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So far...

We discussed sequence labeling tasks:

e HMM: Hidden Markov Models

* MEMM: Maximum Entropy Markov Models
* CRF: Conditional Random Fields

All these models use a linear chain structure to
describe the interactions between random variables.
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This lecture

Graphical models

— Directed: Bayesian Networks
— Undirected: Markov Networks (Markov Random Field)

* Representations
* Inference
* Learning



Probabilistic Graphical Models

* Languages that represent probability distributions over multiple random
variables
— Directed or undirected graphs

* Encodes conditional independence assumptions
* Or equivalently, encodes factorization of joint probabilities.

* General machinery for

— Algorithms for computing marginal and conditional probabilities
* Recall that we have been looking at most probable states so far
* Exploiting graph structure

— An “inference engine”

— Canintroduce prior probability distributions
* Because parameters are also random variables



Bayesian Network

Decompose joint probability via a directed acyclic graph
— Nodes represent random variables
— Edges represent conditional dependencies
— Each node is associated with a conditional probability table

P(z1,23,* 2n) = np(zi | Parents(z;))
L
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Decompose joint probability via a directed acyclic graph
— Nodes represent random variables
— Edges represent conditional dependencies
— Each node is associated with a conditional probability table

P(zq,25, " 2,) = l_[P(Zl- | Parents(zl-))
i

P(B)
Burglary . Earthquake

002 Joint probability
P(B,E,A ], M) =

B E |P(AIB,E)

T | sl P(B)-P(E)-P(A|B,E)-P(JIA)-P(M|A)
F T .29

F F 001

P(JIA)

CED HE
E| 0

A [P(MIA)

.70
0l

m -

Example from Russell and Norvig



Bayesian Network

Decompose joint probability via a directed acyclic graph
— Nodes represent random variables
— Edges represent conditional dependencies
— Each node is associated with a conditional probability table

P(z,23,: zp) = l_[P(Zl- | Parents(z;))
i
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Bayesian Network
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We can query the model about any of the variables now

002 Joint probability
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there is an earthquake?” the probability that there was a burglary?”

Example from Russell and Norvig



Bayesian Network
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002 Joint probability
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Bayesian Network
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 “What is the probability that Mary calls if * “If John called and Mary did not call, what is
there is an earthquake?” the probability that there was a burglary?”
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Independence Assumptions of a BN

If X,Y,Z are random variables, we write
e X 1Y tosay “Xisindependent of Y” and
e X1Y|Ztosay “Xisindependent of Y given Z”

Example from Daphne Koller

12



Independence Assumptions of a BN

If X,Y,Z are random variables, we write
e X 1Ytosay“Xisindependent of Y’ and
e X1Y|Ztosay “Xisindependent of Y given Z”
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Independence Assumptions of a BN

If X,Y,Z are random variables, we write
e X 1Ytosay“Xisindependent of Y’ and
e X1Y|Ztosay “Xisindependent of Y given Z”

Local independencies: A node is independent with its non-descendants given

its parents
X; 1L NonDescendants(X;) | Parents(X;)
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Independence Assumptions of a BN

If X,Y,Z are random variables, we write
e X 1Ytosay“Xisindependent of Y’ and
e X1Y|Ztosay “Xisindependent of Y given Z”

Local independencies: A node is independent with its non-descendants given
its parents
X; 1L NonDescendants(X;) | Parents(X;)
Examples:
— Flu L Hayfever | Season
— Congestion L Season | Flu, Hayfever
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Independence Assumptions of a BN

If X,Y,Z are random variables, we write
e X 1Ytosay“Xisindependent of Y’ and
e X1Y|Ztosay “Xisindependent of Y given Z”

Local independencies: A node is independent with its non-descendants given
its parents
X; 1L NonDescendants(X;) | Parents(X;)
Examples:
— Flu L Hayfever | Season
— Congestion L Season | Flu, Hayfever

Parents of a node shield it from influence of
ancestors and non-descendants...

