
CS 6355: Structured Prediction

General Formulations for Structures: 
Constrained Conditional Models
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Where are we?

• Graphical models
– Bayesian Networks
– Markov Random Fields

• Formulations of structured output
– Joint models

• Markov Logic Network

– Conditional models
• Conditional Random Fields (again)
• Constrained Conditional Models
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Outline

• Consistency of outputs and the value of inference

• Constrained conditional models via an example

• Hard constraints and Integer Programs

• Soft constraints
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Consistency of outputs
Or: How to introduce knowledge into prediction
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Suppose we have a sequence labeling problem where the outputs can be one of A or B
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1 2 3

Suppose we have a sequence labeling problem where the outputs can be one of A or B

Suppose, for some example, we have a sequence with three steps
We can define a linear chain factor graph with unary and binary terms

X This is short hand for this factor 
graph. Going ahead, we will not 
show the inputs. We will assume 
that we have conditional models.
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There should be no more than one B in the output
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We want to add a condition: 
There should be no more than one B in the output

Suppose we have a sequence labeling problem where the outputs can be one of A or B

1 2 3

How can we do that? Which decisions interact in this condition?

Possible outputs
AAA
AAB
ABA
ABB
BAA
BAB
BBA
BBB



Consistency of outputs
Or: How to introduce knowledge into prediction

13

We want to add a condition: 
There should be no more than one B in the output

Suppose we have a sequence labeling problem where the outputs can be one of A or B

1 2 3

Possible outputs
AAA
AAB
ABA
ABB
BAA
BAB
BBA
BBB



Consistency of outputs
Or: How to introduce knowledge into prediction

14

We want to add a condition: 
There should be no more than one B in the output

y1 y2 y3 f

A A A 1

A A B 1

A B A 1

A B B 0
B A A 1

B A B 0
B B A 0
B B B 0

This potential function 
ensures the condition

Suppose we have a sequence labeling problem where the outputs can be one of A or B

1 2 3
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We want to add a condition: 
There should be no more than one B in the output

But the standard CRF learning does not allow for  potential 
functions to be set manually 

Should we learn what we can write down easily?
Especially for such large, computationally cumbersome factors

Suppose we have a sequence labeling problem where the outputs can be one of A or B

1 2 3

This potential function 
ensures the condition

y1 y2 y3 f

A A A 1

A A B 1

A B A 1

A B B 0
B A A 1

B A B 0
B B A 0
B B B 0



Another look at learning and inference

• Inference: A global decision comprising of multiple 
local decisions and their inter-dependencies

If there were no inter-dependencies between decisions, we could as 
well treat these as independent prediction problems

• Does learning need to be global too?
Recall: Local vs. global learning

• Global learning: Learn with inference 
• Local learning: Learn the local decisions independently and piece 

them together
– Maybe we can learn sub-structures independently and piece them 

together
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Stochastic gradient descent update for CRF
– For a training example 𝐱!, 𝐲! :
𝐰 ← 𝐰+ 𝛼" Φ 𝐱!, 𝐲! − 𝐸𝐲~% ⋅∣𝐱!,𝐰 Φ 𝐱𝐢, 𝐲!

Typical updates in global learning
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Some form of 
inference needed 
within the 
innermost loop



Why local learning?

• Global learning may not always be feasible
– Practical concerns

Global learning can be computationally prohibitive because of inference 
within the training loop

– Data issues
• What if we don’t have a single dataset that is fully annotated with a 

structure
• Instead, we have multiple datasets, each with a subset of the 

structures

• But inference at deployment can still be global
– Recall the discussion of local vs global learning from multiclass 

classification
In the one-vs-all case, learning was local, but prediction was not.
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Combining local classifiers
Inference can “glue” together local decisions
– And enforce global coherence

22

Setting
Output: Nodes and edges are labeled and 
the blue and orange edges form a tree

Goal: Find the highest scoring tree

3 possible node labels

3 possible edge labels

What does inference do?
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Constraints at prediction time

Introduce additional information 
– Might not have been available at training time

Add domain knowledge
Examples:

• “All part-of-speech tag sequences should contain a verb”
• “Every bicycle should have at least one wheel”
• “In any window of size six, at least one of the labels should be a B”

Enforce coherence into the set of local decisions
Examples:

• “the collection of decisions should form a tree”
• “the collection of parts recognized should form a valid bicycle”
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Outline

• Consistency of outputs and the value of inference

• Constrained conditional models via an example

• Hard constraints and Integer Programs

• Soft constraints
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Constrained Conditional Model

