
CS 6355: Structured Prediction

General Formulations for Structures: 
Markov Logic
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This lecture

• Graphical models
– Bayesian Networks
– Markov Random Fields (MRFs)

• Formulations of structured output
– Joint models

• Markov Logic Network

– Conditional models
• Conditional Random Fields (again)
• Constrained Conditional Models
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We have seen Markov networks
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We have seen Markov networks
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We have seen Markov networks
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Factors

Which random variables 
interact with each other
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1
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We have seen Markov networks
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Factors

Factor potentials

One per factor

Which random variables 
interact with each other

How are the interactions between 
random variables defined (via scoring)



We have seen Markov networks
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With the joint distribution, we can ask the probability of any subset of the random variables
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We have seen Markov networks
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With the joint distribution, we can ask the probability of any subset of the random variables
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Example 1
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Example 2



We have seen Markov networks
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A graphical notation that:
1. Defines how a joint probability distribution is factorized over components (factors)
2. Clarifies the independence assumptions at play
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We have seen Markov networks
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1 2 3

4 5

A graphical notation that:
1. Defines how a joint probability distribution is factorized over components (factors)
2. Clarifies the independence assumptions at play

But what if there are many different random variables? And what if there are groups of 
factors that behave similarly? The structure of the network is knowledge.
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We have seen Markov networks
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1 2 3

4 5

A graphical notation that:
1. Defines how a joint probability distribution is factorized over components (factors)
2. Clarifies the independence assumptions at play

But what if there are many different random variables? And what if there are groups of 
factors that behave similarly? The structure of the network is knowledge.

Can we construct Markov networks by declaratively stating such knowledge?

𝑃 𝑥!, 𝑥", 𝑥#, 𝑥$, 𝑥% =
1
𝑍 𝑓& 𝑥!, 𝑥", 𝑥$ 𝑓' 𝑥", 𝑥#, 𝑥% 𝑓( 𝑥$, 𝑥%



Representing and reasoning about 
knowledge

Consider the following statements
– Smoking causes cancer
– If two people are friends and one smokes, so does the other

Questions to think about
– How do we represent this knowledge?
– How do we answer questions like: “If Anna is friends with Bob, 

and Bob smokes, can Anna get cancer?”
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Representing and reasoning about 
knowledge

Consider the following statements
– Smoking causes cancer
– If two people are friends and one smokes, so does the other

Questions to think about
– How do we represent this knowledge?
– How do we answer questions like: “If Anna is friends with Bob, 

and Bob smokes, can Anna get cancer?”

Logic is a natural language for declaratively stating knowledge and 
making inferences.
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Representing knowledge 

“Smoking causes cancer.”
∀𝑥, Smokes 𝑥 ⇒ Cancer 𝑥

We use predicates Smokes and Cancer in this universally quantified 
statement.
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Representing knowledge 

“Smoking causes cancer.”
∀𝑥, Smokes 𝑥 ⇒ Cancer 𝑥

“If two people are friends and one smokes, so does the other.”
∀𝑥, 𝑦 Friends 𝑥, 𝑦 ∧ Smokes 𝑥 ⇒ Smokes(𝑦)
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Reasoning about knowledge

“Smoking causes cancer.”
∀𝑥, Smokes 𝑥 ⇒ Cancer 𝑥

“If two people are friends and one smokes, so does the other.”
∀𝑥, 𝑦 Friends 𝑥, 𝑦 ∧ Smokes 𝑥 ⇒ Smokes(𝑦)

Suppose we have two friends Anna and Bob, and Bob smokes. What can we 
infer about Anna?

1. Anna and Bob are friends: Friends Anna, Bob
2. Bob smokes: Smokes Bob
3. We know that: Friends Anna, Bob ∧ Smokes Bob ⇒ Smokes(Anna)
4. And we also know that: Smokes Anna ⇒ Cancer(Anna)
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Reasoning about knowledge
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Reasoning about knowledge

“Smoking causes cancer.”
∀𝑥, Smokes 𝑥 ⇒ Cancer 𝑥

“If two people are friends and one smokes, so does the other.”
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Reasoning about knowledge

“Smoking causes cancer.”
∀𝑥, Smokes 𝑥 ⇒ Cancer 𝑥

“If two people are friends and one smokes, so does the other.”
∀𝑥, 𝑦 Friends 𝑥, 𝑦 ∧ Smokes 𝑥 ⇒ Smokes(𝑦)

Suppose we have two friends Anna and Bob, and Bob smokes. What can we 
infer about Anna?

