
CS 6355: Structured Prediction

Inference: Graph Search

1

So far in the class

• Thinking about structures
– A graph, a collection of parts that are labeled jointly, a collection of

decisions

• Algorithms for learning
– Local learning

• Learn parameters for individual components independently
• Learning algorithm not aware of the full structure

– Global learning
• Learn parameters for the full structure
• Learning algorithm “knows” about the full structure

• Next: Prediction
– Sets structured prediction apart from binary/multiclass

2

Inference

• What is inference?
– An overview of what we have seen before
– Combinatorial optimization
– Different views of inference

• Graph algorithms
– Dynamic programming, greedy algorithms, search

• Integer programming

• Heuristics for inference
– Sampling

• Learning to search

3

Inference

• What is inference?
– An overview of what we have seen before
– Combinatorial optimization
– Different views of inference

• Graph algorithms
– Dynamic programming, greedy algorithms, search

• Integer programming

• Heuristics for inference
– Sampling

• Learning to search

4

Variable elimination: Max-product

We have a collection of inference variables that need to be
assigned

𝐲 = (𝑦1, 𝑦2,!)

5

Variable elimination: Max-product

We have a collection of inference variables that need to be
assigned

𝐲 = (𝑦1, 𝑦2,!)

General algorithm
– First fix an ordering of the variables, say (𝑦1, 𝑦2,!)
– Iteratively:
• Find the best value for yi given the values of the

previous neighbors
– Use back pointers to find final answer

6

Variable elimination: Max-product

We have a collection of inference variables that need to be
assigned

𝐲 = (𝑦1, 𝑦2,!)

General algorithm
– First fix an ordering of the variables, say (𝑦1, 𝑦2,!)
– Iteratively:
• Find the best value for yi given the values of the

previous neighbors
– Use back pointers to find final answer

7

Viterbi is an instance of max-product variable elimination

Variable elimination example

8

y2 y3y1 yn…

A

B

C

D

A B C D

A

B

C

D

emissions 𝑦!

transitions(𝑦!, 𝑦")

Variable elimination example

9

y2 y3y1 yn…

A

B

C

D

A B C D

A

B

C

D

score−local 𝑦# , 𝑦#$! = emissions 𝑦#$! + transitions(𝑦# , 𝑦#$!)

emissions 𝑦!

transitions(𝑦!, 𝑦")

Variable elimination example

10

y2 y3y1 yn…

First eliminate y1

A

B

C

D

A B C D

A

B

C

D

score" 𝑦" = max
%!

score! 𝑦! + score−local 𝑦!, 𝑦"

score−local 𝑦# , 𝑦#$! = emissions 𝑦#$! + transitions(𝑦# , 𝑦#$!)

emissions 𝑦!

transitions(𝑦!, 𝑦")

Variable elimination example

11

y2 y3 yn…

A

B

C

D

A B C D

A

B

C

D

score−local 𝑦# , 𝑦#$! = emissions 𝑦#$! + transitions(𝑦# , 𝑦#$!)

score" 𝑦"

transitions(𝑦", 𝑦&)

Variable elimination example

12

y2 y3 yn…

A

B

C

D

A B C D

A

B

C

D

Next eliminate y2 score& 𝑦& = max
%"

score" 𝑦" + score−local 𝑦", 𝑦&

score−local 𝑦# , 𝑦#$! = emissions 𝑦#$! + transitions(𝑦# , 𝑦#$!)

score" 𝑦"

transitions(𝑦", 𝑦&)

Variable elimination example

13

y3 yn…

A

B

C

D

A B C D

A

B

C

D

score−local 𝑦# , 𝑦#$! = emissions 𝑦#$! + transitions(𝑦# , 𝑦#$!)

score& 𝑦&

transitions(𝑦&, 𝑦')

Variable elimination example

14

y3 yn…

A

B

C

D

A B C D

A

B

C

D

Next eliminate y3 score' 𝑦' = max
%#

score& 𝑦& + score−local 𝑦&, 𝑦'

score−local 𝑦# , 𝑦#$! = emissions 𝑦#$! + transitions(𝑦# , 𝑦#$!)

score& 𝑦&

transitions(𝑦&, 𝑦')

Variable elimination example

15

yn

A

B

C

D

We have all the information to make a decision for yn

score(𝑦)
After n such steps

Variable elimination: Max-product

We have a collection of inference variables that need to be
assigned

𝐲 = (𝑦1, 𝑦2,!)

