Graphical Models

CS 6355: Structured Prediction

So far...

We discussed sequence labeling tasks:

- HMM: Hidden Markov Models
- MEMM: Maximum Entropy Markov Models
- CRF: Conditional Random Fields

All these models use a linear chain structure to describe the interactions between random variables.

This lecture

Graphical models

- Directed: Bayesian Networks
- Undirected: Markov Networks (Markov Random Field)
- Representations
- Inference
- Learning

Probabilistic Graphical Models

- Languages that represent probability distributions over multiple random variables
- Directed or undirected graphs
- Encodes conditional independence assumptions
- Or equivalently, encodes factorization of joint probabilities.
- General machinery for
- Algorithms for computing marginal and conditional probabilities
- Recall that we have been looking at most probable states so far
- Exploiting graph structure
- An "inference engine"
- Can introduce prior probability distributions
- Because parameters are also random variables

Bayesian Network

Decompose joint probability via a directed acyclic graph

- Nodes represent random variables
- Edges represent conditional dependencies
- Each node is associated with a conditional probability table

$$
P\left(z_{1}, z_{2}, \cdots z_{n}\right)=\prod_{i} P\left(z_{i} \mid \text { Parents }\left(z_{i}\right)\right)
$$

Bayesian Network

Decompose joint probability via a directed acyclic graph

- Nodes represent random variables
- Edges represent conditional dependencies
- Each node is associated with a conditional probability table

$$
P\left(z_{1}, z_{2}, \cdots z_{n}\right)=\prod_{i} P\left(z_{i} \mid \operatorname{Parents}\left(z_{i}\right)\right)
$$

Bayesian Network

Decompose joint probability via a directed acyclic graph

- Nodes represent random variables
- Edges represent conditional dependencies
- Each node is associated with a conditional probability table

$$
P\left(z_{1}, z_{2}, \cdots z_{n}\right)=\prod_{i} P\left(z_{i} \mid \operatorname{Parents}\left(z_{i}\right)\right)
$$

$$
\begin{aligned}
& \text { Joint probability } \\
& \qquad P(B, E, A, J, M)= \\
& \qquad P(B) \cdot P(E) \cdot P(A \mid B, E) \cdot P(J \mid A) \cdot P(M \mid A)
\end{aligned}
$$

Bayesian Network

Decompose joint probability via a directed acyclic graph

- Nodes represent random variables
- Edges represent conditional dependencies
- Each node is associated with a conditional probability table

$$
P\left(z_{1}, z_{2}, \cdots z_{n}\right)=\prod_{i} P\left(z_{i} \mid \text { Parents }\left(z_{i}\right)\right)
$$

$$
\begin{aligned}
& \text { Joint probability } \\
& \qquad P(B, E, A, J, M)= \\
& P(B) \cdot P(E) \cdot P(A \mid B, E) \cdot P(J \mid A) \cdot P(M \mid A)
\end{aligned}
$$

Bayesian Network

We can query the model about any of the variables now

- "What is the probability that Mary calls if there is an earthquake?"
- "If John called and Mary did not call, what is the probability that there was a burglary?"

Bayesian Network

Joint probability

$$
\begin{gathered}
P(B, E, A, J, M)= \\
P(B) \cdot P(E) \cdot P(A \mid B, E) \cdot P(J \mid A) \cdot P(M \mid A)
\end{gathered}
$$

We can query the model about any of the variables now

- "What is the probability that Mary calls if there is an earthquake?"
$P(M \mid E)=\frac{P(M, E)}{P(E)}=\frac{\sum_{B, A, J} P(B, E, A, J, M)}{\sum_{B, A, J, M} P(B, E, A, J, M)}$
- "If John called and Mary did not call, what is the probability that there was a burglary?"

