the testing set.

4 PCA whitening attempts to decorrelate features and normalize singular values (“whitening”)
of the original data by rotating the data by singular vectors, and then normalizing singular



Feature extraction. For MKL, we used a convolutional neural network (CNN) [27] to
learn a representation from the data. In total, we trained 100 models and we extracted
the features from the model with the best performance. All of the models had the form
convReLU→ poolmax→ fcReLU→ softmax where convReLU is a convolutional layer us-
ing ReLU non-linearities, poolmax is a max-pool layer, fcReLU was a fully-connected
layer using ReLU non-linearities, and so f tmax was a softmax layer.

We trained the models with (1) momentum, initialized to 0.5 and increased to 0.99
over the first 100 epochs, and (2) early stopping: we set aside the last 10,000 samples of
the training set as a validation set for early stopping, and trained the models for at most
5,000 epochs. We initialized the weights of all layers by selecting values uniformly at
random from the range [−0.01,0.01].

The parameters of best performing model were as follows: (1) the convolutional
layer (with ReLU activations): a 5× 5 kernel with 1× 1 stride, 32 channels, a max
kernel norm of 1.8, and cross channel normalization with α = 3.2×10−4 and β = 0.75,
(2) the max pooling layer: a 3×3 kernel with 2×2 stride, (3) the fully connected layer:
1,000 rectified linear units, and (4) the softmax layer: one output for each CIFAR10
class.

Each sample of CIFAR10 was passed through the CNN and the activations of the
fully connected layer were recorded as the new representation.

CIFAR10 with MKL For MKL experiments, the testing infrastructure and the ex-
perimental procedures are similar to the experimental procedure of Section 5.1 except
for the following details: (1) One-vs-one multiclass strategy is used for the classification
task, (2) Random 75% of the training data is used for training and tested on the standard
test data. The runs were repeated 20 times, and (3) We used two Gaussian kernels, one
with γ = 1 and the other with a range of γ from 2−7 to 27. The best accuracy observed
is used in Table 4.

CIFAR10 with CKL For comparison with MKL, we trained a network of the form
convReLU → poolmax → fcReLU → fccos → softmax. A CKL model of this form uses
the same structure as the CNN used for the MKL/CKL experiments (defined in the
paragraph “Feature Extraction”), up to and including the fully connected layer of recti-
fied linear units. Instead of a softmax layer, the units of the fully connected layer were
connected to a CKL model with 1,000 hidden units (untuned).

The primary difference between this model and MKL trained on features extracted
from a CNN (see Section 5.3) is that this model is trained all at once, while in the MKL
experiments the CNN used for feature learning and the MKL model were trained sepa-
rately. This end-to-end learning allows the features of each layer to adapt to the features
that appear later in the network. It is also important to note that the MKL experiments
were trained on a one-vs.-one basis, while the CKL model uses multinomial (softmax)
regression with log loss.

values. ZCA whitening, in contrast, attempts to do the same, but make the resulting data as
close to the original as possible, in a least-squares sense. The ZCA transformation is simply to
multiply by the inverse square root of the covariance matrix of the data.



Experimental procedure. The models in these experiments were trained using stochas-
tic gradient descent for a maximum of 1,000 epochs with early stopping and momen-
tum. The initial momentum rate was 0.5 and was adjusted from the first epoch to 0.99
over the first 500 epochs of the training.

Results. The CKL model outstrips the MKL methods by a wide margin. We conjecture
that this is due to two effects: (1) the end-to-end training allows for better adaptation in
the training process and (2) the search space of kernels is much larger. The first effect
demonstrates that CKL is more adaptable than MKL in these settings. It is also im-
portant to note that training is a crucial component for CKL models when operating on
large datasets. In the case of CIFAR10, evaluating any random model upon initialization
yielded an accuracy of only 10.1% with standard deviation of 0.235%. In contrast, eval-
uating random models on smaller datasets frequently yields accuracies that are better
than chance.

GMKL MWUMKL CKL+CNN

44.43% (0.57%) 48.2% (0.41%) 67.77% (0.61%)
Table 4. Accuracy for CIFAR10 on MKL and CKL with CNN.

