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Learning Decision Trees
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This lecture: Learning Decision Trees

1. Representation: What are decision trees?

2. Algorithm: Learning decision trees

– The ID3 algorithm: A greedy heuristic 

3. Some extensions
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History of Decision Tree Research

• Full search decision tree methods to model human concept learning: Hunt et 
al 60s, psychology

• Quinlan developed the ID3 (Iterative Dichotomiser 3) algorithm, with the 
information gain heuristic to learn expert systems from examples (late 70s)

• Breiman, Freidman and colleagues in statistics developed CART (Classification 
And Regression Trees, mid 80s)

• Many improvements in the 80s: coping with noise, continuous attributes, 
missing data, non-axis parallel, etc.

• Quinlan’s updated algorithms, C4.5 (1993) and C5 are more commonly used

• Boosting (or Bagging) over decision trees is a very good general-purpose 
algorithm
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Will I play tennis today? 

• Features 

– Outlook:   {Sun, Overcast, Rain}

– Temperature:  {Hot, Mild, Cool}

– Humidity:   {High, Normal, Low}

– Wind:    {Strong, Weak}

• Labels

– Binary classification task: Y =  {+, -}
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Will I play tennis today? 

Outlook:     Sunny, 
     Overcast, 
     Rainy

Temperature: Hot, 
  Medium, 
  Cool

Humidity:    High,
    Normal, 
    Low

Wind:    Strong, 
    Weak
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O T H W Play?

1 S H H W -
2 S H H S -

3 O H H W +

4 R M H W +

5 R C N W +

6 R C N S -

7 O C N S +

8 S M H W -

9 S C N W +

10 R M N W +

11 S M N S +

12 O M H S +

13 O H N W +

14 R M H S -



Basic Decision Tree Learning Algorithm

• Data processed as a batch (i.e. all data available)
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Basic Decision Tree Learning Algorithm

• Data processed as a batch (i.e. all data available)

• Recursively build a decision tree top down.
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• Recursively build a decision tree top down.
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Basic Decision Tree Algorithm: ID3

1. If all examples are have same label: 

Return a single node tree with the label

2. Otherwise

1. Create a Root node for tree

2. A =  attribute in Attributes that best classifies S

3. for each possible value v of that A can take:

1.  Add a new tree branch corresponding to A=v

2. Let Sv be the subset of examples in S with A=v

3. if Sv is empty:

 add leaf node with the common value of Label in S

    Else:  

below this branch add the subtree ID3(Sv, Attributes - {A}, Label)

4. Return Root node

why? 

For generalization at test time
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The set of attributes (i.e. features) 
that are measured for each example



Basic Decision Tree Algorithm: ID3
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ID3(S, Attributes):

For generalization at test time

Recursive call to the ID3 
algorithm with all the remaining 
attributes

Decide what to do for each 
value the root attribute takes



Picking the Root Attribute

• Goal: Have the resulting decision tree as small as possible 
(Occam’s Razor)

– But, finding the minimal decision tree consistent with data is NP-hard

• The recursive algorithm is a greedy heuristic search for a 
simple tree, but cannot guarantee optimality

• The main decision in the algorithm is the selection of the next 
attribute to split on
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Picking the Root Attribute
Consider data with two Boolean attributes (A,B).
                 <  (A=0,B=0), - >:    50 examples

                 <  (A=0,B=1), - >:    50 examples

                 <  (A=1,B=0), - >:      0 examples

                 <  (A=1,B=1), + >: 100 examples
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Picking the Root Attribute
Consider data with two Boolean attributes (A,B).
                 <  (A=0,B=0), - >:    50 examples

                 <  (A=0,B=1), - >:    50 examples

                 <  (A=1,B=0), - >:      0 examples

                 <  (A=1,B=1), + >: 100 examples

A

+ -
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B

-

01

A

+ -

01

Splitting on B: we don’t get purely labeled nodes.

What if we have: <(A=1,B=0), -  >: 3 examples

What should be the first attribute we select?

Splitting on A: we get purely labeled nodes.
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Picking the Root Attribute
Consider data with two Boolean attributes (A,B).
                 <  (A=0,B=0), - >:    50 examples

                 <  (A=0,B=1), - >:    50 examples

                 <  (A=1,B=0), - >:      0 examples   3 examples

                 <  (A=1,B=1), + >: 100 examples

Which attribute should we choose?
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Picking the Root Attribute
Consider data with two Boolean attributes (A,B).
                 <  (A=0,B=0), - >:    50 examples

                 <  (A=0,B=1), - >:    50 examples

                 <  (A=1,B=0), - >:      0 examples   3 examples

                 <  (A=1,B=1), + >: 100 examples
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50 3

100

100100

Which attribute should we choose?

