Inference: Graph Search

CS 6355: Structured Prediction

So far in the class

- Thinking about structures
 - A graph, a collection of parts that are labeled jointly, a collection of decisions
- Algorithms for learning
 - Local learning
 - Learn parameters for individual components independently
 - Learning algorithm not aware of the full structure
 - Global learning
 - Learn parameters for the full structure
 - Learning algorithm "knows" about the full structure

• Next: Prediction

Sets structured prediction apart from binary/multiclass

Inference

- What is inference?
 - An overview of what we have seen before
 - Combinatorial optimization
 - Different views of inference
- Graph algorithms
 - Dynamic programming, greedy algorithms, search
- Integer programming
- Heuristics for inference

 Sampling
- Learning to search

Inference

- What is inference?
 - An overview of what we have seen before
 - Combinatorial optimization
 - Different views of inference
- Graph algorithms
 - Dynamic programming, greedy algorithms, search
- Integer programming
- Heuristics for inference

 Sampling
- Learning to search

We have a collection of inference variables that need to be assigned

$$\mathbf{y} = (y_1, y_2, \cdots)$$

We have a collection of inference variables that need to be assigned

$$\mathbf{y} = (y_1, y_2, \cdots)$$

General algorithm

- First fix an ordering of the variables, say (y_1, y_2, \cdots)
- Iteratively:
 - Find the best value for y_i given the values of the previous neighbors
- Use back pointers to find final answer

We have a collection of inference variables that need to be assigned

$$\mathbf{y} = (y_1, y_2, \cdots)$$

General algorithm

- First fix an ordering of the variables, say (y_1, y_2, \cdots)
- Iteratively:
 - Find the best value for y_i given the values of the previous neighbors
- Use back pointers to find final answer

 $emissions(y_1)$

 $emissions(y_1)$

 $score-local(y_i, y_{i+1}) = emissions(y_{i+1}) + transitions(y_i, y_{i+1})$

emissions(y_1)

 $score-local(y_i, y_{i+1}) = emissions(y_{i+1}) + transitions(y_i, y_{i+1})$

First eliminate y_1 score₂(y_2) = \max_{y_1} (score₁(y_1) + score-local(y_1, y_2))

 $score-local(y_i, y_{i+1}) = emissions(y_{i+1}) + transitions(y_i, y_{i+1})$

 $score-local(y_i, y_{i+1}) = emissions(y_{i+1}) + transitions(y_i, y_{i+1})$

Next eliminate y_2 score₃ $(y_3) = \max_{y_2} (score_2(y_2) + score - local(y_2, y_3))$

 $score-local(y_i, y_{i+1}) = emissions(y_{i+1}) + transitions(y_i, y_{i+1})$

 $score-local(y_i, y_{i+1}) = emissions(y_{i+1}) + transitions(y_i, y_{i+1})$

Next eliminate y_3 score₄ $(y_4) = \max_{y_4} (score_3(y_3) + score - local(y_3, y_4))$

 $score_n(y_n)$

After n such steps

We have all the information to make a decision for \boldsymbol{y}_n

We have a collection of inference variables that need to be assigned

$$\mathbf{y} = (y_1, y_2, \cdots)$$

General algorithm

- First fix an ordering of the variables, say (y_1, y_2, \cdots)
- Iteratively:
 - Find the best value for y_i given the values of the previous neighbors
- Use back pointers to find final answer

We have a collection of inference variables that need to be assigned

$$\mathbf{y} = (y_1, y_2, \cdots)$$

General algorithm

Challenge: What makes a good order?

- First fix an ordering of the variables, say (y_1, y_2, \cdots)
- Iteratively:
 - Find the best value for y_i given the values of the previous neighbors
- Use back pointers to find final answer

Max-product algorithm

• Where is the "product" in max-product?

$$\mathbf{w}^T \phi(\mathbf{x}, \mathbf{y}) = \sum_i \text{score} - \text{local}(y_i, y_{i+1})$$

Max-product algorithm

• Where is the "product" in max-product?

$$\mathbf{w}^T \phi(\mathbf{x}, \mathbf{y}) = \sum_i \text{score-local}(y_i, y_{i+1})$$

- Generalizes beyond sequence models
 - Requires a clever ordering of the output variables
 - Exact inference when the output is a tree
 - If not, no guarantees
- Also works for summing over all structures
 - Sum-product message passing
 - Belief propagation