Bayesian Network

Joint probability

$$
\begin{gathered}
P(B, E, A, J, M)= \\
P(B) \cdot P(E) \cdot P(A \mid B, E) \cdot P(J \mid A) \cdot P(M \mid A)
\end{gathered}
$$

We can query the model about any of the variables now

- "What is the probability that Mary calls if there is an earthquake?"
$P(M \mid E)=\frac{P(M, E)}{P(E)}=\frac{\sum_{B, A, J} P(B, E, A, J, M)}{\sum_{B, A, J, M} P(B, E, A, J, M)}$
- "If John called and Mary did not call, what is the probability that there was a burglary?"

$$
P(B \mid J, \neg M)=\frac{P(B, J, \neg M)}{P(J, \neg M)}=\frac{\sum_{E, A} P(B, E, A, J, \neg M)}{\sum_{B, E, A} P(B, E, A, J, \neg M)}
$$

Independence Assumptions of a BN

If $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ are random variables, we write

- $\mathrm{X} \perp Y$ to say "X is independent of Y " and
- $\mathrm{X} \perp Y \mid Z$ to say "X is independent of Y given Z "

Independence Assumptions of a BN

If $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ are random variables, we write

- $\mathrm{X} \perp Y$ to say "X is independent of Y " and
- $\mathrm{X} \perp Y \mid Z$ to say " X is independent of Y given Z "

Independence Assumptions of a BN

If $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ are random variables, we write

- $\mathrm{X} \perp Y$ to say "X is independent of Y " and
- $\mathrm{X} \perp Y \mid Z$ to say " X is independent of Y given Z "

Local independencies: A node is independent with its non-descendants given its parents

$$
X_{i} \perp \text { NonDescendants }\left(X_{i}\right) \mid \text { Parents }\left(X_{i}\right)
$$

Independence Assumptions of a BN

If $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ are random variables, we write

- $\mathrm{X} \perp Y$ to say "X is independent of Y " and
- $\mathrm{X} \perp Y \mid Z$ to say " X is independent of Y given Z "

Local independencies: A node is independent with its non-descendants given its parents

$$
X_{i} \perp \text { NonDescendants }\left(X_{i}\right) \mid \operatorname{Parents}\left(X_{i}\right)
$$

Examples:

- Flu \perp Hayfever | Season
- Congestion \perp Season | Flu,Hayfever

Independence Assumptions of a BN

If $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ are random variables, we write

- $\mathrm{X} \perp Y$ to say "X is independent of Y " and
- $\mathrm{X} \perp Y \mid Z$ to say " X is independent of Y given Z "

Local independencies: A node is independent with its non-descendants given its parents

$$
X_{i} \perp \text { NonDescendants }\left(X_{i}\right) \mid \operatorname{Parents}\left(X_{i}\right)
$$

Examples:

- Flu \perp Hayfever | Season
- Congestion \perp Season | Flu,Hayfever

Parents of a node shield it from influence of ancestors and non-descendants...
... but information about descendants can influence beliefs about a node.

Independence Assumptions of a BN

If $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ are random variables, we write

- $\mathrm{X} \perp Y$ to say "X is independent of Y " and
- $\mathrm{X} \perp Y \mid Z$ to say " X is independent of Y given Z "

Topological independencies: A node is independent of all other nodes given its parents, children and children's parents, together called the node's Markov Blanket

$$
X_{i} \perp X_{j} \mid \operatorname{MarkovBlanket}\left(X_{i}\right)
$$

Independence Assumptions of a BN

If $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ are random variables, we write

- $\mathrm{X} \perp Y$ to say "X is independent of Y " and
- $\mathrm{X} \perp Y \mid Z$ to say " X is independent of Y given Z "

Topological independencies: A node is independent of all other nodes given its parents, children and children's parents, together called the node's Markov Blanket

$$
X_{i} \perp X_{j} \mid \operatorname{MarkovBlanket}\left(X_{i}\right)
$$

Example: The Markov blanket of Hayfever is the set \{Season, Congestion, Flu\}. If we know these variables, Hayfever is independent of MusclePain

Independence Assumptions of a BN

If $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ are random variables, we write

- $\mathrm{X} \perp Y$ to say "X is independent of Y " and
- $\mathrm{X} \perp Y \mid Z$ to say " X is independent of Y given Z "

Topological independencies: A node is independent of all other nodes given its parents, children and children's parents, together called the node's Markov Blanket

$$
X_{i} \perp X_{j} \mid \text { MarkovBlanket }\left(X_{i}\right)
$$

Example: The Markov blanket of Hayfever is the set \{Season, Congestion, Flu\}. If we know these variables, Hayfever is independent of MusclePain

The Markov blanket of a node shields it from influence of any other node

Independence Assumptions of a BN

- Local independencies: A node is independent with its non-descendants given its parents.
$\left(X_{i} \perp\right.$ NonDescendants $\left.\left(X_{i}\right) \mid \operatorname{Parents}\left(X_{i}\right)\right)$
- Topological independencies: A node is independent of all other nodes given its parents, children and children's parents-that is given its Markov Blanket.

$$
\left(X_{i} \perp X_{j} \mid \operatorname{MB}\left(X_{i}\right)\right) \quad \text { for all } \quad j \neq i
$$

$$
\begin{gathered}
(F \perp H \mid S) \\
(C \perp S \mid F, H) \\
(M \perp H, C \mid F) \\
(M \perp C \mid F)
\end{gathered}
$$

- More general notions of independencies exist.