Inference consists of two components
1. Local classifiers

– Important: These may be a collection of structures themselves
– These are trained models

2. A set of constraints that restrict the space of joint 
assignments of the local classifiers
– Background knowledge
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Prediction in a CCM
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1 2 3

Typically, we have argmax
𝐲

𝐰"𝜙(𝐱, 𝐲)

wT𝜙T (y1, y2) wT𝜙T (y2, y3)

wT𝜙E (x, y1) wT𝜙E (x, y2) wT𝜙E (x, y3)

Suppose the outputs can be one of A or B

An example of how we can formalize prediction
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Typically, we have argmax
𝐲

𝐰"𝜙(𝐱, 𝐲)

wT𝜙T (y1, y2) wT𝜙T (y2, y3)
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An example of how we can formalize prediction

Or equivalently, 

argmax
𝐲

5
#

𝐰"𝜙# 𝐱, 𝐲#

Sum over all 
parts/factors

Score for 
each factor
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Indicators

𝐼3 = :1, if 𝑧 is true,
0, else.
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Indicator for whether the 𝑖45
label is 𝑙.
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Indicator for whether the 𝑖45
label is 𝑙% and the 𝑖 + 1 45

label is 𝑙(.
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Typically, we have argmax
𝐲

𝐰"𝜙(𝐱, 𝐲)

wT𝜙T (y1, y2) wT𝜙T (y2, y3)

wT𝜙E (x, y1) wT𝜙E (x, y2) wT𝜙E (x, y3)

Suppose the outputs can be one of A or B

One group of indicators per factor
One score per indicator

An example of how we can formalize prediction
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Typically, we have argmax
𝐲
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Suppose the outputs can be one of A or B

One group of indicators per factor
One score per indicator

This expression 
explicitly enumerates 
every decision that we 
need to make to build 
the final output

An example of how we can formalize prediction
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Typically, we have argmax
𝐲

𝐰"𝜙(𝐱, 𝐲)

wT𝜙T (y1, y2) wT𝜙T (y2, y3)

wT𝜙E (x, y1) wT𝜙E (x, y2) wT𝜙E (x, y3)

Suppose the outputs can be one of A or B

Let us enumerate every decision that we need to make 
to build the final output

1 2 3
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Typically, we have argmax
𝐲

𝐰"𝜙(𝐱, 𝐲)

wT𝜙T (y1, y2) wT𝜙T (y2, y3)

wT𝜙E (x, y1) wT𝜙E (x, y2) wT𝜙E (x, y3)

Suppose the outputs can be one of A or B

Iy1=A
score(y1=A) + Iy1=B

score(y1=B)

Let us enumerate every decision that we need to make 
to build the final output

Only one of these two 
decisions can exist

1 2 3
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Typically, we have argmax
𝐲

𝐰"𝜙(𝐱, 𝐲)

wT𝜙T (y1, y2) wT𝜙T (y2, y3)

wT𝜙E (x, y1) wT𝜙E (x, y2) wT𝜙E (x, y3)

Suppose the outputs can be one of A or B

Iy1=A
score(y1=A) + Iy1=B

score(y1=B)

+ Iy2=A
score(y2=A) + Iy2=B

score(y2=B)

+ Iy3=A
score(y2=A) + Iy3=B

score(y2=B)

Let us enumerate every decision that we need to make 
to build the final output

Only one of these two 
decisions can exist

1 2 3
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Typically, we have argmax
𝐲

𝐰"𝜙(𝐱, 𝐲)

wT𝜙T (y1, y2) wT𝜙T (y2, y3)

wT𝜙E (x, y1) wT𝜙E (x, y2) wT𝜙E (x, y3)

Suppose the outputs can be one of A or B

Iy1=A
score(y1=A) + Iy1=B

score(y1=B)

+ Iy2=A
score(y2=A) + Iy2=B

score(y2=B)

+ Iy3=A
score(y2=A) + Iy3=B

score(y2=B)

Let us enumerate every decision that we need to make 
to build the final output

Iy1=A and y2=A
score(y1=A, y2=A) + Iy1=A and y2=B

score(y1=A, y2=B)

+ Iy1=B and y2=A
score(y1=B, y2=A) + Iy1=B and y2=B

score(y1=B, y2=B)
+ 

Only one of these two 
decisions can exist Only one of these four 

decisions can exist

1 2 3
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wT𝜙T (y1, y2) wT𝜙T (y2, y3)

wT𝜙E (x, y1) wT𝜙E (x, y2) wT𝜙E (x, y3)