1. Anna and Bob are friends: Friends Anna, Bob
2. Bob smokes: Smokes Bob
3. We know that: Friends Anna, Bob ∧ Smokes Bob ⇒ Smokes(Anna)
4. And we also know that: Smokes Anna ⇒ Cancer(Anna)
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Logic is an expressive language, but 
how do we deal with uncertainty?



From logic to Markov networks

Consider the following statements
– Smoking causes cancer
– If two people are friends and one smokes, so does the other

• In logic:
∀𝑥, Smokes 𝑥 ⇒ Cancer(𝑥)

∀𝑥, 𝑦 Friends 𝑥, 𝑦 ∧ Smokes 𝑥 ⇒ Smokes(𝑦)

23
[Example from Domingos and Lowd 2009]



From logic to Markov networks

Consider the following statements
– Smoking causes cancer
– If two people are friends and one smokes, so does the other

• In logic:
∀𝑥, Smokes 𝑥 ⇒ Cancer(𝑥)

∀𝑥, 𝑦 Friends 𝑥, 𝑦 ∧ Smokes 𝑥 ⇒ Smokes(𝑦)

• The statements are not necessarily absolutely true
– How do we associate degrees of belief to statements? 
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[Example from Domingos and Lowd 2009]



Markov Logic Networks

• Convert to clauses

• Associate a potential function for each clause
– Think of each formula as a factor
– Typically, log-linear in all the variables involved

• Ground the logical expressions to all x, y that you 
care about

25
[Example from Domingos and Lowd 2009]

From rules to graphical models

∀𝑥, Smokes 𝑥 ⇒ Cancer(𝑥)

∀𝑥, 𝑦 Friends 𝑥, 𝑦 ∧ Smokes 𝑥 ⇒ Smokes(𝑦)



Markov Logic Networks

• Convert to clauses

• Associate a potential function for each clause
– Think of each formula as a factor
– Typically, log-linear in all the variables involved

• Ground the logical expressions to all x, y that you 
care about
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From rules to graphical models

∀𝑥, Smokes 𝑥 ⇒ Cancer(𝑥)

∀𝑥, 𝑦 Friends 𝑥, 𝑦 ∧ Smokes 𝑥 ⇒ Smokes(𝑦)

Recall:

• A literal is predicate or its negation
• A clause is a disjunction of literals
• Any implication 𝐴 ⇒ 𝐵 is equivalent to ¬𝐴 ∨ 𝐵



Markov Logic Networks

• Convert to clauses

• Associate a potential function for each clause
– Think of each formula as a factor
– Typically, log-linear in all the variables involved

• Ground the logical expressions to all x, y that you 
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From rules to graphical models

∀𝑥, Smokes 𝑥 ⇒ Cancer(𝑥)

∀𝑥, 𝑦 Friends 𝑥, 𝑦 ∧ Smokes 𝑥 ⇒ Smokes(𝑦)

∀𝑥,¬Smokes 𝑥 ∨ Cancer 𝑥

∀𝑥, 𝑦, ¬Friends 𝑥, 𝑦 ∨ ¬Smokes 𝑦 ∨ Cancer(𝑦)

Recall:

• A literal is predicate or its negation
• A clause is a disjunction of literals
• Any implication 𝐴 ⇒ 𝐵 is equivalent to ¬𝐴 ∨ 𝐵
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Markov Logic Networks

• Convert to clauses

• Associate a potential function for each clause
– Think of each formula as a factor
– Could be log-linear in all the variables involved

• Ground the logical expressions to all x, y that you 
care about
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From rules to graphical models

∀𝑥, Smokes 𝑥 ⇒ Cancer(𝑥)

∀𝑥, 𝑦 Friends 𝑥, 𝑦 ∧ Smokes 𝑥 ⇒ Smokes(𝑦)

∀𝑥,¬Smokes 𝑥 ∨ Cancer 𝑥

∀𝑥, 𝑦, ¬Friends 𝑥, 𝑦 ∨ ¬Smokes 𝑦 ∨ Cancer(𝑦)