Independence Assumptions of a BN

$\left(X_{i} \perp \operatorname{NonDescendants}\left(X_{i}\right) \mid \operatorname{Parents}\left(X_{i}\right)\right)$

$$
\begin{gathered}
(F \perp H \mid S) \\
(C \perp S \mid F, H) \\
(M \perp H, C \mid F) \\
(M \perp C \mid F)
\end{gathered}
$$

- Local independencies: A node is independent with its non-descendants given its parents.
- Topological independencies: A node is independent of all other nodes given its parents, children and children's parents-that is given its Markov Blanket.

$$
\left(X_{i} \perp X_{j} \mid \operatorname{MB}\left(X_{i}\right)\right) \quad \text { for all } \quad j \neq i
$$

- More general notions of independencies exist.

Where do the independence assumptions come from?

Independence Assumptions of a BN

$\left(X_{i} \perp \operatorname{NonDescendants}\left(X_{i}\right) \mid \operatorname{Parents}\left(X_{i}\right)\right)$

$$
\begin{gathered}
(F \perp H \mid S) \\
(C \perp S \mid F, H) \\
(M \perp H, C \mid F) \\
(M \perp C \mid F)
\end{gathered}
$$

- Local independencies: A node is independent with its non-descendants given its parents.
- Topological independencies: A node is independent of all other nodes given its parents, children and children's parents-that is given its Markov Blanket.

$$
\left(X_{i} \perp X_{j} \mid \operatorname{MB}\left(X_{i}\right)\right) \quad \text { for all } \quad j \neq i
$$

- More general notions of independencies exist.

Where do the independence assumptions come from?

Domain knowledge

We have seen Bayesian networks before

- The naïve Bayes model is a simple Bayesian Network
- The naïve Bayes assumption is an example of an independence assumption
- The hidden Markov model is another Bayesian network

Inference with Bayesian networks

Edges in a BN are typically interpreted as being causal, i.e., the parents of a node causally influencing them

Inference with Bayesian networks

Edges in a BN are typically interpreted as being causal, i.e., the parents of a node causally influencing them

The general inference problem with Bayesian networks: Find the probability of unknown variables, having observed values of some others.

Inference with Bayesian networks

Edges in a BN are typically interpreted as being causal, i.e., the parents of a node causally influencing them

The general inference problem with Bayesian networks: Find the probability of unknown variables, having observed values of some others.

Example: If we have a BN with variables X_{1}, X_{2}, X_{3} and we wish to compute the probability of X_{1} given X_{3}

$$
P\left(X_{1} \mid X_{3}\right)=\frac{P\left(X_{1}, X_{3}\right)}{P\left(X_{3}\right)}
$$

Inference with Bayesian networks

Edges in a BN are typically interpreted as being causal, i.e., the parents of a node causally influencing them

The general inference problem with Bayesian networks: Find the probability of unknown variables, having observed values of some others.

Example: If we have a BN with variables X_{1}, X_{2}, X_{3} and we wish to compute the probability of X_{1} given X_{3}

$$
P\left(X_{1} \mid X_{3}\right)=\frac{P\left(X_{1}, X_{3}\right)}{P\left(X_{3}\right)}=\frac{\sum_{X_{2}} P\left(X_{1}, X_{2}, X_{3}\right)}{\sum_{X_{1}, X_{3}} P\left(X_{1}, X_{2}, X_{3}\right)}
$$

Inference with Bayesian networks

Edges in a BN are typically interpreted as being causal, i.e., the parents of a node causally influencing them

The general inference problem with Bayesian networks: Find the probability of unknown variables, having observed values of some others.