Advantage A. But…
Need a way to quantify things
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Picking the Root Attribute

Goal: Have the resulting decision tree as small as possible (Occam’s 
Razor)

• The main decision in the algorithm is the selection of the next 
attribute for splitting the data

• We want attributes that split the examples to sets that are relatively 
pure in one label
– This way we are closer to a leaf node.

• The most popular heuristic is information gain, originated with the 
ID3 system of Quinlan
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Reminder: Entropy

Entropy (impurity, disorder) of a set of examples S with respect 
to binary classification is 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 𝑆 = 𝐻 𝑆 = −𝑝+ log2 𝑝+ − 𝑝− log2 𝑝−  

• The proportion of positive examples is 𝑝+

• The proportion of negative examples is 𝑝−

In general, for a discrete probability distribution with K possible 
values, with probabilities {𝑝1, 𝑝2, ⋯ , 𝑝𝑘} the entropy is  given by

𝐻 𝑝1, 𝑝2, ⋯ , 𝑝𝑘 = − ෍

𝑖

𝐾

𝑝𝑖 log2 𝑝𝑖
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Reminder: Entropy
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• If all examples belong to the same category, then entropy = 0

• If 𝑝+ =  𝑝
−

 =
1

2
  then entropy = 1
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Entropy can be viewed as the number of bits required, on average, to  encode information.

If the probability for + is 0.5, a single bit is required for each example; if it is 0.8, we can use less then 1 bit.



Reminder: Entropy

Entropy (impurity, disorder) of a set of examples S with respect 
to binary classification is 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 𝑆 = 𝐻 𝑆 = −𝑝+ log2 𝑝+ − 𝑝− log2 𝑝−  

• The proportion of positive examples is 𝑝+

• The proportion of negative examples is 𝑝−

• If all examples belong to the same category, then entropy = 0

• If 𝑝+ =  𝑝
−

 =
1

2
  then entropy = 1

42

11

- +

1

- + - +



Reminder: Entropy

Entropy (impurity, disorder) of a set of examples S with respect 
to binary classification is 
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Reminder: Entropy

Entropy (impurity, disorder) of a set of examples S with respect 
to binary classification is 
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High Entropy: High level of Uncertainty

Low Entropy: Low Uncertainty 



Picking the Root Attribute

Goal: Have the resulting decision tree as small as possible (Occam’s 
Razor)

• The main decision in the algorithm is the selection of the next 
attribute for splitting the data

• We want attributes that split the examples to sets that are relatively 
pure in one label
– This way we are closer to a leaf node.

• The most popular heuristic is information gain, originated with the 
ID3 system of Quinlan

46

Intuition: Choose the attribute that reduces the label entropy the most



Information Gain

The information gain of an attribute A is the expected reduction 
in entropy caused by partitioning on this attribute

Sv: the subset of examples where the value of attribute A is 
set to value v

Entropy of partitioning the data is calculated by weighing the 
entropy of each partition by its size relative to the original set

– Partitions of low entropy (imbalanced splits) lead to high gain

Go back to check which of the A, B splits is better
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Entropy of partitioning the data is calculated by weighing the 
entropy of each partition by its size relative to the original set

– Partitions of low entropy (imbalanced splits) lead to high gain

Go back to check which of the A, B splits is better
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Information Gain

The information gain of an attribute A is the expected reduction 
in entropy caused by partitioning on this attribute

Sv: the subset of examples where the value of attribute A is 
set to value v

Entropy of partitioning the data is calculated by weighing the 
entropy of each partition by its size relative to the original set

– Partitions of low entropy (imbalanced splits) lead to high gain

Go back to check which of the A, B splits is better
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Information Gain

The information gain of an attribute A is the expected reduction 
in entropy caused by partitioning on this attribute

Sv: the subset of examples where the value of attribute A is 
set to value v

Entropy of partitioning the data is calculated by weighing the 
entropy of each partition by its size relative to the original set

– Partitions of low entropy (imbalanced splits) lead to high gain

Go back to check which of the A, B splits is better

50

High Entropy: High level of Uncertainty

Low Entropy: Low Uncertainty 



Will I play tennis today? 

Outlook: S(unny), 
 O(vercast), 
 R(ainy)

Temperature: H(ot),     
   M(edium), 

  C(ool)

Humidity: H(igh),
 N(ormal), 
 L(ow)

Wind: S(trong), 
 W(eak)
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O T H W Play?

1 S H H W -
2 S H H S -

3 O H H W +

4 R M H W +

5 R C N W +

6 R C N S -

7 O C N S +

8 S M H W -

9 S C N W +

10 R M N W +

11 S M N S +

12 O M H S +

13 O H N W +

14 R M H S -



Will I play tennis today? 

Current entropy:
p = 9/14  
n = 5/14

H(Play?) = −(9/14) log2(9/14) −(5/14) log2(5/14) 
   0.94
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O T H W Play?

