
CS 6355: Structured Prediction

Inference: Sampling
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So far in the class

• Thinking about structures
– A graph, a collection of parts that are labeled jointly, a collection of 

decisions 

• Algorithms for learning
– Local learning

• Learn parameters for individual components independently 
• Learning algorithm not aware of the full structure

– Global learning
• Learn parameters for the full structure 
• Learning algorithm “knows” about the full structure

• This section: Prediction
– Sets structured prediction apart from binary/multiclass
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Inference

• What is inference?
– An overview of what we have seen before
– Combinatorial optimization
– Different views of inference

• Graph algorithms
– Dynamic programming, greedy algorithms, search

• Integer programming

• Heuristics for inference
– Sampling

• Learning to search
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Lecture outline

• Inexact inference

• Markov chains and stationary distributions

• MCMC algorithms
– Metropolis Hastings
– Gibbs Sampling
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So far we have seen…

• Inference as graph search 

• Inference with dynamic programming

• Inference via integer linear programming

• But…
– Inference can be intractable
– The number of possible outcomes can be very large
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Inference questions

• This class: 
– Mostly we use inference to mean “What is the highest scoring 

assignment to the output random variables for a given input?”
– Maximum A Posteriori (MAP) inference (if the score is probabilistic)

• Other inference questions
– What is the highest scoring assignment to some of the output 

variables given the input?
– Sample from the posterior distribution over the Y
– Loss-augmented inference: Which structure most violates the margin 

for a given scoring function?
– Computing marginal probabilities over Y
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• We have a probabilistic graphical model
– A conditional distribution 𝑃 𝐲 𝐱 ∝ exp(𝐰𝑇𝜙(𝒙, 𝒚))

• Inference questions can broadly take two forms

A problem: Exact inference is hard!
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• We have a probabilistic graphical model
– A conditional distribution 𝑃 𝐲 𝐱 ∝ exp(𝐰𝑇𝜙(𝒙, 𝒚))
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– Marginal inference: Compute probability over a set of output variables
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𝑃(6𝐲 ∣ 𝐱)

• Computationally, exact inference (in both cases) is 
– Easy for tree-like models
– In the general case, however, intractable

A problem: Exact inference is hard!
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How can we address this problem?

Exact inference can be computationally expensive except in the case of 
certain restricted families of models

Two broad strategies present themselves:

1. Restrict ourselves to these “well-behaved” models
(And potentially lose the correctness of our model)

2. Give up on exactness of inference
(And potentially lose the correctness of our predictor)
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A problem: Exact inference is hard!

• We need to solve inference anyway
– Inference constructs the final output!
– Inference can play an important part in learning 

• We have seen examples of global learning

• A solution: Give up exactness
– Already seen beam search: A heuristic graph search
– Most common “approximate” inference methods:

1. Monte Carlo sampling
2. Message passing, belief propagation with non-tree-like graphical 

models
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Inference by sampling

• Monte Carlo methods: A large class of algorithms
– Origins in physics

• Basic idea: 
– Repeatedly sample from a distribution
– Compute aggregate statistics from samples

• Eg: The marginal distribution

• Useful when we have many, many interacting 
variables

17



• Suppose we have some probability distribution 𝑃(𝑧)
– Might be a cumbersome function

• We want to answer questions about this distribution
– What is the mean, mode, etc?

• Approximate with samples from the distribution {𝑧1, 𝑧2,!, 𝑧𝑛}
– Example: Expectation 𝐸! 𝑓 ≈ "

#
∑$ 𝑓(𝑧$)

• Bounds on large deviations tell us that this is a good estimator
– Chernoff-Hoeffding style bounds

Why sampling works
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How do we generate samples from this 
cumbersome distribution?



The Markov Chain Monte Carlo revolution

• Goal: To generate samples from a distribution P(y|x)
– The target distribution could be intractable to sample from

• Idea: Construct a Markov chain of structures whose 
stationary distribution converges to P
– An iterative process that constructs examples

– Initially samples might not be from the target distribution

– But after a long enough time, the samples are from a 
distribution that is increasingly close to P
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Outline

• Inexact inference

• Markov chains and stationary distributions

• MCMC algorithms
– Metropolis Hastings
– Gibbs Sampling
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Recall: Markov Chains

A collection of random variables 𝑦0, 𝑦1, 𝑦2, ⋯ form a Markov 
chain if the 𝑖𝑡ℎ state depends only on the previous one

𝑃 𝑦8 𝑦9, 𝑦:, ⋯ , 𝑦8;: = 𝑃(𝑦8 ∣ 𝑦8;:)
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Sampling from this chain would 
generate state sequences such as:



Temporal dynamics of a Markov chain

What is the probability that a chain is in a state z at 
time t+1?