General algorithm
– First fix an ordering of the variables, say (𝑦1, 𝑦2,!)
– Iteratively:
• Find the best value for yi given the values of the

previous neighbors
– Use back pointers to find final answer

16

Viterbi is an instance of max-product variable elimination

Variable elimination: Max-product

We have a collection of inference variables that need to be
assigned

𝐲 = (𝑦1, 𝑦2,!)

General algorithm
– First fix an ordering of the variables, say (𝑦1, 𝑦2,!)
– Iteratively:
• Find the best value for yi given the values of the

previous neighbors
– Use back pointers to find final answer

17

Viterbi is an instance of max-product variable elimination

Challenge: What makes a good order?

Max-product algorithm

• Where is the “product” in max-product?

𝐰4𝜙 𝐱, 𝐲 =*
5

score−local(𝑦5, 𝑦567)

• Generalizes beyond sequence models
– Requires a clever ordering of the output variables
– Exact inference when the output is a tree

• If not, no guarantees

• Also works for summing over all structures
– Sum-product message passing
– Belief propagation

18

Max-product algorithm

• Where is the “product” in max-product?

𝐰4𝜙 𝐱, 𝐲 =*
5

score−local(𝑦5, 𝑦567)

• Generalizes beyond sequence models
– Requires a clever ordering of the output variables
– Exact inference when the output is a tree

• If not, no guarantees

• Also works for summing over all structures
– Sum-product message passing
– Belief propagation

19

Dynamic programming

• General solution strategy for inference

• Examples
– Viterbi, CKY algorithm, Dijkstra’s algorithm, and many more

• Key ideas:
– Memoization: Don’t re-compute something you already have
– Requires an ordering of the variables

• Remember:
– The hypergraph may not allow for the best ordering of the variables
– Existence of a dynamic programming algorithm does not mean polynomial

time/space.
• State space may be too big. Use heuristics such as beam search

20

Graph algorithms for inference

• Many graph algorithms you have seen are applicable
for inference

• Some examples
– “Best” path. Eg: Viterbi, parsing
– Min-cut/max-flow. Eg: Image segmentation
– Maximum spanning tree. Eg: Dependency parsing
– Bipartite matching. Eg: Aligning sequences

21

Best path for inference

• Broad description of approach:
– Construct a graph/hypergraph from the input and output

– Decompose the total score along edge/hyperedges

– Inference is finding the shortest/longest path in this
weighted graph

Viterbi algorithm finds a shortest path in a specific graph!

22

Viterbi algorithm as best path

23

Goal: To find the highest scoring path in this trellis

Time steps

Different
labels for
each step

Viterbi algorithm as best path

24

Goal: To find the highest scoring path in this trellis

Different
labels for
each step

Viterbi algorithm as best path

25

Goal: To find the highest scoring path in this trellis

No cycles
Nodes and edges have a specific meaning
Ordering helps

Different
labels for
each step

Best path algorithms

• Dijkstra’s algorithm
– Cost functions should be non-negative

• Bellman-ford algorithm
– Slower than Dijkstra’s algorithm but works with negative

weights

• A* search
– If you have a heuristic that gives the future path cost from

a state but does not over-estimate it

26

Inference as search: Setting

• Predicting a graph as a sequence of decisions

• Data structures:
– State: Encodes partial structure
– Transitions: Move from one partial structure to another
– Start state
– End state: We have a full structure

