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Abstract

Predicting structured outputs can be computation-
ally onerous due to the combinatorially large out-
put spaces. In this paper, we focus on reducing the
prediction time of a trained black-box structured
classifier without losing accuracy. To do so, we
train a speedup classifier that learns to mimic a
black-box classifier under the learning-to-search
approach. As the structured classifier predicts
more examples, the speedup classifier will operate
as a learned heuristic to guide search to favorable
regions of the output space. We present a mis-
take bound for the speedup classifier and identify
inference situations where it can independently
make correct judgments without input features.
We evaluate our method on the task of entity and
relation extraction and show that the speedup clas-
sifier outperforms even greedy search in terms of
speed without loss of accuracy.

1. Introduction
Many natural language processing (NLP) and computer vi-
sion problems necessitate predicting structured outputs such
as labeled sequences, trees or general graphs (Smith, 2010;
Nowozin & Lampert, 2011). Such tasks require model-
ing both input-output relationships and the interactions be-
tween predicted outputs to capture correlations. Across the
various structured prediction formulations (Lafferty et al.,
2001; Taskar et al., 2003; Chang et al., 2012), prediction
requires solving inference problems by searching for score-
maximizing output structures. The search space for infer-
ence is typically large (e.g., all parse trees), and grows with
input size. Exhaustive search can be prohibitive and stan-
dard alternatives are either: (a) perform exact inference with
a large computational cost or, (b) approximate inference to
sacrifice accuracy in favor of time.
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In this paper, we focus on the computational cost of in-
ference. We argue that naturally occurring problems have
remarkable regularities across both inputs and outputs, and
traditional formulations of inference ignore them. For ex-
ample, parsing an n-word sentence will cost a standard
head-driven lexical parser O(n5) time. Current practice in
NLP is to treat each new sentence as a fresh discrete op-
timization problem and pay the computational price each
time. However, this practice is not only expensive, but also
wasteful! We ignore the fact that slight changes to inputs
often do not change the output, or even the sequence of steps
taken to produce it. Moreover, not all outputs are linguisti-
cally meaningful structures; as we make more predictions,
we should be able to learn to prune the output space.

The motivating question that drives our work is: Can we
design inference schemes that learn to make a trained struc-
tured predictor faster without sacrificing output quality?
After training, the structured classifier can be thought as a
black-box. Typically, once deployed, it is never modified
over its lifetime of classifying new examples. Subsequently,
we can view each prediction of the black-box classifier as
an opportunity to learn how to navigate the output space
more efficiently. Thus, if the classifier sees a previously en-
countered situation, it could make some decisions without
needless computations.

We formalize this intuition by considering the trained mod-
els as solving arbitrary integer linear programs (ILPs) for
combinatorial inference. We train a second, inexpensive
speedup classifier which acts as a heuristic for a search-
based inference algorithm that mimics the more expensive
black-box classifier. The speedup heuristic is a function that
learns regularities among predicted structures. We present a
mistake bound algorithm that, over the classifier’s lifetime,
learns to navigate the feasible regions of the ILPs. By doing
so, we can achieve a reduction in inference time.

We further identify inference situations where the learned
speedup heuristic alone can correctly label parts of the out-
puts without computing the corresponding input features. In
such situations, the search algorithm can safely ignore parts
of inputs if the corresponding outputs can be decided based
on the sub-structures constructed so far. Seen this way, the
speedup classifier can be seen as a statistical cache of past
decisions made by the black-box classifier.



Learning to Speed Up Structured Output Prediction

We instantiate our strategy to the task of predicting entities
and relations from sentences. Using an ILP based black-box
classifier, we show that the trained speedup classifier mimics
the reference inference algorithm to obtain improvements
in running time, and also recovers its accuracy. Indeed, by
learning to ignore input components when they will not
change the prediction, we show that learned search strategy
outperforms even greedy search in terms of speed.

To summarize, the main contribution of this paper is the
formalization of the problem of learning to make structured
output classifiers faster without sacrificing accuracy. We
develop a learning-to-search framework to train a speedup
classifier with a mistake-bound guarantee and a sufficient
condition to safely avoid computing input-based features.
We show empirically on an entity-relation extraction task
that we can learn a speedup classifier that is (a) faster than
both the state-of-the-art Gurobi optimizer and greedy search,
and (b) does not incur a loss in output quality.