𝑃<=: 𝑠𝑡𝑎𝑡𝑒<=: = 𝑧 =1
>!
𝑃< 𝑠𝑡𝑎𝑡𝑒< = 𝑧? 𝑃 𝑧? → 𝑧
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The probability that it was in some 
state 𝑧,at the previous step 

The probability that the system 
moved from state 𝑧, to the state 𝑧.



Temporal dynamics of a Markov chain

Suppose we have a Markov chain with 𝑛 states has transition probabilities given by an 
𝑛×𝑛 matrix 𝐀.

Denote the initial state probability of the chain as a vector 
𝐏- = 𝑃- 1 , 𝑃- 2 ,⋯ , 𝑃- 𝑛
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Temporal dynamics of a Markov chain

Suppose we have a Markov chain with 𝑛 states has transition probabilities given by an 
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𝑃- 𝑗 𝐀/$

The distribution 𝑃. ⋅ over all the states is a vector 𝐏. = 𝐏𝟎𝐀.
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Temporal dynamics of a Markov chain

Suppose we have a Markov chain with 𝑛 states has transition probabilities given by an 
𝑛×𝑛 matrix 𝐀.

Denote the initial state probability of the chain as a vector 
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𝑃1 𝑖 = 5
/

𝑃. 𝑗 𝑃 𝑗 → 𝑖 =5
/
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Temporal dynamics of a Markov chain

Suppose we have a Markov chain with 𝑛 states has transition probabilities given by an 
𝑛×𝑛 matrix 𝐀.

Denote the initial state probability of the chain as a vector 
𝐏- = 𝑃- 1 , 𝑃- 2 ,⋯ , 𝑃- 𝑛

After one step, the probability of the system existing in a state 𝑖 is:

𝑃. 𝑖 = 5
/

𝑃- 𝑗 𝑃(𝑗 → 𝑖) =5
/
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The distribution 𝑃. ⋅ over all the states is a vector 𝐏. = 𝐏𝟎𝐀.

After two steps, the probability of the system existing in a state 𝑖 is:

𝑃1 𝑖 = 5
/

𝑃. 𝑗 𝑃 𝑗 → 𝑖 =5
/

𝑃. 𝑗 𝐀/$

As before, we have 𝐏1 = 𝐏.𝐀 = 𝐏𝟎𝐀𝐀
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Temporal dynamics of a Markov chain

Suppose we have a Markov chain with 𝑛 states has transition probabilities given by an 
𝑛×𝑛 matrix 𝐀.

Denote the initial state probability of the chain as a vector 
𝐏- = 𝑃- 1 , 𝑃- 2 ,⋯ , 𝑃- 𝑛

After one step, the probability of the system existing in a state 𝑖 is:

𝑃. 𝑖 = 5
/

𝑃- 𝑗 𝑃(𝑗 → 𝑖) =5
/

𝑃- 𝑗 𝐀/$

The distribution 𝑃. ⋅ over all the states is a vector 𝐏. = 𝐏𝟎𝐀.

In general, after 𝑛 steps, the probability of the system is given by 
𝐏2 = 𝐏23.𝐀
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Exercise

Suppose a Markov chain for these transition probabilities starts 
at state C. What is the distribution over states after three steps?
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Stationary distributions

Suppose we have a Markov chain with transition probability 𝐀. 

A distribution over states 𝜋 is a stationary distribution if, after a transition, 
the probability of the system being at any state is unchanged.
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Stationary distributions

Suppose we have a Markov chain with transition probability 𝐀. 

A distribution over states 𝜋 is a stationary distribution if, after a transition, 
the probability of the system being at any state is unchanged.

Mathematically: if 𝐀 is the transition matrix, we have 𝜋 = 𝜋𝐀.
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Stationary distributions

Suppose we have a Markov chain with transition probability 𝐀. 

A distribution over states 𝜋 is a stationary distribution if, after a transition, 
the probability of the system being at any state is unchanged.

Mathematically: if 𝐀 is the transition matrix, we have 𝜋 = 𝜋𝐀.