• There may be more than one end state

• Each transition is scored with the learned model

• Goal: Find an end state that has the highest total score

27

Example

28

x1 x2 x3

y3

y2

y1

• State: Triples (y1, y2, y3) all possibly unknown
• (A, -, -), (-, A, A), (-, -, -),…

• Transition: Fill in one of the unknowns

• Start state: (-,-,-)

• End state: All three y’s are assigned

Suppose each y can be one
of A, B or C

Example

29

x1 x2 x3

y3

y2

y1

• State: Triples (y1, y2, y3) all possibly unknown
• (A, -, -), (-, A, A), (-, -, -),…

• Transition: Fill in one of the unknowns

• Start state: (-,-,-)

• End state: All three y’s are assigned

(-,-,-)

Suppose each y can be one
of A, B or C

Start state: No assignments

Example

30

x1 x2 x3

y3

y2

y1

• State: Triples (y1, y2, y3) all possibly unknown
• (A, -, -), (-, A, A), (-, -, -),…

• Transition: Fill in one of the unknowns

• Start state: (-,-,-)

• End state: All three y’s are assigned

(-,-,-)

(A,-,-) (B,-,-) (C,-,-)

Suppose each y can be one
of A, B or C

Fill in a label in a slot. The
edge is scored by the factors
that can be computed so far

Example

31

x1 x2 x3

y3

y2

y1

• State: Triples (y1, y2, y3) all possibly unknown
• (A, -, -), (-, A, A), (-, -, -),…

• Transition: Fill in one of the unknowns

• Start state: (-,-,-)

• End state: All three y’s are assigned

(-,-,-)

(A,-,-) (B,-,-) (C,-,-)

(A,A,-) (C,C,-)…..

Suppose each y can be one
of A, B or C

Keep assigning values to slots

Example

32

x1 x2 x3

y3

y2

y1

• State: Triples (y1, y2, y3) all possibly unknown
• (A, -, -), (-, A, A), (-, -, -),…

• Transition: Fill in one of the unknowns

• Start state: (-,-,-)

• End state: All three y’s are assigned

(-,-,-)

(A,-,-) (B,-,-) (C,-,-)

(A,A,-) (C,C,-)

(A,A,A) (C,C,C)

…..

Suppose each y can be one
of A, B or C

Till we reach a goal state

Example

33

x1 x2 x3

y3

y2

y1

Suppose each y can be one
of A, B or C

• State: Triples (y1, y2, y3) all possibly unknown
• (A, -, -), (-, A, A), (-, -, -),…

• Transition: Fill in one of the unknowns

• Start state: (-,-,-)

• End state: All three y’s are assigned

(-,-,-)

(A,-,-) (B,-,-) (C,-,-)

(A,A,-) (C,C,-)

(A,A,A) (C,C,C)

…..

Note: Here we have assumed an
ordering (y1, y2, y3)

Example

34

x1 x2 x3

y3

y2

y1

Suppose each y can be one
of A, B or C

• State: Triples (y1, y2, y3) all possibly unknown
• (A, -, -), (-, A, A), (-, -, -),…

• Transition: Fill in one of the unknowns

• Start state: (-,-,-)

• End state: All three y’s are assigned

(-,-,-)

(A,-,-) (B,-,-) (C,-,-)

(A,A,-) (C,C,-)

(A,A,A) (C,C,C)

…..

Note: Here we have assumed an
ordering (y1, y2, y3)

How do the transitions get scored?

Example

35

x1 x2 x3

y3

y2

y1

Suppose each y can be one
of A, B or C

• State: Triples (y1, y2, y3) all possibly unknown
• (A, -, -), (-, A, A), (-, -, -),…

• Transition: Fill in one of the unknowns

• Start state: (-,-,-)

• End state: All three y’s are assigned

(-,-,-)

(A,-,-) (B,-,-) (C,-,-)

(A,A,-) (C,C,-)

(A,A,A) (C,C,C)

…..