2. Notation and Preliminaries
First, we will define the notation used in this paper with a
running example that requires of identifying entity types
and their relationships in text. The input to the problem
consists of sentences such as:

Colin went back home in Ordon Village.

These inputs are typically preprocessed — here, we are
given spans of text (underlined) corresponding to entities.
We will denote such preprocessed inputs to the structured
prediction problem as x.

We seek to produce a structure y ∈ Yx (e.g., labeled trees,
graphs) associated with these inputs. Here, Yx is the set
of all possible output structures for the input x. In the
example problem, our goal is to assign types to the entities
and also label the relationships between them. Suppose
our task has three types of entities: person, location
and organization. A pair of entities can participate
in one of five possible directed relations: Kill, LiveIn,
WorkFor, LocatedAt and OrgBasedIn. Additionally,
there is a special entity label NoEnt meaning a text span is
not an entity, and a special relation label NoRel indicating
that two spans are unrelated. Figure 1 shows a plausible
structure for the example sentence as per this scheme.

A standard way to model the prediction problem requires
learning a model that scores all structures in Yx and search-
ing for the score-maximizing structure. Linear models are
commonly used as scoring functions, and require a feature
vector characterizing input-output relationships Φ (x,y).
We will represent the model by a weight vector α. Every
structure y associated with an input x is scored as the dot
product α · Φ (x,y). The goal of prediction is to find the

Colin Ordon Village
LivesIn

Person Location
NoRel

Figure 1. An example of the entities and relations task. The nodes
are entity candidates and directed edges indicate relations. The
labels in typewriter font are the decisions that we need to make.

structure y∗ that maximizes this score. That is,

y∗ = arg max
y∈Yx

α · Φ (x,y) . (1)

Learning involves using training data to find the best weight
vector α.

In general, the output structure y is a set of K categorical
inference variables {y1, y2, · · · , yK} , each of which can
take a value from a predefined set of n labels. That is,
each yk ∈ y takes a value from {l1, l2, · · · , ln}.1 In our
running example, the inference variables correspond to the
four decisions that define the structure: the labels for the
two entities, and the relations in each direction. The feature
function Φ decomposes into a sum of features over each yk,
each denoted by Φk, giving us the inference problem:

y∗ = arg max
y∈Yx

K∑
k=1

α · Φk
(
x, yk

)
. (2)

The dependencies between the yk’s specify the nature of
the output space. Determining each yk in isolation greedily
does not typically represent a viable inference strategy be-
cause constraints connecting the variables are ignored. In
this spirit, the problem of finding the best structure can be
viewed as a combinatorial optimization problem.

In this paper, we consider the scenario in which we have
already trained a model α. We focus on solving the inference
problem (i.e.,Eq. (2)) efficiently. We conjecture that it should
be possible to observe a black-box inference algorithm over
its lifetime to learn to predict faster without losing accuracy.

2.1. Black-box Inference Mechanisms

One common way to solve inference is by designing effi-
cient dynamic programming algorithms that exploit problem
structure. While effective, this approach is limited to special
cases where the problem admits efficient decoding, thus
placing restrictions on factorization and feature design.

In this paper, we seek to reason about the problem of pre-
dicting structures in the general case. Since inference is es-
sentially a combinatorial optimization problem, without loss

1We make this choice for simplicity of notation. In general, K
depends on the size of the input x, and categorical variables may
take values from different label sets.
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of generality, we can represent any inference problem as an
integer linear programming (ILP) instance (Schrijver, 1998).
To represent the inference task in Eq. (2) as an ILP instance,
we will define indicator variables of the form zki ∈ {0, 1},
which stands for the decision that the categorical variable yk

is assigned the ith label among the n labels.That is, zki = 1
if yk = li, and 0 otherwise. Using this notation, we can
write the cost of any structure y in terms of the indicators as

K∑
k=1

n∑
i=1

cki z
k
i . (3)

Here, cki is a stand in for −α · Φk (x, li), namely the
cost (negative score) associated with this decision.2 In
our example, suppose the first categorical variable y1 cor-
responds to the entity Colin, and it has possible labels
{person,location, . . . }. Then, assigning person to
Colin would correspond to setting z11 = 1, and z1i = 0 for
all i 6= 1. Using the labels enumerated in §2, there will be
20 indicators for the four categorical decisions.