Suppose the outputs can be one of A or B

Iy1=A
score(y1=A) + Iy1=B

score(y1=B)

+ Iy2=A
score(y2=A) + Iy2=B

score(y2=B)

+ Iy3=A
score(y2=A) + Iy3=B

score(y2=B)

Let us enumerate every decision that we need to make 
to build the final output

Iy1=A and y2=A
score(y1=A, y2=A) + Iy1=A and y2=B

score(y1=A, y2=B)

+ Iy1=B and y2=A
score(y1=B, y2=A) + Iy1=B and y2=B

score(y1=B, y2=B)
+ 

Iy2=A and y3=A
score(y2=A, y3=A) + Iy2=A and y3=B

score(y2=A, y3=B)

+ Iy2=B and y3=A
score(y2=B, y3=A) + Iy2=B and y3=B

score(y2=B, y3=B)
+ 

Only one of these two 
decisions can exist Only one of these four 

decisions can exist

1 2 3

Typically, we have argmax
𝐲

𝐰"𝜙(𝐱, 𝐲)
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wT𝜙T (y1, y2) wT𝜙T (y2, y3)

wT𝜙E (x, y1) wT𝜙E (x, y2) wT𝜙E (x, y3)

Suppose the outputs can be one of A or B

Iy1=A
score(y1=A) + Iy1=B

score(y1=B)

+ Iy2=A
score(y2=A) + Iy2=B

score(y2=B)

+ Iy3=A
score(y2=A) + Iy3=B

score(y2=B)

Some decisions can not exist together

Iy1=A and y2=A
score(y1=A, y2=A) + Iy1=A and y2=B

score(y1=A, y2=B)

+ Iy1=B and y2=A
score(y1=B, y2=A) + Iy1=B and y2=B

score(y1=B, y2=B
+ 

Iy2=A and y3=A
score(y2=A, y3=A) + Iy2=A and y3=B

score(y2=A, y3=B)

+ Iy2=B and y3=A
score(y2=B, y3=A) + Iy2=B and y3=B

score(y2=B, y3=B
+ 

1 2 3

Typically, we have argmax
𝐲

𝐰"𝜙(𝐱, 𝐲)
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wT𝜙T (y1, y2) wT𝜙T (y2, y3)

wT𝜙E (x, y1) wT𝜙E (x, y2) wT𝜙E (x, y3)

Suppose the outputs can be one of A or B

Iy1=A
score(y1=A) + Iy1=B

score(y1=B)

+ Iy2=A
score(y2=A) + Iy2=B

score(y2=B)

+ Iy3=A
score(y2=A) + Iy3=B

score(y2=B)

Iy1=A and y2=A
score(y1=A, y2=A) + Iy1=A and y2=B

score(y1=A, y2=B)

+ Iy1=B and y2=A
score(y1=B, y2=A) + Iy1=B and y2=B

score(y1=B, y2=B
+ 

Iy2=A and y3=A
score(y2=A, y3=A) + Iy2=A and y3=B

score(y2=A, y3=B)

+ Iy2=B and y3=A
score(y2=B, y3=A) + Iy2=B and y3=B

score(y2=B, y3=B
+ 

Some decisions can not exist together

1 2 3

Typically, we have argmax
𝐲

𝐰"𝜙(𝐱, 𝐲)

If 𝐼1#$- = 1 then 𝐼1#$/ 678 1%$- = 0 If 𝐼1#$- = 1 then 𝐼1"$/ 678 1#$/ = 0
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wT𝜙T (y1, y2) wT𝜙T (y2, y3)

wT𝜙E (x, y1) wT𝜙E (x, y2) wT𝜙E (x, y3)

Suppose the outputs can be one of A or B

But we should only consider valid label sequences

1 2 3

Typically, we have argmax
𝐲

𝐰"𝜙(𝐱, 𝐲)

Or equivalently, 

argmax
𝐲

5
#$%

&

5
*∈{-,/}

𝐼1!$* ⋅ 𝐰
"𝜙' 𝐱, 𝑙 +5

#$%

(

5
*",*#∈{-,/}

𝐼1!$*"∧1!$"$*#𝐰
"𝜙 𝑙%, 𝑙(
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wT𝜙T (y1, y2) wT𝜙T (y2, y3)

wT𝜙E (x, y1) wT𝜙E (x, y2) wT𝜙E (x, y3)

Suppose the outputs can be one of A or B

Predict with constraints
• Each yi can either be a A or a B

• The emission decisions and the transition decisions should agree

• There should be no more than one B in the output

1 2 3

Typically, we have argmax
𝐲

𝐰"𝜙(𝐱, 𝐲)