... but information about descendants can
influence beliefs about a node.
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Independence Assumptions of a BN

If X,Y,Z are random variables, we write
e X 1Ytosay“Xisindependent of Y’ and
e X1Y|Ztosay “Xisindependent of Y given Z”

Topological independencies: A node is independent of all other nodes given its
parents, children and children’s parents, together called the node’s Markov
Blanket

X; L X; | MarkovBlanket(X;)
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Independence Assumptions of a BN

If X,Y,Z are random variables, we write
e X 1Ytosay“Xisindependent of Y’ and
e X1Y|Ztosay “Xisindependent of Y given Z”

Topological independencies: A node is independent of all other nodes given its
parents, children and children’s parents, together called the node’s Markov
Blanket

X; L X; | MarkovBlanket(X;)

Example: The Markov blanket of Hayfever is the set {Season, Congestion, Flu}. If
we know these variables, Hayfever is independent of MusclePain
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Independence Assumptions of a BN

If X,Y,Z are random variables, we write
e X 1Ytosay“Xisindependent of Y’ and
e X1Y|Ztosay “Xisindependent of Y given Z”

Topological independencies: A node is independent of all other nodes given its
parents, children and children’s parents, together called the node’s Markov
Blanket

X; L X; | MarkovBlanket(X;)

Example: The Markov blanket of Hayfever is the set {Season, Congestion, Flu}. If
we know these variables, Hayfever is independent of MusclePain

The Markov blanket of a node shields it from
influence of any other node

19
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Independence Assumptions of a BN

e Local independencies: A node is independent
with its non-descendants given its parents.

(X; L NonDescendants(X;)|Parents(X;))

* Topological independencies: A node is
independent of all other nodes given its

parents, children and children’s parents—that
is given its Markov Blanket.

(FLH|S)
(CLS|FH) * More general notions of independencies exist.
(M 1L H,C|F)

(M L C|F)

20
Example from Daphne Koller



Independence Assumptions of a BN

e Local independencies: A node is independent
with its non-descendants given its parents.

(X; L NonDescendants(X;)|Parents(X;))

* Topological independencies: A node is
independent of all other nodes given its

parents, children and children’s parents—that
is given its Markov Blanket.

(FLH|S)
(CLS|FH) * More general notions of independencies exist.
(M 1L H,C|F)

M1C|F
( | ) Where do the independence assumptions
come from?
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Independence Assumptions of a BN

e Local independencies: A node is independent
with its non-descendants given its parents.

(X; L NonDescendants(X;)|Parents(X;))

* Topological independencies: A node is
independent of all other nodes given its

parents, children and children’s parents—that
is given its Markov Blanket.

(FLH|S)
(CLS|FH) * More general notions of independencies exist.
(M 1L H,C|F)

M1C|F
( | ) Where do the independence assumptions
come from?

Domain knowledge

22
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We have seen Bayesian networks before

* The naive Bayes model is a simple Bayesian Network

— The naive Bayes assumption is an example of an
independence assumption

* The hidden Markov model is another Bayesian
network

23



Inference with Bayesian networks

Edges in a BN are typically interpreted as being causal, i.e., the parents of a
node causally influencing them

24



Inference with Bayesian networks

Edges in a BN are typically interpreted as being causal, i.e., the parents of a
node causally influencing them

The general inference problem with Bayesian networks: Find the probability
of unknown variables, having observed values of some others.
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Inference with Bayesian networks

Edges in a BN are typically interpreted as being causal, i.e., the parents of a
node causally influencing them

The general inference problem with Bayesian networks: Find the probability
of unknown variables, having observed values of some others.

Example: If we have a BN with variables X4, X5, X3 and we wish to compute

the probability of X given X3
P(XerB)

P(X3)

P(X1|X3)=
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Inference with Bayesian networks

Edges in a BN are typically interpreted as being causal, i.e., the parents of a
node causally influencing them

The general inference problem with Bayesian networks: Find the probability
of unknown variables, having observed values of some others.