Of course, arbitrary assignments to the indicators is not
allowed. We can define the set of feasible structures using
linear constraints. Clearly, each categorical variable can
take exactly one label, which can be expressed via:

n∑
i=1

zki = 1, for all k. (4)

In addition, we can define the set of valid structures Yx
using a collection of m linear constraints, the jth one of
which can be written as

K∑
k=1

n∑
i=1

Akjiz
k
i = bj , for all j. (5)

These structural constraints characterize the interactions
between the categorical variables. For example, if a directed
edge in our running example is labeled as LiveIn, then,
its source and target must be a person and a location
respectively. While Eq.(5) only shows equality constraints,
in practice, inequality constraints can also be included.

The inference problem in Eq. (2) is equivalent to the problem
of minimizing the objective in Eq. (3) over the 0-1 indicator
variables subject to the constraints in Eqs. (4) and (5).

We should note the difference between the ability to write an
inference problem as an ILP instance and actually solving
it as one. The former gives us the ability to reason about
inference in general, and perhaps using other methods (such
as Lagrangian relaxation (Lemaréchal, 2001)) for inference.
However, solving problems with industrial strength ILP

2The negation defines an equivalent minimization problem and
makes subsequent description of the search framework easier.

solvers such as the Gurobi solver3 is competitive with other
approaches in terms of inference time, even though they
may not directly exploit problem structure.

In this work, we use the general structure of the ILP in-
ference formulation to develop the theory for speeding up
inference. In addition, because of its general applicability
and fast inference speed, we use the Gurobi ILP solver as
our black-box classifier, and learn a speedup heuristic to
make even faster inference.

2.2. Inference as Search

Directly applying the black-box solver for the large output
spaces may be impractical. An alternative general purpose
strategy for inference involves framing the maximization in
Eq. (2) as a graph search problem.

Following Russell & Norvig (2003); Xu et al. (2009), a
general graph search problem requires defining an initial
search node I , a successor function s(·), and a goal test. The
successor function s(·) maps a search node to its successors.
The goal test determines whether a node is a goal node.
Usually, each search step is associated with a cost function,
and we seek to find a goal node with the least total cost.

We can define the search problem corresponding to infer-
ence as follows. We will denote a generic search node in
the graph as v, which corresponds to a set of partially as-
signed categorical variables. Specifically, we will define
the search node v as a set of pairs {(k, i)}, each element of
which specifies that the variable yk is assigned the ith label.
The initial search node I is the empty set since none of the
variables has been assigned when the search begins. For a
node v, its successors s(v) is a set of nodes, each containing
one more assigned variable than v. A node is a goal node if
all variables yk’s have been assigned. The size of any goal
node is K, the number of categorical variables.

In our running example, at the start of search, we may
choose to assign the first label l1 (person) to the variable
y1 – the entity Colin – leading us to the successor {(1, 1)}.
Every search node specifies a partial or a full assignment to
all the entities and relations. The goal test simply checks if
we arrive at a full assignment, i.e., all the entity and relation
candidates have been assigned a label.

Note that goal test does not test the quality of the node, it
simply tests whether the search process is finished. The
quality of the goal node is determined by the path cost from
the initial node to the goal node, which is the accumulated
cost of each step along the way. The step cost for assigning
label li to a variable yk is the same cki we defined for the
ILP objective in Eq. (3). Finding a shortest path in such
a search space is equivalent to the original ILP problem

3http://www.gurobi.com

http://www.gurobi.com
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without the structural constraints in Eq. (5). The unique-
label constraints in Eq. (4) are automatically satisfied by our
formulation of the search process.

Indeed, solving inference without the constraints in Eq.(5)
is trivial. For each categorical variable yk, we can pick
the label li that has the lowest value of cki . This gives us
two possible options for solving inference as search: We
can (a) ignore the constraints that make inference slow to
greedily predict all the labels, or, (b) enforce constraints at
each step of the search, and only consider search nodes that
satisfy all constraints. The first option is fast, but can give
us outputs that are invalid. For example, we might get a
structure that mandates that the person Colin lives in a
person called Ordon Village. The second option will give
us structurally valid outputs, but can be prohibitively slow.