Or equivalently, 

argmax
𝐲

5
#$%

&

5
*∈{-,/}

𝐼1!$* ⋅ 𝐰
"𝜙' 𝐱, 𝑙 +5

#$%

(

5
*",*#∈{-,/}

𝐼1!$*"∧1!$"$*#𝐰
"𝜙 𝑙%, 𝑙(
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wT𝜙T (y1, y2) wT𝜙T (y2, y3)

wT𝜙E (x, y1) wT𝜙E (x, y2) wT𝜙E (x, y3)

Suppose the outputs can be one of A or B

Predict with constraints
• Each yi can either be a A or a B: ∀𝑖, 𝐼!!"# + 𝐼!!"$ = 1

• The emission decisions and the transition decisions should agree

• There should be no more than one B in the output

1 2 3

Typically, we have argmax
𝐲

𝐰"𝜙(𝐱, 𝐲)

Or equivalently, 

argmax
𝐲

5
#$%

&

5
*∈{-,/}

𝐼1!$* ⋅ 𝐰
"𝜙' 𝐱, 𝑙 +5

#$%

(

5
*",*#∈{-,/}

𝐼1!$*"∧1!$"$*#𝐰
"𝜙 𝑙%, 𝑙(
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wT𝜙T (y1, y2) wT𝜙T (y2, y3)

wT𝜙E (x, y1) wT𝜙E (x, y2) wT𝜙E (x, y3)

Suppose the outputs can be one of A or B

Predict with constraints
• Each yi can either be a A or a B: ∀𝑖, 𝐼!!"# + 𝐼!!"$ = 1

• The emission decisions and the transition decisions should agree

• There should be no more than one B in the output
We can write this using linear constraints 
over the indicator variables

1 2 3

Typically, we have argmax
𝐲

𝐰"𝜙(𝐱, 𝐲)

Or equivalently, 

argmax
𝐲

5
#$%

&

5
*∈{-,/}

𝐼1!$* ⋅ 𝐰
"𝜙' 𝐱, 𝑙 +5

#$%

(

5
*",*#∈{-,/}

𝐼1!$*"∧1!$"$*#𝐰
"𝜙 𝑙%, 𝑙(
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wT𝜙T (y1, y2) wT𝜙T (y2, y3)

wT𝜙E (x, y1) wT𝜙E (x, y2) wT𝜙E (x, y3)

Suppose the outputs can be one of A or B

Predict with constraints
• Each yi can either be a A or a B: ∀𝑖, 𝐼!!"# + 𝐼!!"$ = 1

• The emission decisions and the transition decisions should agree

• There should be no more than one B in the output
We could add 
extra 
knowledge that 
was not present 
at training time

1 2 3

Typically, we have argmax
𝐲

𝐰"𝜙(𝐱, 𝐲)

Or equivalently, 

argmax
𝐲

5
#$%

&

5
*∈{-,/}

𝐼1!$* ⋅ 𝐰
"𝜙' 𝐱, 𝑙 +5

#$%

(

5
*",*#∈{-,/}

𝐼1!$*"∧1!$"$*#𝐰
"𝜙 𝑙%, 𝑙(
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wT𝜙T (y1, y2) wT𝜙T (y2, y3)

wT𝜙E (x, y1) wT𝜙E (x, y2) wT𝜙E (x, y3)

Suppose the outputs can be one of A or B

Predict with constraints
• Each yi can either be a A or a B: ∀𝑖, 𝐼!!"# + 𝐼!!"$ = 1

• The emission decisions and the transition decisions should agree

• There should be no more than one B in the output
𝐼!""$ + 𝐼!#"$ + 𝐼!$"$ ≤ 1

Questions?

1 2 3

Typically, we have argmax
𝐲

𝐰"𝜙(𝐱, 𝐲)

Or equivalently, 

argmax
𝐲

5
#$%

&

5
*∈{-,/}

𝐼1!$* ⋅ 𝐰
"𝜙' 𝐱, 𝑙 +5

#$%

(

5
*",*#∈{-,/}

𝐼1!$*"∧1!$"$*#𝐰
"𝜙 𝑙%, 𝑙(



Constrained Conditional Model 

• Global joint inference
– Treat the output as a collection of decisions (one per factor/part)
– Each decision associated with a score
– In addition, allow arbitrary constraints involving the decisions