Dynamic programming

- General solution strategy for inference
- Examples
 - Viterbi, CKY algorithm, Dijkstra's algorithm, and many more
- Key ideas:
 - Memoization: Don't re-compute something you already have
 - Requires an ordering of the variables
- Remember:
 - The hypergraph may not allow for the best ordering of the variables
 - Existence of a dynamic programming algorithm does not mean polynomial time/space.
 - State space may be too big. Use heuristics such as beam search

Graph algorithms for inference

- Many graph algorithms you have seen are applicable for inference
- Some examples
 - "Best" path. Eg: Viterbi, parsing
 - Min-cut/max-flow. Eg: Image segmentation
 - Maximum spanning tree. Eg: Dependency parsing
 - Bipartite matching. Eg: Aligning sequences

Best path for inference

- Broad description of approach:
 - Construct a graph/hypergraph from the input and output
 - Decompose the total score along edge/hyperedges
 - Inference is finding the shortest/longest path in this weighted graph

Viterbi algorithm finds a shortest path in a specific graph!

Viterbi algorithm as best path

Goal: To find the highest scoring path in this trellis

Viterbi algorithm as best path

Goal: To find the highest scoring path in this trellis

Viterbi algorithm as best path

Goal: To find the highest scoring path in this trellis

Best path algorithms

- Dijkstra's algorithm
 - Cost functions should be non-negative
- Bellman-ford algorithm
 - Slower than Dijkstra's algorithm but works with negative weights
- A* search
 - If you have a heuristic that gives the future path cost from a state but does not over-estimate it

Inference as search: Setting

- Predicting a graph as a sequence of decisions
- Data structures:
 - State: Encodes partial structure
 - Transitions: Move from one partial structure to another
 - Start state
 - End state: We have a full structure
 - There may be more than one end state
- Each transition is scored with the learned model
- Goal: Find an end state that has the highest total score

Suppose each y can be one of A, B or C

- State: Triples (y₁, y₂, y₃) all possibly unknown
 - (A, -, -), (-, A, A), (-, -, -),...
- Transition: Fill in one of the unknowns
- Start state: (-,-,-)
- End state: All three y's are assigned

Suppose each y can be one of A, B or C

Start state: No assignments

(-,-,-)

- State: Triples (y₁, y₂, y₃) all possibly unknown
 - (A, -, -), (-, A, A), (-, -, -),...
- Transition: Fill in one of the unknowns
- Start state: (-,-,-)
- End state: All three y's are assigned

Start state: (-,-,-) ٠

٠

End state: All three y's are assigned

Fill in a label in a slot. The edge is scored by the factors that can be computed so far

Keep assigning values to slots

• End state: All three y's are assigned

Till we reach a goal state 32

Graph search algorithms

- Standard graph search algorithms can be used for inference
- Breadth/depth first search
 - Keep a stack/queue/priority queue of "open" states
 - That is, states that are to be explored
 - The good: Guaranteed to be correct
 - Explores every option
 - The bad?
 - Explores every option: Memory is an issue
 - Could be slow for any non-trivial graph

Greedy search

- At each state, choose the highest scoring next transition
 - Keep only one state in memory: The current state
- What is the problem?
 - Local decisions may override global optimum
 - Does not explore full search space
- Greedy algorithms can give the true optimum for special classes of problems
 - Eg: Maximum-spanning tree algorithms are greedy

- Keep size-limited priority queue of states
 - Called the beam, sorted by total score for the state
- At each step:
 - Explore all transitions from the current state
 - Add all to beam and trim the size

- Keep size-limited priority queue of states
 - Called the beam, sorted by total score for the state
- At each step:
 - Explore all transitions from the current state
 - Add all to beam and trim the size

Example: Suppose we have a beam of size k = 2

- Keep size-limited priority queue of states
 - Called the beam, sorted by total score for the state
- At each step:
 - Explore all transitions from the current state
 - Add all to beam and trim the size

Example: Suppose we have a beam of size k = 2

At the beginning, the beam has only one element, the start state

- Keep size-limited priority queue of states
 - Called the beam, sorted by total score for the state
- At each step:
 - Explore all transitions from the current state
 - Add all to beam and trim the size

Example: Suppose we have a beam of size k = 2

Expand all the states in the beam

- Keep size-limited priority queue of states
 - Called the beam, sorted by total score for the state
- At each step:
 - Explore all transitions from the current state
 - Add all to beam and trim the size