Various graph search algorithms can be used for performing
inference. For efficiency, we can use beam search with
a fixed beam width b. When search begins the beam B0

contains only the initial node B0 = [I]. Following Collins
& Roark (2004); Xu et al. (2009), we define the function
BreadthExpand which takes the beam Bt at step t and
generates the candidates Ct+1 for the next beam:

Ct+1 = BreadthExpand(Bt)

= ∪v∈Bts(v)

The next beam is given by Bt+1 = Filter(Ct+1), where
Filter takes top b nodes according to some priority function
p(v). In the simplest case, the priority of a node v is the total
path cost of reaching that node. More generally, the priority
function can be informed not only by the path cost, but also
by a heuristic function as in the popular A∗ algorithm.

3. Speeding up Structured Prediction
In the previous section, we saw that using a black-box ILP
solver may be slower than greedy search which ignores
constraints, but produces valid outputs. However, over its
lifetime, a trained classifier predicts structures for a large
number of inputs. While the number of unique inputs (e.g.
sentences) may be large, the number of unique structures
that actually occur among the predictions is not only finite,
but also small. This observation was exploited by Srikumar
et al. (2012); Kundu et al. (2013) for amortizing inference
costs.

In this paper, we are driven by the need for an inference
algorithm that learns regularities across outputs to become
faster at producing structurally valid outputs. In order to
do so, we will develop an inference-as-search scheme that
inherits the speed of greedy search, but learns to produce
structurally valid outputs. Before developing the algorithmic
aspects of such an inference scheme, let us first see a proof-
of-concept for such a scheme.

3.1. Heuristics for Structural Validity

Our goal is to incorporate the structural constraints from
Eq. (5) as a heuristic for greedy or beam search. To do so, at
each step during search, we need to estimate how likely an
assignment can lead to a constraint violation. This informa-
tion can be characterized by using a heuristic function h(v),
which will be used to evaluated a node v during search.

The dual form the ILP in Eqs. (3) to (5) help justify the
idea of capturing constraint information using a heuristic
function. We treat the unique label constraints in Eq. (4) as
defining the domain in which each 0-1 variable zki lives, and
the only real constraints are given by Eq. (5).

Let uj represent the dual variable for the jth constraint.
Thus, we obtain the Lagrangian4

L(z, u) =

K∑
k=1

n∑
i=1

cki z
k
i −

m∑
j=1

uj

(
K∑
k=1

n∑
i=1

Akjiz
k
i − bj

)

=
∑
k,i

cki −∑
j

ujA
k
ji

 zki +
∑
j

bjuj

The dual function θ(u) = minz L(z, u), where the mini-
mization is over the domain of the z variables.

Denote u∗ = arg max θ(u) as the solution to the dual prob-
lem. In the case of zero duality gap, the theory of Lagrangian
relaxation (Lemaréchal, 2001) tells us that solving the fol-
lowing relaxed minimization problem will solve the original
ILP:

min
∑
k,i

cki −∑
j

u∗jA
k
ji

 zki (6)

∑
i

zki = 1, for all k (7)

zki ∈ {0, 1}, for all k, i (8)

This new optimization problem does not have any structural
constraints and can be solved greedily for each k if we know
the optimal dual variables u∗.

To formulate the minimization in Eqs (6) to (8) as a search
problem, we define the priority function p(v) for ranking
the nodes as p(v) = g(v) + h∗(v), where the path cost g(v)
and heuristic function h∗(v) are given by

g(v) =
∑

(k,i)∈v

cki , (9)

h∗(v) = −
∑

(k,i)∈v

∑
j

Akjiu
∗
j (x). (10)

Since Eq. (6) is a minimization problem, smaller priority
value p(v) means higher ranking during search. Note that

4We omit the ranges of the summation indices i, j, k hereafter.
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even though heuristic function defined in this way is not
always admissible, greedy search with ranking function p(v)
will lead to the exact solution of Eqs. (6) to (8). In practice,
however, we do not have the optimal values for the dual
variables u∗. Indeed, when Lagrangian relaxation is used
for inference, the optmial dual variables are computed using
subgradient optimization for each example because their
value depends on the original input via the c’s.

Instead of performing expensive gradient based optimization
for every input instance, we will approximate the heuristic
function as a classifier that learns to prioritize structurally
valid outputs. In this paper, we use a linear model based on
a weight vector w to approximate the heuristic as

h(v) = −w · φ(v) (11)

For an appropriate choice of node features φ(v), the heuris-
tic h(v) in Eq.(10) is indeed a linear function.5 In other
words, there exists a linear heuristic function that can guide
graph search towards creating structurally valid outputs.

