
CS 6355: Structured Prediction

Graphical Models
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So far…
We discussed sequence labeling tasks:
• HMM: Hidden Markov Models
• MEMM: Maximum Entropy Markov Models
• CRF: Conditional Random Fields
All these models use a linear chain structure to 
describe the interactions between random variables. 
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This lecture

Graphical models
– Directed: Bayesian Networks
– Undirected: Markov Networks (Markov Random Field)

• Representations
• Inference
• Learning
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Probabilistic Graphical Models

• Languages that represent probability distributions over multiple random 
variables
– Directed or undirected graphs

• Encodes conditional independence assumptions
• Or equivalently, encodes factorization of joint probabilities.

• General machinery for
– Algorithms for computing marginal and conditional probabilities 

• Recall that we have been looking at most probable states so far
• Exploiting graph structure

– An “inference engine” 

– Can introduce prior probability distributions
• Because parameters are also random variables
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Decompose joint probability via a directed acyclic graph
– Nodes represent random variables
– Edges represent conditional dependencies
– Each node is associated with a conditional probability table

𝑃 𝑧!, 𝑧", ⋯ 𝑧# =&
$

𝑃 𝑧$ ∣ Parents 𝑧$

Bayesian Network
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Joint probability
𝑃 𝐵, 𝐸, 𝐴, 𝐽,𝑀 =

𝑃 𝐵 ⋅ 𝑃 𝐸 ⋅ 𝑃 𝐴 𝐵, 𝐸 ⋅ 𝑃 𝐽 𝐴 ⋅ 𝑃 𝑀 𝐴
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Bayesian Network
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• “What is the probability that Mary calls if 
there is an earthquake?”

We can query the model about any of the variables now

• “If John called and Mary did not call, what is 
the probability that there was a burglary?”
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Independence Assumptions of a BN

If X, Y, Z are random variables, we write 
• X ⊥ 𝑌 to say “X is independent of Y” and 
• X ⊥ 𝑌 ∣ 𝑍 to say “X is independent of Y given 𝑍”
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If X, Y, Z are random variables, we write 
• X ⊥ 𝑌 to say “X is independent of Y” and 
• X ⊥ 𝑌 ∣ 𝑍 to say “X is independent of Y given 𝑍”

Parents of a node shield it from influence of 
ancestors and non-descendants…

… but information about descendants can 
influence beliefs about a node.



Independence Assumptions of a BN

Topological independencies: A node is independent of all other nodes given its 
parents, children and children’s parents, together called the node’s Markov 
Blanket

𝑋$ ⊥ 𝑋1 ∣ MarkovBlanket 𝑋$
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If X, Y, Z are random variables, we write 
• X ⊥ 𝑌 to say “X is independent of Y” and 
• X ⊥ 𝑌 ∣ 𝑍 to say “X is independent of Y given 𝑍”

The Markov blanket of a node shields it from 
influence of any other node



• Local independencies: A node is independent 
with its non-descendants given its parents.

• Topological independencies:  A node is 
independent of all other nodes given its 
parents, children and children’s parents—that 
is given its Markov Blanket.

• More general notions of independencies exist. 

Independence Assumptions of a BN
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Where do the independence assumptions 
come from? 

Domain knowledge



We have seen Bayesian networks before

• The naïve Bayes model is a simple Bayesian Network
– The naïve Bayes assumption is an example of an 

independence assumption

• The hidden Markov model is another Bayesian 
network
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Inference with Bayesian networks

Edges in a BN are typically interpreted as being causal, i.e., the parents of a 
node causally influencing them

The general inference problem with Bayesian networks: Find the probability 
of unknown variables, having observed values of some others. 

Example: If we have a BN with variables 𝑋!, 𝑋", 𝑋2 and we wish to compute 
the probability of 𝑋! given 𝑋2

𝑃 𝑋! 𝑋2 =
𝑃 𝑋!, 𝑋2
𝑃(𝑋2)

=
∑3! 𝑃 𝑋!, 𝑋", 𝑋2
∑3",3# 𝑃 𝑋!, 𝑋", 𝑋2
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Bad News: Inference in a Bayesian network is #𝑃 hard (i.e., as hard as counting the 
number of satisfying solutions of a CNF formula)

More bad news: Even approximate inference in a Bayesian network is NP-hard!

Good news: Efficient algorithms exist for networks with special structures.



Causality may not be easy to determine

Sometimes Bayes nets cannot represent the independence 
relations we want conveniently

– Eg: Segmenting an image by assigning a label to each pixel

Two problems:
1. What is the right direction of arrows?

2. For any choice of the arrows, strange 
dependencies show up. X8 is 
independent of everything given its 
Markov blanket (other circled nodes 
here) 

29
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Causality may not be easy to determine

Example from Kevin Murphy

Two problems:
1. What is the correct direction of arrows?

2. For any choice of the arrows, strange 
dependencies show up. X8 is independent 
of everything given its Markov blanket 
(other circled nodes here) 



From directed to undirected networks

Sometimes Bayes nets cannot represent the independence 
relations we want conveniently.