Example of a ground network
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[Example from Domingos and Lowd 2009]

Each rule is associated with a weight

∀𝑥, Smokes 𝑥 ⇒ Cancer(𝑥)

∀𝑥, 𝑦 Friends 𝑥, 𝑦 ∧ Smokes 𝑥 ⇒ Smokes(𝑦)

∀𝑥,¬Smokes 𝑥 ∨ Cancer 𝑥

∀𝑥, 𝑦, ¬Friends 𝑥, 𝑦 ∨ ¬Smokes 𝑦 ∨ Cancer(𝑦)

1.5

1.0



Weighted formulas →ground network
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[Example from Domingos and Lowd 2009]

∀𝑥, Smokes 𝑥 ⇒ Cancer(𝑥)

∀𝑥, 𝑦 Friends 𝑥, 𝑦 ∧ Smokes 𝑥 ⇒ Smokes(𝑦)

∀𝑥,¬Smokes 𝑥 ∨ Cancer 𝑥

∀𝑥, 𝑦, ¬Friends 𝑥, 𝑦 ∨ ¬Smokes 𝑦 ∨ Cancer(𝑦)

1.5

1.0



Weighted formulas →ground network
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Suppose there are two people in the world: Anna (A), Bob (B)

[Example from Domingos and Lowd 2009]

∀𝑥, Smokes 𝑥 ⇒ Cancer(𝑥)

∀𝑥, 𝑦 Friends 𝑥, 𝑦 ∧ Smokes 𝑥 ⇒ Smokes(𝑦)

∀𝑥,¬Smokes 𝑥 ∨ Cancer 𝑥

∀𝑥, 𝑦, ¬Friends 𝑥, 𝑦 ∨ ¬Smokes 𝑦 ∨ Cancer(𝑦)

1.5

1.0



Weighted formulas →ground network
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Suppose there are two people in the world: Anna (A), Bob (B)

[Example from Domingos and Lowd 2009]

Each predicate gets grounded a random variable, one for each object in the world.

So we will have predicates such as Smokes(A), Cancer(A), Smokes(B), Friends(A, B)…

∀𝑥, Smokes 𝑥 ⇒ Cancer(𝑥)

∀𝑥, 𝑦 Friends 𝑥, 𝑦 ∧ Smokes 𝑥 ⇒ Smokes(𝑦)

∀𝑥,¬Smokes 𝑥 ∨ Cancer 𝑥

∀𝑥, 𝑦, ¬Friends 𝑥, 𝑦 ∨ ¬Smokes 𝑦 ∨ Cancer(𝑦)

1.5

1.0



Weighted formulas →ground network

34

Suppose there are two people in the world: Anna (A), Bob (B)

[Example from Domingos and Lowd 2009]

Smokes(A) Smokes(B)

∀𝑥, Smokes 𝑥 ⇒ Cancer(𝑥)

∀𝑥, 𝑦 Friends 𝑥, 𝑦 ∧ Smokes 𝑥 ⇒ Smokes(𝑦)

∀𝑥,¬Smokes 𝑥 ∨ Cancer 𝑥

∀𝑥, 𝑦, ¬Friends 𝑥, 𝑦 ∨ ¬Smokes 𝑦 ∨ Cancer(𝑦)

1.5

1.0



Weighted formulas →ground network
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Suppose there are two people in the world: Anna (A), Bob (B)

[Example from Domingos and Lowd 2009]

Cancer(A) Cancer(B)

Smokes(A) Smokes(B)

∀𝑥, Smokes 𝑥 ⇒ Cancer(𝑥)

∀𝑥, 𝑦 Friends 𝑥, 𝑦 ∧ Smokes 𝑥 ⇒ Smokes(𝑦)

∀𝑥,¬Smokes 𝑥 ∨ Cancer 𝑥

∀𝑥, 𝑦, ¬Friends 𝑥, 𝑦 ∨ ¬Smokes 𝑦 ∨ Cancer(𝑦)

1.5

1.0



Weighted formulas →ground network
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Suppose there are two people in the world: Anna (A), Bob (B)

[Example from Domingos and Lowd 2009]