In this setting, the priority function p(v) for each node is
determined by two components: the path cost g(v) from the
initial node to the current node, and the learned heuristic
cost h(v), which is an estimate of how good the current
node is. Because the purpose of the heuristic is to help im-
prove inference speed, we call φ(v) speedup features. The
speedup features can be different from the original model
features in Eq. (2). In particular it can includes features for
partial assignments made so far which were not available
in the original model features. In this setting, the goal of
speedup learning is to find suitable weight vector w over
the black-box classifier’s lifetime.

4. Learning the Speedup Classifier
In this section, we will describe a mistake-bound algorithm
to learn the weight vector w of the speedup classifier. The
design of this algorithm is influenced by learning to search
algorithms such as LaSO (Daumé III & Marcu, 2005; Xu
et al., 2009). We assume that we have access to a trained
black-box ILP solver called Solve, which can solve the
structured prediction problems, and we have a large set of
examples {xi}Ni=1. Our goal is to use this set to train a
speedup classifier to mimic the ILP solver while predicting
structures for this set of examples. Subsequently, we can
use the less expensive speedup influenced search procedure
to replace the ILP solver.

To define the algorithm, we will need additional terminology.
Given a reference solution y, we define a node v to be y-
good, if it can possibly lead to the reference solution. If a
node v is y-good, then the already assigned variables have
the same labels as in the reference solution. We define a

5See supplementary material for an elaboration.

Algorithm 1 Learning a speedup classifier using examples
{xi}Ni=1, and a black-box Solver Solve.

1: Initialize the speedup weight vector w← 0
2: for epoch = 1 . . .M do
3: for i = 1 . . . N do
4: y← Solve(xi)
5: Initialize the beam B ← [I]
6: while B is y-good and v̂ is not goal do
7: B ← Filter(BreadthExpand(B))
8: end while
9: if B is not y-good then

10: v∗ ← SetGood(v̂)
11: w← w + φ(v∗)− 1

|B|
∑
v∈B φ(v)

12: else if v̂ is not y-good then
13: v∗ ← SetGood(v̂)
14: w← w + φ(v∗)− φ(v̂)
15: end if
16: end for
17: end for

beam B is y-good if it contains at least one y-good node to
represent the notion that search is still viable. We denote the
first element (the highest ranked) in a beam by v̂. Finally,
we define an operator SetGood, which takes a node that is
not y-good, and return its corresponding y-good node by
fixing the incorrect assignments according to the reference
solution. The unassigned variables are still left unassigned
by the SetGood operator.

The speedup-learning algorithm is listed as Algorithm 1. It
begins by initializing the weight w to the zero vector. We
iterate over the examples for M epochs. For each example
xi, we first solve inference using the ILP solver to obtain
the reference structure y (line 4). Next a breadth-expand
search is performed (lines 5-8). Every time the beam B
is updated, we check if the beam contains at least one y-
good node that can possibly lead to the reference solution
y. Search terminates if the beam is not y-good, or if the
highest ranking node v̂ is a goal. If the beam is not y-good,
we compute the corresponding y-good node v∗ from v̂, and
perform a perceptron style update to the speedup weights
(line 9-11). In other words, we update the weight vector by
adding feature vector of φ(v∗), and subtracting the average
feature vector of all the nodes in the beam. Otherwise v̂
must be a goal node. We then check if v̂ agrees with the
reference solution (lines 12-15). If not, we perform a similar
weight update, by adding the feature vector of φ(v∗), and
subtracting φ(v̂).

Mistake bound Next, we show that the Algorithm 1 has
a mistake bound. Let Rφ be a positive constant such that for
every pair of nodes (v, v′), we have ‖φ(v)− φ(v′)‖ ≤ Rφ.
Let Rg be a positive constant such that for every pair of
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search nodes (v, v′), we have |g(v)− g(v′)| ≤ Rg . Finally
we define the level margin of a weight vector w for a training
set as

γ = min
{(v,v′)}

w ·
(
φ(v)− φ(v′)

)
(12)

Here, the set {(v, v′)} contains any pair such that v is y-
good, v′ is not y-good, and v and v′ are at the same search
level. The level margin denotes the minimum score gap
between a y-good and a y-bad node at the same search level.