1 S H H W -
2 S H H S -

3 O H H W +

4 R M H W +

5 R C N W +

6 R C N S -

7 O C N S +

8 S M H W -

9 S C N W +

10 R M N W +

11 S M N S +

12 O M H S +

13 O H N W +

14 R M H S -



Information Gain: Outlook
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O T H W Play?

1 S H H W -
2 S H H S -

3 O H H W +

4 R M H W +

5 R C N W +

6 R C N S -

7 O C N S +

8 S M H W -

9 S C N W +

10 R M N W +

11 S M N S +

12 O M H S +

13 O H N W +

14 R M H S -



Information Gain: Outlook

Outlook = sunny: 5 of 14 examples
 p = 2/5     n = 3/5 HS = 0.971
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O T H W Play?

1 S H H W -
2 S H H S -

3 O H H W +

4 R M H W +

5 R C N W +

6 R C N S -

7 O C N S +

8 S M H W -

9 S C N W +

10 R M N W +

11 S M N S +

12 O M H S +

13 O H N W +

14 R M H S -



Information Gain: Outlook

Outlook = sunny: 5 of 14 examples
 p = 2/5     n = 3/5 HS = 0.971

Outlook = overcast: 4 of 14 examples
 p = 4/4     n = 0  Ho= 0

Outlook = rainy: 5 of 14 examples
 p = 3/5     n = 2/5 HR = 0.971

Expected entropy: 
 

Information gain: 
 0.940 – 0.694 = 0.246
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(5/14)×0.971 + (4/14)×0  + (5/14)×0.971 
= 0.694
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4 R M H W +

5 R C N W +

6 R C N S -

7 O C N S +

8 S M H W -

9 S C N W +

10 R M N W +

11 S M N S +

12 O M H S +

13 O H N W +

14 R M H S -



Information Gain: Outlook

Outlook = sunny: 5 of 14 examples
 p = 2/5     n = 3/5 HS = 0.971

Outlook = overcast: 4 of 14 examples
 p = 4/4     n = 0  Ho= 0

Outlook = rainy: 5 of 14 examples
 p = 3/5     n = 2/5 HR = 0.971

Expected entropy: 
 

Information gain: 
 0.940 – 0.694 = 0.246
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(5/14)×0.971 + (4/14)×0  + (5/14)×0.971 
= 0.694

O T H W Play?

1 S H H W -
2 S H H S -

3 O H H W +

4 R M H W +

5 R C N W +

6 R C N S -

7 O C N S +

8 S M H W -

9 S C N W +

10 R M N W +

11 S M N S +

12 O M H S +

13 O H N W +

14 R M H S -



Information Gain: Humidity

Humidity = high: 
 p = 3/7     n = 4/7 Hh = 0.985
Humidity = Normal:
 p = 6/7     n = 1/7 Ho= 0.592

Expected entropy: 
      (7/14)×0.985 + (7/14)×0.592= 0.7885

Information gain: 
 0.940 – 0.7885 = 0.1515
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O T H W Play?

1 S H H W -
2 S H H S -

3 O H H W +

4 R M H W +

5 R C N W +

6 R C N S -

7 O C N S +

8 S M H W -

9 S C N W +

10 R M N W +

11 S M N S +

12 O M H S +

13 O H N W +

14 R M H S -



Information Gain: Humidity

Humidity = High: 
 p = 3/7     n = 4/7 Hh = 0.985
Humidity = Normal:
 p = 6/7     n = 1/7 Ho= 0.592

Expected entropy: 
      (7/14)×0.985 + (7/14)×0.592= 0.7885

Information gain: 
 0.940 – 0.7885 = 0.1515
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4 R M H W +
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13 O H N W +
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Information Gain: Humidity

Humidity = High: 
 p = 3/7     n = 4/7 Hh = 0.985
Humidity = Normal:
 p = 6/7     n = 1/7 Ho= 0.592

Expected entropy: 
      (7/14)×0.985 + (7/14)×0.592= 0.7885

Information gain: 
 0.940 – 0.7885 = 0.1515
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Information Gain: Humidity

Humidity = High: 
 p = 3/7     n = 4/7 Hh = 0.985
Humidity = Normal:
 p = 6/7     n = 1/7 Ho= 0.592

Expected entropy: 
      (7/14)×0.985 + (7/14)×0.592= 0.7885

Information gain: 
 0.940 – 0.7885 = 0.1515
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O T H W Play?

1 S H H W -
2 S H H S -

3 O H H W +

4 R M H W +

5 R C N W +

6 R C N S -

7 O C N S +

8 S M H W -

9 S C N W +

10 R M N W +

11 S M N S +

12 O M H S +

13 O H N W +

14 R M H S -



Which feature to split on? 
Information gain: 
 Outlook:  0.246
 Humidity: 0.151
 Wind: 0.048
 Temperature: 0.029
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O T H W Play?