The goal of inference: To traverse
this graph from the start state and
reach the end state that has the
best (highest/lowest) score

Graph search algorithms

• Standard graph search algorithms can be used for inference

• Breadth/depth first search
– Keep a stack/queue/priority queue of “open” states

• That is, states that are to be explored

– The good: Guaranteed to be correct
• Explores every option

– The bad?
• Explores every option: Memory is an issue
• Could be slow for any non-trivial graph

36

Greedy search

• At each state, choose the highest scoring next transition
– Keep only one state in memory: The current state

• What is the problem?
– Local decisions may override global optimum
– Does not explore full search space

• Greedy algorithms can give the true optimum for special
classes of problems
– Eg: Maximum-spanning tree algorithms are greedy

37Questions?

Beam search: A compromise
• Keep size-limited priority queue of states

– Called the beam, sorted by total score for the state

• At each step:
– Explore all transitions from the current state
– Add all to beam and trim the size

38

Beam search: A compromise
• Keep size-limited priority queue of states

– Called the beam, sorted by total score for the state

• At each step:
– Explore all transitions from the current state
– Add all to beam and trim the size

39

Example: Suppose we have a beam of size k = 2

Beam search: A compromise
• Keep size-limited priority queue of states

– Called the beam, sorted by total score for the state

• At each step:
– Explore all transitions from the current state
– Add all to beam and trim the size

40

Example: Suppose we have a beam of size k = 2

(−,−,−)
At the beginning, the beam has
only one element, the start state

Beam search: A compromise
• Keep size-limited priority queue of states

– Called the beam, sorted by total score for the state

• At each step:
– Explore all transitions from the current state
– Add all to beam and trim the size

41

Example: Suppose we have a beam of size k = 2

(−,−,−)

Expand all the states in the beam(A, −, −)

(B, −, −)

(C, −, −)

Beam search: A compromise
• Keep size-limited priority queue of states

– Called the beam, sorted by total score for the state

• At each step:
– Explore all transitions from the current state
– Add all to beam and trim the size

42

Example: Suppose we have a beam of size k = 2

(−,−,−)

Expand all the states in the beam

Score the newly created states

(A, −, −)

(B, −, −)

(C, −, −)

0.9

10

-3

Beam search: A compromise
• Keep size-limited priority queue of states

– Called the beam, sorted by total score for the state

• At each step:
– Explore all transitions from the current state
– Add all to beam and trim the size

43

Example: Suppose we have a beam of size k = 2

(−,−,−)

Expand all the states in the beam

Score the newly created states

(A, −, −)

(B, −, −)

(C, −, −)

0.9

10

-3

Beam search: A compromise
• Keep size-limited priority queue of states

– Called the beam, sorted by total score for the state

• At each step:
– Explore all transitions from the current state
– Add all to beam and trim the size

44

Example: Suppose we have a beam of size k = 2

(−,−,−)

Expand all the states in the beam

Score the newly created states

The top k new states form the
new beam (sorted)

(𝐴, −, −)

(𝐵, −, −)

(C, −, −)

0.9

10

-3

Beam search: A compromise
• Keep size-limited priority queue of states

– Called the beam, sorted by total score for the state

• At each step:
– Explore all transitions from the current state
– Add all to beam and trim the size

45

Example: Suppose we have a beam of size k = 2

(−,−,−)

Expand all the states in the beam

Score the newly created states

The top k new states form the
new beam (sorted)

(B, −, −)
(A, −, −)

Beam search: A compromise
• Keep size-limited priority queue of states

– Called the beam, sorted by total score for the state

• At each step:
– Explore all transitions from the current state
– Add all to beam and trim the size

46

Example: Suppose we have a beam of size k = 2

(−,−,−)

Expand all the states in the beam

Score the newly created states

The top k new states form the
new beam (sorted)