The priority function used to rank the search nodes is defined
as pw(v) = g(v)−w ·φ(v). Smaller priority function value
ranks higher during search. With these definitions we have
the following theorem:
Theorem 1 (Speedup mistake bound). Given a training set
such that there exists a weight vector w with level margin
γ > 0 and ‖w‖ = 1, the speedup learning algorithm
(Algorithm 1) will converge with a consistent weight vector

after making no more than
R2
φ+2Rg
γ2 weight updates.

Proof. The complete proof is in the supplementary material
of the paper.

4.1. Avoiding Computing the Input Features

So far, we have shown that a structured prediction problem
can be converted to a beam search problem. The priority
function for ranking search nodes is determined by p(v) =
g(v) + h(v). We have seen how the h function be trained
to enforce structural constraints. However, there are other
opportunities for speeding up as well.

Computing the path cost g(v) involves calculating the cor-
responding ILP coefficients, which in turn requires feature
extraction using the original trained model. This is usually a
time-consuming step (Srikumar, 2017), thus motivating the
question of whether we can avoid calculating them without
losing accuracy. If a search node is strongly preferred by
the heuristic function, the path cost is unlikely to reverse the
heuristic function’s decision. In this case, we can rank the
candidate search nodes with heuristic function only.

Formally, given a fixed beam size b and the beam candidates
Ct at step t from which we need to select the beam Bt, we
can rank the nodes in Ct from smallest to largest according
to the heuristic function value h(v). Denote the bth smallest
node as vb and the (b+1)th smallest node as vb+1, we define
the heuristic gap ∆t as

∆t = h(vb+1)− h(vb). (13)

If the beam Bt is selected from Ct only according to heuris-
tic function, then ∆t is the gap between the last node in the
beam and the first node outside the beam. Next we define
the path-cost gap δt as

δt = max
v,v′∈Ct

(v − v′) (14)

With these definitions we immediately have the following
theorem:
Theorem 2. Given the beam candidates Ct with heuristic
gap ∆t and path-cost gap δt, if ∆t > δt, then using only
heuristic function to select the beam Bt will have the same
set of nodes selected as using the full priority function up to
their ordering in the beam.

If the condition of Theorem 2 holds, then we can rank the
candidates using only heuristic function without calculat-
ing the path cost. This will further save computation time.
However, without actually calculating the path cost there
is no way to determine the path-cost gap δt at each step.
In practice we can treat δt as an empirical parameter θ and
define the following priority function

pθ(v) =

{
h(v), if ∆t > θ,

g(v) + h(v), otherwise.
(15)

5. Experiments
We empirically evaluate the speedup based inference scheme
described in Section 4 on the problem of predicting entities
and relations (i.e. our running example). In this task, we are
asked to label each entity, and the relation between each pair
of the entities. We assume the entity candidates are given,
either from human annotators or from a preprocessing step.
The goal of inference is to determine the types of the entity
spans, and the relations between them, as opposed to identify
entity candidates. The research questions we seek to resolve
empirically are:

1. Does using a learned speedup heuristic recover struc-
turally valid outputs without paying the inference cost
of the integer linear program solver?

2. Can we construct accurate outputs without always com-
puting input features and using only the learned heuris-
tic to guide search?

The dataset we used is from the previous work by Roth
& Yih (2004). It contains 1441 sentences. Each sentence
contains several entities with labels, and the labeled rela-
tions between every pair of entity. There are three types
of entities, person, location and organization,
and five types of relations, Kill, LiveIn, WorkFor,
LocatedAt and OrgBasedIn. There are two con-
straints associated with each relation type, specifying the
allowed source and target arguments. For example, if the re-
lation label is LiveIn, the source entity must be person
and the target entity must be location. There is also an-
other kind of constraint which says for every pair of entities,
they can not have a relation label in both directions between
them, i.e., one of the direction must be labeled as NoRel.

We re-implemented the model from the original work using
the same set of features as for the entity and relation scoring
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functions. We used 70% of the labeled data to train an ILP-
based inference scheme, which will become our black-box
solver for learning the speedup classifier. The remaining
30% labeled data are held out for evaluations.