1 S H H W -
2 S H H S -

3 O H H W +

4 R M H W +

5 R C N W +

6 R C N S -

7 O C N S +

8 S M H W -

9 S C N W +

10 R M N W +

11 S M N S +

12 O M H S +

13 O H N W +

14 R M H S -



Which feature to split on? 
Information gain: 
 Outlook:  0.246
 Humidity: 0.151
 Wind: 0.048
 Temperature: 0.029

→ Split on Outlook
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O T H W Play?

1 S H H W -
2 S H H S -

3 O H H W +

4 R M H W +

5 R C N W +

6 R C N S -

7 O C N S +

8 S M H W -

9 S C N W +

10 R M N W +

11 S M N S +

12 O M H S +

13 O H N W +

14 R M H S -



An Illustrative Example

Outlook 

Gain(S,Humidity)=0.151
Gain(S,Wind) = 0.048
Gain(S,Temperature) = 0.029
Gain(S,Outlook) = 0.246
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An Illustrative Example

Outlook 

Overcast Rain

3,7,12,13 4,5,6,10,14

3+,2-

Sunny

1,2,8,9,11

4+,0-2+,3-

?? ? 
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O T H W Play?

1 S H H W -
2 S H H S -

3 O H H W +

4 R M H W +

5 R C N W +

6 R C N S -

7 O C N S +

8 S M H W -

9 S C N W +

10 R M N W +

11 S M N S +

12 O M H S +

13 O H N W +

14 R M H S -



An Illustrative Example

Outlook 

Overcast Rain

3,7,12,13 4,5,6,10,14

3+,2-

Sunny

1,2,8,9,11

4+,0-2+,3-

Yes? ? 
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O T H W Play?

1 S H H W -
2 S H H S -

3 O H H W +

4 R M H W +

5 R C N W +

6 R C N S -

7 O C N S +

8 S M H W -

9 S C N W +

10 R M N W +

11 S M N S +

12 O M H S +

13 O H N W +

14 R M H S -



An Illustrative Example

Outlook 

Overcast Rain

3,7,12,13 4,5,6,10,14

3+,2-

Sunny

1,2,8,9,11

4+,0-2+,3-

Yes? ? 

Continue until:
• Every attribute is included in path, or,
• All examples  in the leaf have same label
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O T H W Play?

1 S H H W -
2 S H H S -

3 O H H W +

4 R M H W +

5 R C N W +

6 R C N S -

7 O C N S +

8 S M H W -

9 S C N W +

10 R M N W +

11 S M N S +

12 O M H S +

13 O H N W +

14 R M H S -



An Illustrative Example
Gain(Ssunny, Humidity) = .97-(3/5) 0-(2/5) 0 = .97

Gain(Ssunny,Temp) = .97- 0-(2/5) 1 = .57

Gain(Ssunny, wind) = .97-(2/5) 1 - (3/5) .92= .02

Day    Outlook Temperature      Humidity    Wind       PlayTennis     
1       Sunny            Hot                  High             Weak            No

2       Sunny            Hot                  High             Strong           No

8       Sunny            Mild                High             Weak             No

9       Sunny            Cool                Normal        Weak            Yes

11      Sunny            Mild                Normal        Strong          Yes

Outlook 

Overcast Rain

3,7,12,13 4,5,6,10,14

3+,2-

Sunny

1,2,8,9,11

4+,0-2+,3-

Yes? ? 
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An Illustrative Example

Outlook 

Overcast Rain

3,7,12,13 4,5,6,10,14

3+,2-

Sunny

1,2,8,9,11

4+,0-2+,3-

YesHumidity

NormalHigh

No Yes
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An Illustrative Example

Outlook 

Overcast Rain

3,7,12,13 4,5,6,10,14

3+,2-

Sunny

1,2,8,9,11

4+,0-2+,3-

YesHumidity Wind

NormalHigh

No Yes
WeakStrong

No Yes
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Hypothesis Space in Decision Tree Induction

• Search over decision trees, which can represent all possible discrete 
functions (has pros and cons)

• Goal: to find the best decision tree

• Finding a minimal decision tree consistent with a set of data is NP-
hard.

• ID3 performs a greedy heuristic search 
– hill climbing without backtracking

• Makes statistical decisions using all data
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Summary: Learning Decision Trees

1. Representation: What are decision trees?

– A hierarchical data structure that represents data 

2. Algorithm: Learning decision trees

The ID3 algorithm: A greedy heuristic 
• If all the examples have the same label, create a leaf with that 

label

• Otherwise, find the “most informative” attribute and split the data 
for different values of that attributes

• Recurse on the splits
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