Cancer(A) Cancer(B)

Smokes(A) Smokes(B)

Each clause becomes a factor that connects the associated random variables

∀𝑥, Smokes 𝑥 ⇒ Cancer(𝑥)

∀𝑥, 𝑦 Friends 𝑥, 𝑦 ∧ Smokes 𝑥 ⇒ Smokes(𝑦)

∀𝑥,¬Smokes 𝑥 ∨ Cancer 𝑥

∀𝑥, 𝑦, ¬Friends 𝑥, 𝑦 ∨ ¬Smokes 𝑦 ∨ Cancer(𝑦)

1.5

1.0



∀𝑥, Smokes 𝑥 ⇒ Cancer(𝑥)

∀𝑥, 𝑦 Friends 𝑥, 𝑦 ∧ Smokes 𝑥 ⇒ Smokes(𝑦)

∀𝑥,¬Smokes 𝑥 ∨ Cancer 𝑥

∀𝑥, 𝑦, ¬Friends 𝑥, 𝑦 ∨ ¬Smokes 𝑦 ∨ Cancer(𝑦)

1.5

1.0

Weighted formulas →ground network
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Suppose there are two people in the world: Anna (A), Bob (B)

[Example from Domingos and Lowd 2009]

Cancer(A) Cancer(B)

Smokes(A) Smokes(B)



Weighted formulas →ground network
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Suppose there are two people in the world: Anna (A), Bob (B)

[Example from Domingos and Lowd 2009]

Friends(B,A)

Cancer(A) Cancer(B)Friends(A,B)

Smokes(A) Smokes(B)
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1.5

1.0
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Suppose there are two people in the world: Anna (A), Bob (B)

[Example from Domingos and Lowd 2009]

Friends(B,A)

Cancer(A) Cancer(B)Friends(A,B)

Smokes(A) Smokes(B)



Weighted formulas →ground network
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Suppose there are two people in the world: Anna (A), Bob (B)

[Example from Domingos and Lowd 2009]

Friends(B,A)

Cancer(A) Cancer(B)Friends(A,B)

Smokes(A) Smokes(B)Friends(A,A) Friends(B,B)

∀𝑥, Smokes 𝑥 ⇒ Cancer(𝑥)

∀𝑥, 𝑦 Friends 𝑥, 𝑦 ∧ Smokes 𝑥 ⇒ Smokes(𝑦)

∀𝑥,¬Smokes 𝑥 ∨ Cancer 𝑥
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1.5

1.0



∀𝑥, Smokes 𝑥 ⇒ Cancer(𝑥)

∀𝑥, 𝑦 Friends 𝑥, 𝑦 ∧ Smokes 𝑥 ⇒ Smokes(𝑦)

∀𝑥,¬Smokes 𝑥 ∨ Cancer 𝑥

∀𝑥, 𝑦, ¬Friends 𝑥, 𝑦 ∨ ¬Smokes 𝑦 ∨ Cancer(𝑦)

1.5

1.0

Weighted formulas →ground network
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Suppose there are two people in the world: Anna (A), Bob (B)

[Example from Domingos and Lowd 2009]

Friends(B,A)

Cancer(A) Cancer(B)Friends(A,B)

Smokes(A) Smokes(B)Friends(A,A) Friends(B,B)



Markov logic: Templated MRFs
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[Example from Domingos and Lowd 2009]

World = {Anna (A), Bob (B)}
∀𝑥, Smokes 𝑥 ⇒ Cancer(𝑥)

∀𝑥, 𝑦 Friends 𝑥, 𝑦 ∧ Smokes 𝑥 ⇒ Smokes(𝑦)

1.5

1.0



Markov logic: Templated MRFs
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[Example from Domingos and Lowd 2009]

Friends(B,A)

Cancer(A) Cancer(B)Friends(A,B)

Smokes(A) Smokes(B)Friends(A,A) Friends(B,B)

World = {Anna (A), Bob (B)}
∀𝑥, Smokes 𝑥 ⇒ Cancer(𝑥)

∀𝑥, 𝑦 Friends 𝑥, 𝑦 ∧ Smokes 𝑥 ⇒ Smokes(𝑦)