We use 29950 sentences from the Gigaword corpus (Graff
et al., 2003) to train the speedup classifier. The entity can-
didates are extracted using the Stanford Named Entity Rec-
ognizer (Manning et al., 2014). We ignore the entity la-
bels, however, since our task requires determining the type
of the entities and relations. The features we use for the
speedup classifiers are counts of the pairs of labels of the
form (source label, relation label), (relation label, target
label), and counts of the triples of labels of the form (source
label, relation label, target label). We run Algorithm 1 over
this unlabeled dataset, and evaluate the resulting speedup
classifier on the held out test set. In all of our speedup search
implementations, we first assign labels to the entities from
left to right, then the relations among them.

We evaluate the learned speedup classifier in terms of both
accuracy and speed. The accuracy of the speedup classifier
can be evaluated using three kinds of metrics: F-1 scores
against gold labels, F-1 scores against the ILP solver’s pre-
diction, and the validity ratio, which is the percentage of the
predicted examples agreeing with all constraints.6

5.1. Evaluation of Algorithm 1

Our first set of experiments evaluates the impact of Algo-
rithm 1. These results are shown in Table 1. We see the ILP
solver achieves perfect entity and relation F-1 when com-
pared with ILP model itself. It guarantees all constraints are
satisfied. Its accuracy against gold label and its prediction
time becomes the baselines of our speedup classifiers. We
also provide two search baselines. The first search baseline
just uses greedy search without any constraint considera-
tions. In this setting each label is assigned independently,
since the step cost of assigning a label to an entity or a rela-
tion variable depends only on the corresponding coefficients
in the ILP objectives. In this case, a structured prediction
problem becomes several independent multi-class classifi-
cation problems. The prediction time is faster than ILP but
the validity ratio is rather low (0.29). The second search
baseline is greedy search with constraint satisfaction. The
constraints are guaranteed to be satisfied by using the stan-
dard arc-consistency search. The prediction takes much
longer than the ILP solver (844 ms vs. 239 ms.).

We trained a speedup classifier with two different beam
sizes. Even with beam width b = 1, we are able to obtain
> 95% validity ratio, and the prediction time is much faster

6All our experiments were conducted on a server with eight
Intel i7 3.40 GHz cores and 16G memory. We disabled multi-
threaded execution in all cases for a fair comparison.

than the ILP model. Furthermore, we see that the F-1 score
evaluated against gold labels is only slightly worse than ILP
model. With beam width b = 2, we recover the ILP model
accuracy when evaluated against gold labels. The prediction
time is still much less than the ILP solver.

5.2. Experiments on Ignoring the Model Cost

In this section, we empirically verify the idea that we do
not always need to compute the path cost, if the heuristic
gap ∆t is large. We use the evaluation function pθ(v) in
Eq. (15) with different values of θ to rank the search nodes.
The results are given in Table 2.

For both beam widths, θ = 0 is the case in which the
original model is completely ignored. All the nodes are
ranked using the speedup heuristic function only. Even
though it has perfect validity ratio, the result is rather poor
when evaluated on F-1 scores. When θ increases, the entity
and relation F-1 scores quickly jump up, essentially getting
back the same accuracy as the speedup classifiers in Table 1.
But the prediction time is lowered compared to the results
from Table 1.

6. Discussion and Related Work
The idea of learning memo functions to make computation
more efficient goes back to Michie (1968). Speedup learning
has been studied since the eighties in the context of general
problem solving, where the goal is to learn a problem solver
that becomes faster as opposed to becoming more accurate
as it sees more data. Fern (2011) gives a broad survey of this
area. In this paper, we presented a variant of this idea that is
more concretely applied to structured output prediction.

Efficient inference is a central topic in structured prediction.
In order to achieve efficiency, various strategies are adopted
in the literature. Search based strategies are commonly used
for this purpose and several variants abound. The idea of
framing a structured prediction problem as a search problem
has been explored by several previous works (Collins &
Roark, 2004; Daumé III & Marcu, 2005; Daumé III et al.,
2009; Huang et al., 2012; Doppa et al., 2014). It usually ad-
mits incorporating arbitrary features more easily than fully
global structured prediction models like conditional random
fields (Lafferty et al., 2001), structured perceptron (Collins,
2002), and structured support vector machines (Taskar et al.,
2003; Tsochantaridis et al., 2004). In such cases too, in-
ference can be solved approximately using heuristic search.
Either a fixed beam size (Xu et al., 2009), or a dynamically-
sized beam (Bodenstab et al., 2011) can be used. In our
work we fix the beam size. The key difference from previ-
ous work is that our ranking function combines information
from the trained model with the heuristic function which
characterizes constraint information. Closely related to the
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Model Ent. F1 Gold Rel. F1 Gold Ent. F1 ILP Rel. F1 ILP Time (ms) Validity Ratio