Example: If we have a BN with variables X4, X5, X3 and we wish to compute

the probability of X given X3
P(X1,X3)  Yx, P(X1, X5, X3)

P(XB) - ZXl,X?,P(Xl'XZJXS)

P(X1|X3)=
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Inference with Bayesian networks

Edges in a BN are typically interpreted as being causal, i.e., the parents of a
node causally influencing them

The general inference problem with Bayesian networks: Find the probability
of unknown variables, having observed values of some others.

Example: If we have a BN with variables X4, X5, X3 and we wish to compute

the probability of X given X3
P(X1,X3)  Yx, P(X1, X5, X3)

P(XB) - ZXl,X?,P(Xl'XZJXS)

P(X1|X3)=

Bad News: Inference in a Bayesian network is #P hard (i.e., as hard as counting the
number of satisfying solutions of a CNF formula)
More bad news: Even approximate inference in a Bayesian network is NP-hard!

Good news: Efficient algorithms exist for networks with special structures.

28



Causality may not be easy to determine

Sometimes Bayes nets cannot represent the independence
relations we want conveniently
— Eg: Segmenting an image by assigning a label to each pixel

29



Causality may not be easy to determine

Sometimes Bayes nets cannot represent the independence
relations we want conveniently
— Eg: Segmenting an image by assigning a label to each pixel
e Say, we want adjacent labels to influence each other

X, =X, — ’\\}(4>—’ X5
| Voo v
X ‘ Xs; —> Xy > X
| I

X1 —"(\Xlz/—’ Xz = X1y = X5
' } | ! |
X5 = X7 = Xig = X9 = Xy

Example from Kevin Murphy 30



Causality may not be easy to determine

Sometimes Bayes nets cannot represent the independence
relations we want conveniently
— Eg: Segmenting an image by assigning a label to each pixel
e Say, we want adjacent labels to influence each other

/7N
X, = X5 — Xe )= X Two problems:
' | 1 | 1. What is the correct direction of arrows?
X > Xz —{ Xy > Xuo
| 1 1 | ) 2. For any choice of the arrows, strange
Xu, (X1 > Xz > X1a > Xis dependencies show up. Xg is independent
| \‘1’/ | } | of everything given its Markov blanket

Xy = Xi7 = Xis = X19 = Xog (other circled nodes here)

Example from Kevin Murphy 31



From directed to undirected networks

Sometimes Bayes nets cannot represent the independence
relations we want conveniently.
— Eg: Segmenting an image by assigning a label to each pixel
e Say, we want adjacent labels to influence each other

X, = Xy — f\X4/’—> X5 X, — Xy @X4 — X5
VoY | T |

Xe ' Xs; —’ Xo =~ Xy — X ‘@Xs X0
A A A | |
X1 =X~ X3 > X = Xis X1 — X @ X1 — Xi5
' b | | ' | | | |

Example from Kevin Murphy

32



Undirected Graphical Models

a.k.a Markov Random Fields / Markov Networks

e Another way of defining conditional independence

e @General structure
— Nodes are random variables e e
— Edges (hyper-edges) define dependencies

* The nodes in a complete subgraph form a clique.

Cliques:
{AB}, {BC}, {CD}, {AD}

33



Undirected Graphical Models

a.k.a Markov Random Fields / Markov Networks

e Another way of defining conditional independence

e @General structure
— Nodes are random variables e e
— Edges (hyper-edges) define dependencies

* The nodes in a complete subgraph form a clique.

Cliques:
{AB}, {BC}, {CD}, {AD}

P(x) = 1 H fo(x0) P(4,B,C,D) = %fl(ApB)fg(B,C)
ceCliques f3(C, D) f4s(A, D)

This is a Gibbs distribution if all factors are positive 34



Undirected Graphical Models

a.k.a Markov Random Fields / Markov Networks

e Another way of defining conditional independence

e @General structure
— Nodes are random variables e e
— Edges (hyper-edges) define dependencies

* The nodes in a complete subgraph form a clique.