(B, −, −)
(A, −, −)

Now we are ready for the next step

Beam search: A compromise
• Keep size-limited priority queue of states

– Called the beam, sorted by total score for the state

• At each step:
– Explore all transitions from the current state
– Add all to beam and trim the size

47

Example: Suppose we have a beam of size k = 2

(−,−,−)

Expand all the states in the beam

(B, −, −)
(A, −, −)

B, A, −
(B, B, −)
(B, C, −)
(A, A, −)
(A, B, −)
(A, C, −)

Beam search: A compromise
• Keep size-limited priority queue of states

– Called the beam, sorted by total score for the state

• At each step:
– Explore all transitions from the current state
– Add all to beam and trim the size

48

Example: Suppose we have a beam of size k = 2

(−,−,−)

Expand all the states in the beam

Score the newly created states(B, −, −)
(A, −, −)

B, A, −
(B, B, −)
(B, C, −)
(A, A, −)
(A, B, −)
(A, C, −)

0.1
-3
10
20
-1
4.1

Beam search: A compromise
• Keep size-limited priority queue of states

– Called the beam, sorted by total score for the state

• At each step:
– Explore all transitions from the current state
– Add all to beam and trim the size

49

Example: Suppose we have a beam of size k = 2

(−,−,−)

Expand all the states in the beam

Score the newly created states

The top k new states form the
new beam (sorted)

(B, −, −)
(A, −, −)

0.1
-3
10
20
-1
4.1

B, A, −
(B, B, −)
(B, C, −)
(A, A, −)
(A, B, −)
(A, C, −)

Beam search: A compromise
• Keep size-limited priority queue of states

– Called the beam, sorted by total score for the state

• At each step:
– Explore all transitions from the current state
– Add all to beam and trim the size

50

Example: Suppose we have a beam of size k = 2

(−,−,−)

Expand all the states in the beam

Score the newly created states

The top k new states form the
new beam (sorted)

(B, −, −)
(A, −, −)

(A, A, −)
(B, C, −)

Beam search: A compromise
• Keep size-limited priority queue of states

– Called the beam, sorted by total score for the state

• At each step:
– Explore all transitions from the current state
– Add all to beam and trim the size

51

Example: Suppose we have a beam of size k = 2

(−,−,−) (B, −, −)
(A, −, −)

(A, A, −)
(B, C, −)

(A, A, B)
(B, C, C)

Beam search: A compromise
• Keep size-limited priority queue of states

– Called the beam, sorted by total score for the state

• At each step:
– Explore all transitions from the current state
– Add all to beam and trim the size

52

Example: Suppose we have a beam of size k = 2

(−,−,−) (B, −, −)
(A, −, −)

(A, A, −)
(B, C, −)

(𝐴, 𝐴, 𝐵)
(B, C, C)

Final answer: Top of the beam at the end of search

Beam search: A compromise
• Keep size-limited priority queue of states

– Called the beam, sorted by total score for the state

• At each step:
– Explore all transitions from the current state
– Add all to beam and trim the size

• The good: Explores more than greedy search
– Greedy search is beam search with beam size 1

• The bad: A good state might fall out of the beam

• In general, easy to implement, very popular
– No guarantees

53

Beam search: A compromise
• Keep size-limited priority queue of states

– Called the beam, sorted by total score for the state

• At each step:
– Explore all transitions from the current state
– Add all to beam and trim the size

• The good: Explores more than greedy search
– Greedy search is beam search with beam size 1

• The bad: A good state might fall out of the beam

• In general, easy to implement, very popular
– No guarantees

54Questions?

Summary: Inference as graph search

• MAP inference with discrete random variables involves
finding a score maximizing assignment to variables

• We can incrementally construct such an assignment
using graph algorithms
– Many inference algorithms are efficient dynamic programming

formulations
– General graph search is also helpful

• Popular heuristics in this family of methods:
– Greedy search
– Beam search

55