How do we get to a stationary distribution?
– A regular Markov chain: There is an non-zero probability of getting 

from any state to any other in a finite number of steps
– If transition matrix is regular, just run it for a long time
– Steady-state behavior is the stationary distribution
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Outline

• Inexact inference

• Markov chains and stationary distributions

• MCMC algorithms
– Metropolis Hastings
– Gibbs Sampling
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Markov Chain Monte Carlo for inference

• Design a Markov chain such that
– Every state is a structure 
– The stationary distribution of the chain is the probability 

distribution we care about P(y |x)

• How to do inference?
– Run the Markov chain for a long time till we think it gets to 

steady state
– Let the chain wander around the space and collect 

samples
– We have samples from P(y|x)
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MCMC for inference

431



MCMC for inference
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MCMC for inference
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MCMC for inference
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MCMC for inference
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With sufficient samples, we can 
answer inference questions like 
calculating the partition function (just 
sum over the samples)



MCMC algorithms

• Metropolis-Hastings algorithm

• Gibbs sampling
– An instance of the Metropolis Hastings algorithm
– Many variants exist

• Remember: We are sampling from an exponential state 
space
– All possible assignments to the random variables
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Metropolis-Hastings

• Proposal distribution 𝑞 𝐲 → 𝐲!
– Shorthand for 𝑞 𝑠𝑡𝑎𝑡𝑒'() = 𝐲* ∣ 𝑠𝑡𝑎𝑡𝑒' = 𝐲
– Proposes changes to the state
– Could propose large changes to the state

• Acceptance probability 𝛼
– Should the proposal be accepted or not
– If yes, move to the proposed state, else remain in the previous 

state
– Intended to strike a balance between:

1. Preferring higher probability states and
2. Not getting stuck in one region of the state space

50

[Metropolis, Rosenbluth, Rosenbluth, Teller & Teller 1953]
[Hastings 1970]



Metropolis-Hastings

• Metropolis et al 1953: 
– Symmetric proposal distributions
– Invented to study the states of packed rigid spheres in two 

and three dimensions
– Implemented on MANIAC I (an early computer)

• 1024 vacuum tubes (i.e. bits) of memory!

• Hastings 1970: 
– Updated to general distributions
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[Metropolis, Rosenbluth, Rosenbluth, Teller & Teller 1953]
[Hastings 1970]

For a interesting retrospective on how the algorithm came about, see
Marshall N. Rosenbluth. 2003. Genesis of the Monte Carlo Algorithm for Statistical Mechanics. In AIP Conference 
Proceedings, volume 690, pages 22–30, Los Alamos, New Mexico (USA). AIP.



Metropolis-Hastings Algorithm

• Start with an initial guess 𝐲0

• Loop for t = 1, 2, … N
– Propose next state 𝐲?

– Calculate acceptance probability 𝛼 𝐲<, 𝐲?

– With probability 𝛼, accept proposal
• If accepted: 𝐲%&" ← 𝐲', else 𝐲% ← 𝐲'

• Return the last M samples

52

The distribution we 
care about is P(y|x) 
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Metropolis-Hastings Algorithm

• Start with an initial guess 𝐲0
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The distribution we 
care about is P(y|x) 

Sample from 𝑞 𝐲 → 𝐲'

Important: This does not 
require us to calculate the 
partition function.  Why? 

And why is this good?

The proposal distribution



Metropolis-Hastings guarantees

As the number of samples grows large, the empirical 
distribution of the samples approaches the distribution 
we want to sample from.

– Subject to some mild restrictions on the probability P we 
want to sample from and the proposal distribution Q
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Proposal functions for Metropolis

• A design choice

• Different possibilities
– Only make local changes to the factor graph

• But the chain might not explore widely

– Make big jumps in the state space
• But the chain might move very slowly

• Doesn’t have to depend on the size of the graph
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A non-machine learning example

Decoding text: What is the coded message here?

58
[From Persi Diaconis]



Decoding the text

• Suppose we have a way of getting a good estimate for 
character bigram probability
– How? 

• We can now compute P(English string) using this 

• Assume that a substitution cipher is used for encoding
– Every character is mapped to a different one

• Our goal is to find the mapping

• Let’s try Metropolis-Hastings
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Metropolis example

• The state space: The set of all possible complete 
character mappings 
– Eg: {A → B, B → Z, C → 1, …} could be a state

• The distribution we want to sample from
P(decoded string)

• The proposal:
– Given a state, pick two characters randomly and swap their 

mappings

60



Gibbs sampling

• Start with an initial guess y = (y1, y2, !, yn)
• Loop several times
– For i = 1 to n:

• Sample yi from P(yi| y1, y2, ! yi-1, yi+1, !, yn, x)

– We now have a complete sample

A specific instance of Metropolis-Hastings algorithm, no 
proposal needs to be designed
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The ordering is arbitrary



Gibbs sampling: An example

62

x1 x2 x3

y3

y2

y1

𝑃(𝑦., 𝑦1, 𝑦4| 𝐱) ∝ exp 𝑤#𝜙 𝐱, 𝐲

Suppose we start with (A, B, A)

What will one step of Gibbs sampling look like?