Example: If we have a BN with variables X_{1}, X_{2}, X_{3} and we wish to compute the probability of X_{1} given X_{3}

$$
P\left(X_{1} \mid X_{3}\right)=\frac{P\left(X_{1}, X_{3}\right)}{P\left(X_{3}\right)}=\frac{\sum_{X_{2}} P\left(X_{1}, X_{2}, X_{3}\right)}{\sum_{X_{1}, X_{3}} P\left(X_{1}, X_{2}, X_{3}\right)}
$$

Bad News: Inference in a Bayesian network is \#P hard (i.e., as hard as counting the number of satisfying solutions of a CNF formula)

More bad news: Even approximate inference in a Bayesian network is NP-hard!

Causality may not be easy to determine

Sometimes Bayes nets cannot represent the independence relations we want conveniently

- Eg: Segmenting an image by assigning a label to each pixel

Causality may not be easy to determine

Sometimes Bayes nets cannot represent the independence relations we want conveniently

- Eg: Segmenting an image by assigning a label to each pixel
- Say, we want adjacent labels to influence each other

Causality may not be easy to determine

Sometimes Bayes nets cannot represent the independence relations we want conveniently

- Eg: Segmenting an image by assigning a label to each pixel
- Say, we want adjacent labels to influence each other

Two problems:

1. What is the correct direction of arrows?
2. For any choice of the arrows, strange dependencies show up. X_{8} is independent of everything given its Markov blanket (other circled nodes here)

From directed to undirected networks

Sometimes Bayes nets cannot represent the independence relations we want conveniently.

- Eg: Segmenting an image by assigning a label to each pixel
- Say, we want adjacent labels to influence each other

Undirected Graphical Models

a.k.a Markov Random Fields / Markov Networks

- Another way of defining conditional independence
- General structure
- Nodes are random variables
- Edges (hyper-edges) define dependencies
- The nodes in a complete subgraph form a clique.

Cliques:
$\{A B\},\{B C\},\{C D\},\{A D\}$

Undirected Graphical Models

a.k.a Markov Random Fields / Markov Networks

- Another way of defining conditional independence
- General structure
- Nodes are random variables
- Edges (hyper-edges) define dependencies
- The nodes in a complete subgraph form a clique.

Cliques:
$\{A B\},\{B C\},\{C D\},\{A D\}$

$$
P(\mathbf{x})=\frac{1}{Z} \prod_{c \in \mathrm{Cliques}} f_{c}\left(\mathbf{x}_{c}\right)
$$

$$
\begin{array}{r}
P(A, B, C, D)=\frac{1}{Z} f_{1}(A, B) f_{2}(B, C) \\
f_{3}(C, D) f_{4}(A, D)
\end{array}
$$

This is a Gibbs distribution if all factors are positive

Undirected Graphical Models

a.k.a Markov Random Fields / Markov Networks

- Another way of defining conditional independence
- General structure
- Nodes are random variables
- Edges (hyper-edges) define dependencies
- The nodes in a complete subgraph form a clique.

The joint probability decouples over cliques. Every clique x_{c} associated with a
 potential function $\mathrm{f}\left(\mathrm{x}_{\mathrm{c}}\right)$

$$
P(\mathbf{x})=\frac{1}{Z} \prod_{c \in \mathrm{Cliques}} f_{c}\left(\mathbf{x}_{c}\right)
$$

Cliques:
$\{A B\},\{B C\},\{C D\},\{A D\}$

This is a Gibbs distribution if all factors are positive

Independence Assumptions of a MRF

- Local independencies: A node is independent of all other nodes given its neighbors.
- Global independencies: If X, Y, Z are sets of nodes, X is conditionally independent of Y given Z if removing all nodes of Z removes all paths from X to Y
$(A \perp C \mid B, D)$
$(B \perp D \mid A, C)$

Independence Assumptions of a MRF

- Local independencies: A node is independent of all other nodes given its neighbors.
- Global independencies: If X, Y, Z are sets of nodes, X is conditionally independent of Y given Z if removing all nodes of Z removes all paths from X to Y
$(A \perp C \mid B, D)$
$(B \perp D \mid A, C)$

Where do the independence assumptions come from?

Independence Assumptions of a MRF

- Local independencies: A node is independent of all other nodes given its neighbors.
- Global independencies: If X, Y, Z are sets of nodes, X is conditionally independent of Y given Z if removing all nodes of Z removes all paths from X to Y

$$
\begin{aligned}
& (A \perp C \mid B, D) \\
& (B \perp D \mid A, C)
\end{aligned}
$$

Where do the independence assumptions come from?