Example: Suppose we have a beam of size k = 2

Expand all the states in the beam

Score the newly created states

- Keep size-limited priority queue of states
 - Called the beam, sorted by total score for the state
- At each step:
 - Explore all transitions from the current state
 - Add all to beam and trim the size

Example: Suppose we have a beam of size k = 2

Expand all the states in the beam

Score the newly created states

- Keep size-limited priority queue of states
 - Called the beam, sorted by total score for the state
- At each step:
 - Explore all transitions from the current state
 - Add all to beam and trim the size

Example: Suppose we have a beam of size k = 2

Expand all the states in the beam

Score the newly created states

The top k new states form the new beam (sorted)

- Keep size-limited priority queue of states
 - Called the beam, sorted by total score for the state
- At each step:
 - Explore all transitions from the current state
 - Add all to beam and trim the size

Example: Suppose we have a beam of size k = 2

Expand all the states in the beam

Score the newly created states

The top k new states form the new beam (sorted)

- Keep size-limited priority queue of states
 - Called the beam, sorted by total score for the state
- At each step:
 - Explore all transitions from the current state
 - Add all to beam and trim the size

Example: Suppose we have a beam of size k = 2

Expand all the states in the beam

Score the newly created states

The top k new states form the new beam (sorted)

Now we are ready for the next step

- Keep size-limited priority queue of states
 - Called the beam, sorted by total score for the state
- At each step:
 - Explore all transitions from the current state
 - Add all to beam and trim the size

Example: Suppose we have a beam of size k = 2

Expand all the states in the beam

- Keep size-limited priority queue of states
 - Called the beam, sorted by total score for the state
- At each step:
 - Explore all transitions from the current state
 - Add all to beam and trim the size

Example: Suppose we have a beam of size k = 2

Expand all the states in the beam

Score the newly created states

- Keep size-limited priority queue of states
 - Called the beam, sorted by total score for the state
- At each step:
 - Explore all transitions from the current state
 - Add all to beam and trim the size

Example: Suppose we have a beam of size k = 2

 $(-, -, -) \qquad (B, -, -) \qquad (B, A, -) \qquad 0.1 \\ (B, B, -) \qquad -3 \\ (B, C, -) \qquad 10 \\ (A, A, -) \qquad 20 \\ (A, B, -) \qquad -1 \\ (A, C, -) \qquad 4.1 \end{cases}$

Expand all the states in the beam

Score the newly created states

The top k new states form the new beam (sorted)

- Keep size-limited priority queue of states
 - Called the beam, sorted by total score for the state
- At each step:
 - Explore all transitions from the current state
 - Add all to beam and trim the size

Example: Suppose we have a beam of size k = 2

Expand all the states in the beam

Score the newly created states

The top k new states form the new beam (sorted)

- Keep size-limited priority queue of states
 - Called the beam, sorted by total score for the state
- At each step:
 - Explore all transitions from the current state
 - Add all to beam and trim the size

Example: Suppose we have a beam of size k = 2

- Keep size-limited priority queue of states
 - Called the beam, sorted by total score for the state
- At each step:
 - Explore all transitions from the current state
 - Add all to beam and trim the size

Example: Suppose we have a beam of size k = 2

Final answer: Top of the beam at the end of search

- Keep size-limited priority queue of states
 - Called the beam, sorted by total score for the state
- At each step:
 - Explore all transitions from the current state
 - Add all to beam and trim the size
- The good: Explores more than greedy search
 - Greedy search is beam search with beam size 1
- The bad: A good state might fall out of the beam
- In general, easy to implement, very popular
 - No guarantees

- Keep size-limited priority queue of states
 - Called the beam, sorted by total score for the state
- At each step:
 - Explore all transitions from the current state
 - Add all to beam and trim the size
- The good: Explores more than greedy search
 - Greedy search is beam search with beam size 1
- The bad: A good state might fall out of the beam
- In general, easy to implement, very popular
 - No guarantees

Questions?

Summary: Inference as graph search

- MAP inference with discrete random variables involves finding a score maximizing assignment to variables
- We can incrementally construct such an assignment using graph algorithms
 - Many inference algorithms are efficient dynamic programming formulations
 - General graph search is also helpful
- Popular heuristics in this family of methods:
 - Greedy search
 - Beam search