Once again, no need to calculate Z

Questions?



Gibbs sampling has many variants

The task: Sample from 𝑃(𝑦#, 𝑦$, 𝑦%| 𝑥)

• Gibbs sampling:
– Fix 𝑦+' , 𝑦,' and draw 𝑦)'()

– Fix 𝑦)'(), 𝑦,' and draw 𝑦+'()

– Fix 𝑦)'(), 𝑦+'()and draw 𝑦,'()

• Block Gibbs sampling: Group the random variables into 
blocks. Say 𝑦#, 𝑦$ form a block and 𝑦% forms another
– Fix 𝑦,'and draw 𝑦)'(), 𝑦+'() from 𝑃(𝑦), 𝑦+|𝑦,' , 𝑥)
– Fix 𝑦)'(), 𝑦+'()and draw 𝑦,'()from 𝑃(𝑦,|𝑦)'(), 𝑦+'(), 𝑥)
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• Gibbs sampling:
– Fix 𝑦+' , 𝑦,' and draw 𝑦)'()

– Fix 𝑦)'(), 𝑦,' and draw 𝑦+'()

– Fix 𝑦)'(), 𝑦+'()and draw 𝑦,'()

• Block Gibbs sampling: Group the random variables into 
blocks. Say 𝑦#, 𝑦$ form a block and 𝑦% forms another
– Fix 𝑦,'and draw 𝑦)'(), 𝑦+'() from 𝑃(𝑦), 𝑦+|𝑦,' , 𝑥)
– Fix 𝑦)'(), 𝑦+'()and draw 𝑦,'()from 𝑃(𝑦,|𝑦)'(), 𝑦+'(), 𝑥)
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Gibbs sampling has many variants

The task: Sample from 𝑃(𝑦#, 𝑦$, 𝑦%| 𝑥)

• Gibbs sampling:
– Fix 𝑦+' , 𝑦,' and draw 𝑦)'()

– Fix 𝑦)'(), 𝑦,' and draw 𝑦+'()

– Fix 𝑦)'(), 𝑦+'()and draw 𝑦,'()

• Block Gibbs sampling: Group the random variables into 
blocks. Say 𝑦#, 𝑦$ form a block and 𝑦% forms another
– Fix 𝑦,'and draw 𝑦)'(), 𝑦+'() from 𝑃(𝑦), 𝑦+|𝑦,' , 𝑥)
– Fix 𝑦)'(), 𝑦+'()and draw 𝑦,'()from 𝑃(𝑦,|𝑦)'(), 𝑦+'(), 𝑥)

65Other variants include Collapsed Gibbs sampling, parallel sampling, etc



Gibbs sampling: summary

• A specific instance of the Metropolis Hastings 
algorithm
– Fix all random variables except one, sample the remaining 

one
– Repeat till all random variables are sampled

• Easy to implement

• No need to implement a proposal function
– Acceptance ratio is 1
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Practical concerns

• Burn-in
– The chain needs to get to the stationary state
– Ignore all samples during a burn-in period, a parameter to the 

algorithm

• Thinning
– Samples that follow each other are correlated
– For statistical guarantees, we need independent samples
– After burn-in, don’t take every sample, take every Kth sample 
– K is the thinning period, another parameter

• Must start at a state that has non-zero probability

67



MAP inference with MCMC

• So far we have only seen how to collect samples
• Marginal inference with samples is easy
– Compute the marginal probabilities from the samples

• MAP inference:
– Find the sample with highest probability
– To help convergence to the maximum , acceptance 

condition becomes

68

T is a temperature parameter that increases with every step
Similar to simulated annealing



Summary of MCMC methods

• A different approach for inference
– No guarantee of exactness

• General idea
– Set up a Markov chain whose stationary distribution is the probability 

distribution that we care about
– Run the chain, collect samples, aggregate

• Metropolis-Hastings, Gibbs sampling
– Many, many, many variants abound, we have barely scratched the 

surface here!

• Useful when exact inference is intractable
– Typically low memory costs, local changes only for Gibbs sampling

69Questions?