CIFAR10 with Two Layer Convnets A natural question to ask is whether stacking
two cosine layers has any beneficial effect. Stacking two cosine layers is approximately
the same as composing two lifting maps. If the composed lifting map is defined, then it
corresponds to a kernel.

Zhuang et al. [50] construct an algorithm specifically for the composition of two
kernels – essentially layering the kernels. Lu et al. [28] discuss extensions to [38] that
cover products, sums, and compositions of kernels. Since these are based on the sam-
pling methodology of [38], there is a direct analogy to composing two cosine layers
(fixed, in this case).

We used various combinations of cosine (cos) and rectified linear (ReLU) activa-
tion functions to see whether those involving cosine do in fact yield better accuracy
on average. In fact, we did not observe significant improvement in accuracy when we
employed combinations of two cosine layers. One possible explanation is that since the
composition of a kernel is itself a kernel, it can be argued that optimizing a network that
contains two consecutive cosine layers accomplishes no more than doing so with one
individual cosine layer.

6 Related Work

Multiple kernel learning. The general area of kernel learning was initiated by Lanckriet
et al. [25] who proposed to simultaneously train an SVM as well as learn a convex com-
bination of kernel functions. The key contribution was to frame the learning problem as



an optimization over positive semi-definite kernel matrices which in turn reduces to a
QCQP. Soon after, Bach et al. [3] proposed a block-norm regularization method based
on second order cone programming (SOCP).

For efficiency, researchers started using optimization methods that alternate be-
tween updating the classifier parameters and the kernel weights. Many authors then
explored the MKL landscape, including Rakotomamonjy et al. [39], Sonnenburg et al.
[40], Xu et al. [45, 46]. However, as pointed out by Cortes [13], most of these meth-
ods do not compare favorably (both in accuracy as well as speed) even with the simple
uniform heuristic. More recently, Moeller et al. [31] developed a multiplicative-weight-
update based approach that has a much smaller memory footprint and scales far more
effectively. Other kernel learning methods include [14, 30, 35, 36, 41] and notably meth-
ods using the `p-norm [22, 23, 42].

Infinite-width networks. Infinite networks have been analyzed in the literature at least
as far back as Neal [33] – in this work, the authors tie infinite networks to Gaussian
processes, assuming that the distribution is Gaussian. Cho and Saul [11] analyzed the
case where the network is either a step network (the output is 1 if the input is positive, 0
otherwise) or a rectified linear unit (ReLU), a type of network used frequently in deep
networks (the input z is passed through the function max{0,z}). They showed that if
the distribution is Gaussian in these settings, the function φx output by the network is a
lifting map corresponding to a kernel they dub the arc-cosine kernel.

Hazan and Jaakkola [20] extended this result further, and analyzed the kernel cor-
responding to two infinite layers stacked in series. They showed that such a network,
when the distribution of the first layer is Gaussian, and the second layer is treated as a
Gaussian process, (a process is a distribution of distributions), corresponds to a kernel
that can be computed explicitly.

Layered kernels. Zhuang et al. [50] develop a multiple kernel learning technique where
they use a layered kernel to combine the output of several other kernels. Their algorithm
alternates the use of standard SVM and stochastic gradient descent. Lu et al. [28] scale
up [38] by making some interesting mathematical observations about kernels and dis-
tributions. Their work relies heavily on the correspondence between distributions and
kernels, a theme that we explore as well. Yu et al. [49] also seek to optimize a kernel,
using alternating optimization and also based on Bochner’s theorem.

Neural networks as kernels. Yang et al. [47] draw on the idea of a correspondence be-
tween ReLUs and arc-cosine kernels, and replace the weights of a ReLU with a fastfood
transform [26] to reduce the complexity of the network. Aslan et al. [2] seek to make the
optimization of neural networks convex through kernels and matrix techniques. Mairal
et al. [29] extend hierarchical kernel descriptors [7, 8] to act as convolutional layers.
Very recently, Wilson et al. [44] combine neural networks with Gaussian processes,
drawing on the infinite-width network setting, to produce “deep” kernels.
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