– Eg: Segmenting an image by assigning a label to each pixel
• Say, we want adjacent labels to influence each other

Example from Kevin Murphy 32



Undirected Graphical Models

• Another way of defining conditional independence

• General structure
– Nodes are random variables
– Edges (hyper-edges) define dependencies

• The nodes in a complete subgraph form a clique.

a.k.a Markov Random Fields / Markov Networks

33
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P (x) =
1

Z

Y

c2Cliques
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P (A,B,C,D) =
1

Z
f1(A,B)f2(B,C)

f3(C,D)f4(A,D)

This is a Gibbs distribution if all factors are positive



Undirected Graphical Models

• Another way of defining conditional independence

• General structure
– Nodes are random variables
– Edges (hyper-edges) define dependencies

• The nodes in a complete subgraph form a clique.

a.k.a Markov Random Fields / Markov Networks

The joint probability decouples over 
cliques. Every clique xc associated with a 
potential function f(xc)
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P (x) =
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Z

Y
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P (A,B,C,D) =

1

Z
f1(A,B)f2(B,C)

f3(C,D)f4(A,D)

This is a Gibbs distribution if all factors are positive
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• Local independencies: A node is 
independent of all other nodes given its 
neighbors.

• Global independencies: If X, Y, Z are sets 
of nodes, X is conditionally independent 
of Y given Z if removing all nodes of Z 
removes all paths from X to Y

Independence Assumptions of a MRF

36



Independence Assumptions of a MRF

Where do the independence assumptions 
come from? 
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Domain knowledge
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MRF to Factor graph
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Z: Called the partition function, sum over all 
assignments to the random variables

Normalize:

where

f(xc, µ) is often written as exp(µT xc)
Log-linear model



Factor graphs
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Z: Called the partition function, sum over all 
assignments to the random variables

Normalize:

where

Factor graph: Makes the factorization 
explicit, factors instead of cliques
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f(xc, µ) is often written as exp(µT xc)
Log-linear model
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Factor graphs
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Z: Called the partition function, sum over all 
assignments to the random variables

Normalize:

where

Factor graph: Makes the factorization 
explicit, factors instead of cliques

Factors

Factors

Factors

f(xc, µ) is often written as exp(µT xc)
Log-linear model

?



Factor graphs

1 2 3

4 5
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Z: Called the partition function, sum over all 
assignments to the random variables

Normalize:

where

Factor graph: Makes the factorization 
explicit, factors instead of cliques

Factors

Factors

Factors

f(xc, µ) is often written as exp(µT xc)
Log-linear model

P (x) =
1

Z
fa(x1, x2, x4)fb(x2, x3, x5)fc(x4, x5)

?



Comments about MRFs

• Connection to statistical physics
– Identical to Boltzmann distribution in energy based models
– Probability of a system existing in a state: 

• If x is dependent on all its neighbors:
– If x can be in one of two states (binary), Ising model
– If x can be in one of more than two states (multiclass), Potts model

Z: Zustandssumme, “sum over states”, more 
commonly called the partition function
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History of the Markov random field

Ernst Ising [1925] introduced a model to explain permanent 
ferromagnetism in ferromagnets below a certain temperature

– Early versions of the idea by Lenz [1920]

Ising’s original model: 
– Suppose we have a chain of points, each of which can be associated 

with a certain spin (either up or down)

– The goal: To describe a probability measure over configurations of 
spins at a specified temperature

– Ising defined the energy of a configuration as being locally factorized 
over neighboring points
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Comments about MRFs

Connection to statistical physics
– Identical to Boltzmann distribution in energy based models
– Probability of a system existing in a state: 

If x is dependent on all its neighbors:
– If x can be in one of two states (binary), Ising model
– If x can be in one of more than two states (multiclass), Potts model

Energy of clique c 
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Z: Zustandssumme, “sum over states”, more 
commonly called the partition function
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Bayesian Networks vs. Markov Networks

• Both networks represent
– A set of conditional independence relations
– i.e, a skeleton that shows how a joint probability distribution is factorized

• Both networks have theorems about equivalence between 
conditional independence and joint probability factorization

• Converting between these representations
– A BN can be converted into an MRF with a normalization constant one
– A MRF can also be converted into a BN, but this may lead to a very large 

network

See the chapter on undirected graphical models in Koller and Friedman’s book
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Computational questions

• Learning model parameters

• Learning independence assumptions

• Inference

48



Learning questions

Two kinds of learning questions:

1. Structure learning: Given data, find independence 
assumptions to design an MRF (or a BN)
– A difficult problem, we will not see a lot of this

2. Learning model parameters: Given data and a structure, find 
the parameters that define the factor potentials
– We will see more of this as we go along
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Inference in graphical models

In general, compute probability of a subset of states
– P(xA), for some subsets of random variables xA

• Note: So far, we have generally considered the equivalent of
argmaxx P(x)

• Exact inference
• “Approximate” inference

50

(more on this in future classes)
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Inference in graphical models

In general, compute probability of a subset of states
– P(xA), for some subsets of random variables xA

• Exact inference
– Variable elimination

• Marginalize by summing out variables in a “good” order 
• Think about what we did for Viterbi

– Belief propagation (exact only for graphs without loops)
• Nodes pass messages to each other about their estimate of what the 

neighbor’s state should be
– Generally efficient for trees, sequences (and maybe other graphs too)

• “Approximate” inference
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What makes an ordering good?
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Inference in graphical models

In general, compute probability of a subset of states
– P(xA), for some subsets of random variables xA

• Exact inference 
• “Approximate” inference

– Markov Chain Monte Carlo 
• Gibbs Sampling/Metropolis-Hastings

– Variational algorithms
• Frame inference as an optimization problem, perturb it to an approximate 

one and solve the approximate problem
– Loopy Belief propagation

• Run BP and hope it works!
– The not-so-good news: Approximate inference is also intractable!

53

NP-hard in general, works for simple graphs
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Summary

• Graphical models are languages that represent 
independence assumptions
– We saw Bayesian networks and Markov networks
– So far, both networks represent joint distributions

• We will use the factor graph notation across the rest of 
the semester

• Coming up: 
– Markov logic: A language for defining Markov networks
– Conditional models

54