Short hand notation for a large factor graph

1.5

1.0



Markov logic: Templated MRFs
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[Example from Domingos and Lowd 2009]

World = {Anna (A), Bob (B)}
∀𝑥, Smokes 𝑥 ⇒ Cancer(𝑥)

∀𝑥, 𝑦 Friends 𝑥, 𝑦 ∧ Smokes 𝑥 ⇒ Smokes(𝑦)

Short hand notation for a large factor graph

1.5

1.0

𝑃 assignment ∝ exp -
>

𝑤>𝑛>(assignment)



Markov logic: Templated MRFs
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[Example from Domingos and Lowd 2009]

World = {Anna (A), Bob (B)}
∀𝑥, Smokes 𝑥 ⇒ Cancer(𝑥)

∀𝑥, 𝑦 Friends 𝑥, 𝑦 ∧ Smokes 𝑥 ⇒ Smokes(𝑦)

Short hand notation for a large factor graph

1.5

1.0

𝑃 assignment ∝ exp -
>

𝑤>𝑛>(assignment)

Weight for the 𝑖+, formula



Markov logic: Templated MRFs
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[Example from Domingos and Lowd 2009]

World = {Anna (A), Bob (B)}
∀𝑥, Smokes 𝑥 ⇒ Cancer(𝑥)

∀𝑥, 𝑦 Friends 𝑥, 𝑦 ∧ Smokes 𝑥 ⇒ Smokes(𝑦)

Short hand notation for a large factor graph

1.5

1.0

𝑃 assignment ∝ exp -
>

𝑤>𝑛>(assignment)

Weight for the 𝑖+, formula

Number of factors where the 𝑖+,
formula holds (i.e. number of 
true groundings for the formula)



Markov Logic Networks

• Convert to clauses

• Ground the logical expressions to all variables that 
you care about

• Associate a potential function for each clause
– Each formula is a factor

• Could be log-linear in all the variables involved

47
[Example from Domingos and Lowd 2009]

From rules to graphical models



Markov Logic: A different perspective

• Standard logic: The KB constraints the set of possible worlds
– The rules in the knowledge base are hard constraints that rule out 

certain assignments to the predicates

• Markov logic: Each rule is a soft constraint
– Worlds that violate these rules are allowed, but improbable

– Each formula has a weight, formulas with higher weights are stronger 
constraints
• Formulas with infinite weights are hard constraints

– The probability of a world (i.e an assignment to the random variables) 
is proportional to exp ∑weights of clauses it satisIies
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Suppose we have a knowledge base (KB) 
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Suppose we have a knowledge base (KB) 

∀𝑥, Smokes 𝑥 ⇒ Cancer(𝑥)

∀𝑥, 𝑦 Friends 𝑥, 𝑦 ∧ Smokes 𝑥 ⇒ Smokes(𝑦)

In a world where Smokes(Bob) and Friends(Anna, Bob) holds, 
Cancer(Anna) is forced to be true



Markov Logic: A different perspective

• Standard logic: The KB constraints the set of possible worlds
– The rules in the knowledge base are hard constraints that rule out 

certain assignments to the predicates

• Markov logic: Each rule is a soft constraint
– Worlds that violate these rules are allowed, but improbable

– Each formula has a weight, formulas with higher weights are stronger 
constraints
• Formulas with infinite weights are hard constraints

– The probability of a world (i.e an assignment to the random variables) 
is proportional to exp ∑weights of clauses it satisIies
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Suppose we have a knowledge base (KB) 



Learning in MLNs

Two kinds of learning (true for all formulations, actually)

1. Given a network/collection of formulas, learn the 
weights that define the potential functions
– Use maximum likelihood method
– Other training methods exist 

• Approximate the likelihood with pseudo-likelihood

2. Learn the formulas themselves
– Much harder
– Uses ideas from inductive logic programming
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Summary: Markov Logic Networks

• Specifies a undirected graphical model template
– “Unroll” the network to get the full MRF

• And then use any standard graphical model algorithms
– Requires us to ground the network

• There has been work on inference at the first order level too, though

– Note: Each formula corresponds to a factor in the factor graph
– Other ways of specifying templates exist

• Creates a model for the joint distribution 
– There is no separation of the variables as “inputs” and “outputs”
– Unlike conditional random fields, for example
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