Domain knowledge

MRF to Factor graph

$$
P_{\theta}(\mathbf{x}) \propto \prod_{c \in \text { Cliques }} f\left(\mathbf{x}_{c}, \theta\right)
$$

Normalize:

$$
P_{\theta}(\mathbf{x})=\frac{1}{Z(\theta)} \prod_{c \in \text { Cliques }} f\left(\mathbf{x}_{c}, \theta\right)
$$

where $\quad Z(\theta)=\sum_{\mathbf{x}} \prod_{c \in \text { Cliques }} f\left(\mathbf{x}_{c}, \theta\right)$

Z: Called the partition function, sum over all assignments to the random variables
$f\left(\mathbf{x}_{c}, \mu\right)$ is often written as $\exp \left(\mu^{\top} \mathbf{x}_{c}\right)$
Log-linear model

Factor graphs

$$
P_{\theta}(\mathbf{x}) \propto \prod_{c \in \text { Cliques }} f\left(\mathbf{x}_{c}, \theta\right)
$$

Normalize:
$P_{\theta}(\mathbf{x})=\frac{1}{Z(\theta)} \prod_{c \in \text { Cliques }} f\left(\mathbf{x}_{c}, \theta\right)$
where $Z(\theta)=\sum_{\mathbf{x}} \prod_{c \in \text { Cliques }} f\left(\mathbf{x}_{c}, \theta\right)$

Factor graph: Makes the factorization explicit, factors instead of cliques

Z: Called the partition function, sum over all assignments to the random variables
$\mathrm{f}\left(\mathbf{x}_{c}, \mu\right)$ is often written as $\exp \left(\mu^{\top} \mathbf{x}_{c}\right)$
Log-linear model

Factor graphs

$$
P_{\theta}(\mathbf{x}) \propto \prod_{\substack{c \in \text { lifuues } \\ \text { Factors }}} f\left(\mathbf{x}_{c}, \theta\right)
$$

Normalize:

$$
\begin{aligned}
& P_{\theta}(\mathbf{x})=\frac{1}{Z(\theta)} \prod_{\substack{c \in \text { Cliques } \\
\text { Factors }}} f\left(\mathbf{x}_{c}, \theta\right) \\
& \text { where } \quad Z(\theta)=\sum_{\mathbf{x}} \prod_{\substack{\text { fliques } \\
\text { Factors }}} f\left(\mathbf{x}_{c}, \theta\right)
\end{aligned}
$$

Z: Called the partition function, sum over all assignments to the random variables
$\mathrm{f}\left(\mathbf{x}_{c}, \mu\right)$ is often written as $\exp \left(\mu^{\top} \mathbf{x}_{c}\right)$
Log-linear model

Factor graphs

$$
P_{\theta}(\mathbf{x}) \propto \prod_{\substack{c \in \begin{array}{c}
\text { liquues } \\
\text { Factors }
\end{array}}} f\left(\mathbf{x}_{c}, \theta\right)
$$

Normalize:

$$
P_{\theta}(\mathbf{x})=\frac{1}{Z(\theta)} \prod_{\substack{\text { Cliques } \\ \text { Factors }}} f\left(\mathbf{x}_{c}, \theta\right)
$$

$$
\text { where } \quad Z(\theta)=\sum_{\mathbf{x}} \prod_{\substack{\text { Cliques } \\ \text { Factors }}} f\left(\mathbf{x}_{c}, \theta\right)
$$

Z: Called the partition function, sum over all assignments to the random variables
$\mathrm{f}\left(\mathbf{x}_{c}, \mu\right)$ is often written as $\exp \left(\mu^{\top} \mathbf{x}_{c}\right)$ Log-linear model

Factor graph: Makes the factorization explicit, factors instead of cliques

$$
P(\mathbf{X})=\frac{1}{7} f_{a}\left(\mathscr{X}_{1}, \mathscr{X}_{2}, \mathscr{X}_{4}\right) f_{b}\left(\mathscr{X}_{2}, \mathscr{X}_{3}, \mathscr{X}_{5}\right) f_{c}\left(\mathscr{X}_{4}, \mathscr{X}_{5}\right)
$$

Comments about MRFs

- Connection to statistical physics
- Identical to Boltzmann distribution in energy based models
- Probability of a system existing in a state:

$$
P_{\theta}(\mathbf{x})=\frac{1}{Z(\theta)} \exp \left(-\sum_{c} E\left(\mathbf{x}_{c}\right)\right)
$$