Cligues:
The joint probability decouples over {AS} {BC}, {CD}, {AD}
cligues. Every clique x. associated with a ’ ’ ’
potential function f(x.)
1 P(A, B,C,D) = — (A, B)f2(B,C
P(X) = — H fC(XC) ( y =y ) Zfl( ’ )f2( ) )
ceCliques f3(C, D) fi(A, D)

This is a Gibbs distribution if all factors are positive 35




Independence Assumptions of a MRF

* Local independencies: A node is
independent of all other nodes given its
neighbors.

Q e * Global independencies: If X, Y, Z are sets
of nodes, X is conditionally independent
e of Y given Z if removing all nodes of Z

removes all paths from Xto Y

(AL C|B,D)
(BLD|ACQC)

36



Independence Assumptions of a MRF

@é@ |

(AL C|B,D)
(BLD|ACQC)

Local independencies: A node is
independent of all other nodes given its
neighbors.

Global independencies: If X, Y, Z are sets
of nodes, X is conditionally independent
of Y given Z if removing all nodes of Z
removes all paths from Xto Y

Where do the independence assumptions
come from?
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Independence Assumptions of a MRF

@é@ |

(AL C|B,D)
(BLD|ACQC)

Local independencies: A node is
independent of all other nodes given its
neighbors.

Global independencies: If X, Y, Z are sets
of nodes, X is conditionally independent
of Y given Z if removing all nodes of Z
removes all paths from Xto Y

Where do the independence assumptions
come from?

Domain knowledge

38



MRF to Factor graph

Py(x) H f(x¢,0)

ceCliques
Normalize:
1
P(x)=——= || [0
Z) .
ceCliques

where Z(Q):Z H f(xe,0)

x ceCliques

Z: Called the partition function, sum over all
assignments to the random variables

f(x., 1) is often written as exp(u' x.)
Log-linear model

39



Factor graphs

Py(x) H f(x¢,0)

ceCliques
Normalize:
1
Pp(x) = W H f(xc,0)
ceCliques

where Z(@) =3 [[  f(xe:0)

x ceCliques

Z: Called the partition function, sum over all
assignments to the random variables

f(x., W) is often written as exp(u' x.)
Log-linear model

Factor graph: Makes the factorization
explicit, factors instead of cliques

?

Which
cligues:

40



Factor graphs

Py(x) H f(x¢,0)

o Factors
Normalize:
1
Pp(x) = W H f(xc,0)

°c Fac!ors
where Z(0)=3" [ f(xe:6)

€
Factors

Z: Called the partition function, sum over all
assignments to the random variables

f(x., W) is often written as exp(u' x.)
Log-linear model

Factor graph: Makes the factorization
explicit, factors instead of cliques

41



Factor graphs

Factor graph: Makes the factorization
Py(x) H f(x¢,0) grap

explicit, factors instead of cliques
ce

Factors
Normalize:

P =g I f6xed

°c Fa'c!ors
where z(6)=>" J[ f(xc0)

€
Factors

Z: Called the partition function, sum over all 0 a e

assignments to the random variables

f(x., 1) is often written as exp(u' x.)
Log-linear model

. O 20
P(X) — Zfa(xlax2ax4)fb(x2ax3ax5)fc(£4ax5)

42



Comments about MRFs

* Connection to statistical physics
— ldentical to Boltzmann distribution in energy based models
— Probability of a system existing in a state:

Py(x) = de) exp <— ZE(XC))

Z: Zustandssumme, “sum over states”, more
commonly called the partition function

43



Comments about MRFs

* Connection to statistical physics
— ldentical to Boltzmann distribution in energy based models
— Probability of a system existing in a state:

1 — TN E f cli
N ner oT Clique C
Py(x) = —exp | — S E(x.)) Slis e Gl
Z(6) existing in state x.
Z: Zustandssumme, “sum over states”, more
commonly called the partition function

44



History of the Markov random field

Ernst Ising [1925] introduced a model to explain permanent

ferromagnetism in ferromagnets below a certain temperature
— Early versions of the idea by Lenz [1920]

Ising’s original model:
— Suppose we have a chain of points, each of which can be associated

with a certain spin (either up or down)
1 7
S S

— The goal: To describe a probability measure over configurations of
spins at a specified temperature

— lIsing defined the energy of a configuration as being locally factorized

over neighboring points
45



Comments about MRFs

Connection to statistical physics
— ldentical to Boltzmann distribution in energy based models
— Probability of a system existing in a state:

1 - E fcli
\ nergy or clique C
Py(x) = —exp | — S E(x.)) Slis e Gl
Z(6) existing in state x.
Z: Zustandssumme, “sum over states”, more
commonly called the partition function

If X is dependent on all its neighbors:

— If x can be in one of two states (binary), Ising model
— If x can be in one of more than two states (multiclass), Potts model

X —X X — X5

X — Xu X —Xh—,
| | | |

X6 — Xz — Xis — X9 — Xno 46



Bayesian Networks vs. Markov Networks

 Both networks represent
— A set of conditional independence relations
— i.e, a skeleton that shows how a joint probability distribution is factorized

 Both networks have theorems about equivalence between
conditional independence and joint probability factorization

* Converting between these representations
— A BN can be converted into an MRF with a normalization constant one

— A MRF can also be converted into a BN, but this may lead to a very large
network

See the chapter on undirected graphical models in Koller and Friedman’s book
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Computational questions

* Learning model parameters
* Learning independence assumptions

* |Inference

48



Learning questions

Two kinds of learning questions:

1. Structure learning: Given data, find independence
assumptions to design an MRF (or a BN)

— Adifficult problem, we will not see a lot of this

2. Learning model parameters: Given data and a structure, find
the parameters that define the factor potentials

—  We will see more of this as we go along

49



Inference in graphical models

(more on this in future classes)

In general, compute probability of a subset of states

— P(x,), for some subsets of random variables x,

* Note: So far, we have generally considered the equivalent of
argmax, P(x)

50



Inference in graphical models

(more on this in future classes)

In general, compute probability of a subset of states

— P(x,), for some subsets of random variables x,
* Note: So far, we have generally considered the equivalent of
argmax, P(x)

* Exact inference
 “Approximate” inference

51



Q. @ (3)
Inference in graphical models

(more on this in future lectures) e e

In general, compute probability of a subset of states

— P(x,), for some subsets of random variables x,

* Exact inference
— Variable elimination
* Marginalize by summing out variables in a “good” order
* Think about what we did for Viterbi ~ What makes an ordering good?
— Belief propagation (exact only for graphs without loops)

* Nodes pass messages to each other about their estimate of what the
neighbor’s state should be

— Generally efficient for trees, sequences (and maybe other graphs too)

 “Approximate” inference
52



Q. @ (3)
Inference in graphical models

(more on this in future lectures) e e

In general, compute probability of a subset of states
— P(x,), for some subsets of random variables x,

 Exact inference NP-hardin general, works for simple graphs

 “Approximate” inference

— Markov Chain Monte Carlo
* Gibbs Sampling/Metropolis-Hastings
— Variational algorithms

* Frame inference as an optimization problem, perturb it to an approximate
one and solve the approximate problem

— Loopy Belief propagation
* Run BP and hope it works!

— The not-so-good news: Approximate inference is also intractable!
53



Summary

* Graphical models are languages that represent
independence assumptions

— We saw Bayesian networks and Markov networks
— So far, both networks represent joint distributions

 We will use the factor graph notation across the rest of
the semester

* Coming up:
— Markov logic: A language for defining Markov networks
— Conditional models
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