ILP 0.827 0.482 1.000 1.000 239± 11.4 1.00

search 0.822 0.334 0.877 0.546 170± 6.5 0.29
constrained search 0.800 0.572 0.880 0.741 844± 31.0 1.00

speedup (b = 1) 0.822 0.447 0.877 0.674 136± 2.1 0.96
speedup (b = 2) 0.844 0.484 0.930 0.752 158± 19.8 0.95

Table 1. Performance of the speedup classifier with different beam sizes, compared with the ILP solver and search without heuristics.
CPU time is in milli-seconds, and averaged over five different runs with standard deviations.

Model θ Ent. F1 Gold Rel. F1 Gold Ent. F1 ILP Rel. F1 ILP Time (ms) Validity Ratio

speedup (b = 1) 0 0.21 0 0.173 0 39± 3.7 1.00
speedup (b = 1) 0.25 0.822 0.435 0.877 0.546 87± 2.5 0.99
speedup (b = 1) 0.5 0.822 0.455 0.877 0.672 114± 4.7 0.98

speedup (b = 2) 0 0.373 0.152 0.377 0.139 55± 2.5 1.00
speedup (b = 2) 0.25 0.819 0.461 0.893 0.623 130± 14.4 0.99
speedup (b = 2) 0.5 0.825 0.494 0.907 0.689 134± 4.0 0.98

Table 2. Performance of the speedup classifier with different beam size and θ values. CPU Time is in milli-second, and averaged over five
different runs with standard deviations.

work described in this paper are approaches that learn to
prune the search space (He et al., 2014; Vieira & Eisner,
2016) and learn to select features (He et al., 2013).

Another line of recent related work focuses on discovering
problem level regularities across the inference space. These
amortized inference schemes are designed using determin-
istic rules for discovering when a new inference problem
can re-use previously computed solutions (Srikumar et al.,
2012; Kundu et al., 2013) or in the context of a Bayesian net-
work by learning a stochastic inverse network that generates
outputs (Stuhlmüller et al., 2013).

Our work is also related to the idea of imitation learn-
ing (Daumé III et al., 2009; Ross et al., 2011; Ross & Bag-
nell, 2014; Chang et al., 2015). In this setting, we are given
a reference policy, which may or may not be a good policy.
The goal of learning is to learn another policy to imitate the
given policy, or even learn a better one. Learning usually
proceeds in an online fashion. However, imitation learning
requires learning a new policy which is independent of the
given reference policy, since during test time the reference
policy is no longer available. In our case, we can think of
the black-box solver as a reference policy. During predic-
tion we always have this solver at our disposal, what we
want is avoiding unnecessary calls to the solver. Following
recent successes in imitation learning, we expect that we
can replace the linear heuristic function with a deep network
to avoid feature design.

Also related is the idea of knowledge distillation (Bucilă
et al., 2006; Hinton et al., 2015; Kim & Rush, 2016), that
seeks to train a student classifier (usually a neural network)
to compress and mimic a larger teacher network, thus im-
prove prediction speed. The primary difference with the
speedup idea of this paper is that our goal is to be more
efficient at constructing internally self-consistent structures
without explicitly searching over the combinatorially large
output space with complex constraints.

7. Conclusions
In this paper, we asked whether we can learn to make infer-
ence faster over the lifetime of a structured output classifier.
To address this question, we developed a search-based strat-
egy that learns to mimic a black-box inference engine but
is substantially faster. We further extended this strategy by
identifying cases where the learned search algorithm can
avoid expensive input feature extraction to further improve
speed without losing accuracy. We empirically evaluated
our proposed algorithms on the problem of extracting enti-
ties and relations from text. Despite using an object-heavy
JVM-based implementation of search, we showed that by ex-
ploiting regularities across the output space, we can outper-
form the industrial strength Gurobi integer linear program
solver in terms of speed, while matching its accuracy.
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