• Constraints
– Inject domain knowledge into the prediction
– Can be stated as logical statements
– Can be transformed into linear inequalities in terms of the decision 

variables

• No comment about learning
– Learn the scoring functions locally or globally

57

with hard constraints



Outline

• Consistency of outputs and the value of inference

• Constrained conditional models via an example

• Hard constraints and Integer Programs

• Soft constraints

58



Inference with hard constraints

59

Such that y is feasible



Inference with hard constraints

60

Such that y is feasible

Same as



Inference with hard constraints

• Can be written as linear (in)equalities in the I’s
• I’s can only be 0 or 1

This is an Integer Linear Program

MAP inference can be written as integer linear programs
Solving an integer linear program is NP-complete in the worst case

• Use an off-the-shelf solver (Gurobi) and hope for the best
• Or not: Write a specialized search algorithm if we know more about the 

problem (exact or approximate)
• We will see examples of these

61

Such that y is feasible

Questions?

Same as



Inference with hard constraints

• Can be written as linear (in)equalities in the I’s
• I’s can only be 0 or 1

This is an Integer Linear Program

MAP inference can be written as integer linear programs (ILPs)
Solving an integer linear program is NP-complete in the worst case

• Use an off-the-shelf solver (Gurobi) and hope for the best
• Or not: Write a specialized search algorithm if we know more about the 

problem (exact or approximate)
• We will see examples of these
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Such that y is feasible

Questions?

Same as



Inference with hard constraints

• Can be written as linear (in)equalities in the I’s
• I’s can only be 0 or 1

This is an Integer Linear Program

MAP inference can be written as integer linear programs (ILPs)
But solving ILPs is NP-complete in the worst case

• Use an off-the-shelf solver (Gurobi) and hope for the best
• Or not: Write a specialized search algorithm if we know more about the 

problem (exact or approximate)
• We will see examples of these

63

Such that y is feasible

Questions?

Same as



ILP inference

• Can introduce domain knowledge in the form of constraints
– Any Boolean expression over the inference variables can be written as 

linear inequalities

• A uniform language for formulating and reasoning about 
inference

• Have not made the problem any easier to solve
– By allowing easy addition of constraints, it may be simple to write 

down provably intractable inference formulations
– (Off-the-shelf solvers seem to work admirably!)

64Questions?



Outline

• Consistency of outputs and the value of inference

• Constrained conditional models via an example

• Hard constraints and Integer Programs

• Soft constraints

65



Constraints may not always hold
“Every car should have a wheel”

66

Yes

No

Sometimes constraints don’t always hold
Allow the model to consider structures that violate constraints



Constrained Conditional Model 

67

General case: with soft constraints

The model score for the structure

Sometimes constraints don’t always hold
Allow the model to consider structures that violate constraints



Constrained Conditional Model 

68

General case: with soft constraints

The model score for the structure

Suppose we have a collection of “soft constraints” 
𝐶%, 𝐶(, ⋯ each associated with penalties for 
violation 𝜌%, 𝜌(, ⋯

That is: A constraint 𝐶9 is a Boolean expression 
over the output. An assignment that violates this 
constraint has to pay a penalty of 𝜌9

Sometimes constraints don’t always hold
Allow the model to consider structures that violate constraints



Constrained Conditional Model 

69

General case: with soft constraints

The model score for the structure

Penalty for violating the 
constraint

If the constraint is hard, 
penalty = 1.

Sometimes constraints don’t always hold
Allow the model to consider structures that violate constraints



Constrained Conditional Model 
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General case: with soft constraints

The model score for the structure

Penalty for violating the 
constraint

If the constraint is hard, 
penalty = 1.

How far is the structure y from 
satisfying the constraint Ck

The most simple case: 
0: If satisfied
1: If not

Sometimes constraints don’t always hold
Allow the model to consider structures that violate constraints



Constrained conditional models: review

• Write down conditions that the output need to satisfy
– Constraints are effectively factors in a factor graph whose potential 

functions are fixed 

• Different learning regimes
– Train with the constraints or without
– Remember: constraint penalties are fixed in either case

• Prediction
– Can write the inference formulation as an integer linear program
– Can solve it with an off-the-shelf solver (or not!)

• Extension
– Soft constraints: Constraints that don’t always need to hold

71Questions?



Structured prediction: General formulations

• Graphical models
– Bayesian Networks
– Markov Random Fields

• Formulations of structured output
– Joint models

• Markov Logic Network

– Conditional models
• Conditional Random Fields (again)
• Constrained Conditional Models

72

All the discussion so far has 
been about representation. 

Forthcoming lectures: 
Algorithms for training and 
inference