Z: Zustandssumme, "sum over states", more commonly called the partition function

Comments about MRFs

- Connection to statistical physics
- Identical to Boltzmann distribution in energy based models
- Probability of a system existing in a state:

$$
\begin{aligned}
& \left.\quad P_{\theta}(\mathbf{x})=\frac{1}{Z(\theta)} \exp (-)_{c}^{c}\right) \\
& \text { z: Zustandssumme, "sum over states", more } \\
& \text { existing in state } \mathbf{x}_{c} \\
& \text { commonly called the partition function }
\end{aligned}
$$

History of the Markov random field

Ernst Ising [1925] introduced a model to explain permanent ferromagnetism in ferromagnets below a certain temperature

- Early versions of the idea by Lenz [1920]

Ising's original model:

- Suppose we have a chain of points, each of which can be associated with a certain spin (either up or down)

- The goal: To describe a probability measure over configurations of spins at a specified temperature
- Ising defined the energy of a configuration as being locally factorized over neighboring points

Comments about MRFs

Connection to statistical physics

- Identical to Boltzmann distribution in energy based models
- Probability of a system existing in a state:

Z: Zustandssumme, "sum over states", more commonly called the partition function

If \mathbf{x} is dependent on all its neighbors:

- If x can be in one of two states (binary), Ising model
- If x can be in one of more than two states (multiclass), Potts model

Bayesian Networks vs. Markov Networks

- Both networks represent
- A set of conditional independence relations
- i.e, a skeleton that shows how a joint probability distribution is factorized
- Both networks have theorems about equivalence between conditional independence and joint probability factorization
- Converting between these representations
- A BN can be converted into an MRF with a normalization constant one
- A MRF can also be converted into a BN, but this may lead to a very large network

See the chapter on undirected graphical models in Koller and Friedman's book

Computational questions

- Learning model parameters
- Learning independence assumptions
- Inference

Learning questions

Two kinds of learning questions:

1. Structure learning: Given data, find independence assumptions to design an MRF (or a BN)

- A difficult problem, we will not see a lot of this

2. Learning model parameters: Given data and a structure, find the parameters that define the factor potentials

- We will see more of this as we go along

Inference in graphical models

(more on this in future classes)

In general, compute probability of a subset of states
$-P\left(x_{A}\right)$, for some subsets of random variables \mathbf{x}_{A}

- Note: So far, we have generally considered the equivalent of $\operatorname{argmax}_{\mathrm{x}} \mathrm{P}(\mathbf{x})$

Inference in graphical models

(more on this in future classes)

In general, compute probability of a subset of states
$-P\left(x_{A}\right)$, for some subsets of random variables \boldsymbol{x}_{A}

- Note: So far, we have generally considered the equivalent of $\operatorname{argmax}_{\mathrm{x}} \mathrm{P}(\mathbf{x})$
- Exact inference
- "Approximate" inference

Inference in graphical models

(more on this in future lectures)

In general, compute probability of a subset of states
$-P\left(x_{A}\right)$, for some subsets of random variables \mathbf{x}_{A}

- Exact inference
- Variable elimination
- Marginalize by summing out variables in a "good" order
- Think about what we did for Viterbi What makes an ordering good?
- Belief propagation (exact only for graphs without loops)
- Nodes pass messages to each other about their estimate of what the neighbor's state should be
- Generally efficient for trees, sequences (and maybe other graphs too)
- "Approximate" inference

Inference in graphical models

(more on this in future lectures)

In general, compute probability of a subset of states
$-P\left(x_{A}\right)$, for some subsets of random variables \boldsymbol{x}_{A}

- Exact inference NP-hard in general, works for simple graphs
- "Approximate" inference
- Markov Chain Monte Carlo
- Gibbs Sampling/Metropolis-Hastings
- Variational algorithms
- Frame inference as an optimization problem, perturb it to an approximate one and solve the approximate problem
- Loopy Belief propagation
- Run BP and hope it works!
- The not-so-good news: Approximate inference is also intractable!

Summary

- Graphical models are languages that represent independence assumptions
- We saw Bayesian networks and Markov networks
- So far, both networks represent joint distributions
- We will use the factor graph notation across the rest of the semester
- Coming up:
- Markov logic: A language for defining Markov networks
- Conditional models

