Inference: Graph Search

CS 6355: Structured Prediction

THE
U UNIVERSITY
OF UTAH

So far in the class

e Thinking about structures

— A graph, a collection of parts that are labeled jointly, a collection of
decisions

e Algorithms for learning

— Local learning
e Learn parameters for individual components independently
* Learning algorithm not aware of the full structure
— Global learning
e Learn parameters for the full structure
* Learning algorithm “knows” about the full structure

* Next: Prediction
— Sets structured prediction apart from binary/multiclass

Inference

What is inference?
— An overview of what we have seen before
— Combinatorial optimization
— Different views of inference

 Graph algorithms
— Dynamic programming, greedy algorithms, search

* Integer programming

e Heuristics for inference
— Sampling

 Learning to search

Inference

What is inference?
— An overview of what we have seen before
— Combinatorial optimization
— Different views of inference

* Graph algorithms
— Dynamic programming, greedy algorithms, search

* Integer programming

e Heuristics for inference
— Sampling

 Learning to search

Variable elimination: Max-product

We have a collection of inference variables that need to be
assigned

V= 0uvYs-)

Variable elimination: Max-product

We have a collection of inference variables that need to be
assigned

V= 0uvYs-)

General algorithm
— First fix an ordering of the variables, say (y{, v, -*)
— lteratively:

* Find the best value for y, given the values of the
previous neighbors

— Use back pointers to find final answer

Variable elimination: Max-product

We have a collection of inference variables that need to be
assigned

V= 0uvYs-)

General algorithm

— First fix an ordering of the variables, say (y1, v, --*)
— Iteratively:

* Find the best value for y, given the values of the
previous neighbors

— Use back pointers to find final answer

| Viterbi is an instance of max-product variable elimination

Variable elimination example

als]c[p| transitions(yq,y,)

A

B

C

D

OF=oS oM
] [] m

A
B
c

emissions(y,)

Variable elimination example

A[(B|C|D

transitions(yy, ¥5)

emissions(y,)

score—local(y;, y;+1) = emissions(y;,,) + transitions(y;, y;41)

Variable elimination example

A[(B|C|D

transitions(yy, ¥5)

emissions(y,)

score—local(y;, y;+1) = emissions(y;,,) + transitions(y;, y;41)

First eliminatey, score;(y;) = rrjllax(scorel(yl) + score—local(yl,yz))
1

10

Variable elimination example

A[B|C|D

transitions(y,, y3)

Y2 Y3

w) O‘W‘ZD\

score,(y,)

score—local(y;, y;+1) = emissions(y;,,) + transitions(y;, y;41)

11

Variable elimination example

[a[B]c]D transitions(y,, y3)
Y Y3
A
B
C
D
score, (y,)

score—local(y;, y;+1) = emissions(y;,,) + transitions(y;, y;41)

Next eliminatey, scorez(yz) = n}ax(scorez (y2) + SCOF@—IOCﬁl()’z:)@))
2

12

Variable elimination example

A[(B|C|D

scorez(ys)

transitions(ys, y,)

score—local(y;, y;+1) = emissions(y;,,) + transitions(y;, y;41)

13

Variable elimination example

A[(B|C|D

scores (y3)

transitions(ys, y,)

score—local(y;, y;+1) = emissions(y;,,) + transitions(y;, y;41)

Next eliminate y; Scores(y,) = rr;aX(scoreg(ys) + score—local(ys, y,))
4

14

Variable elimination example

I

C
D

score, (v,)
After n such steps

We have all the information to make a decision for y,

15

Variable elimination: Max-product

We have a collection of inference variables that need to be
assigned

V= 0uvYs-)

General algorithm

— First fix an ordering of the variables, say (y1, v, --*)
— Iteratively:

* Find the best value for y, given the values of the
previous neighbors

— Use back pointers to find final answer

| Viterbi is an instance of max-product variable elimination

16

Variable elimination: Max-product

We have a collection of inference variables that need to be
assigned

V= 0uvYs-)

General algorithm ‘ Challenge: What makes a good order?

— First fix an ordering of the variables, say (v, y,, -**)
— lteratively:

* Find the best value for y, given the values of the
previous neighbors

— Use back pointers to find final answer

| Viterbi is an instance of max-product variable elimination

17

Max-product algorithm

 Where is the “product” in max-product?

Wip(x,y) =) score=local(y;, i)

l

18

Max-product algorithm

 Where is the “product” in max-product?

Wip(x,y) =) score=local(y;, i)

l

* Generalizes beyond sequence models
— Requires a clever ordering of the output variables

— Exact inference when the output is a tree
* If not, no guarantees

* Also works for summing over all structures

— Sum-product message passing
— Belief propagation

19

Dynamic programming

* General solution strategy for inference

 Examples
— Viterbi, CKY algorithm, Dijkstra’s algorithm, and many more

 Key ideas:
— Memoization: Don’t re-compute something you already have
— Requires an ordering of the variables

e Remember:
— The hypergraph may not allow for the best ordering of the variables

— Existence of a dynamic programming algorithm does not mean polynomial
time/space.
e State space may be too big. Use heuristics such as beam search

20

Graph algorithms for inference

 Many graph algorithms you have seen are applicable
for inference

* Some examples
— “Best” path. Eg: Viterbi, parsing
— Min-cut/max-flow. Eg: Image segmentation
— Maximum spanning tree. Eg: Dependency parsing
— Bipartite matching. Eg: Aligning sequences

21

Best path for inference

* Broad description of approach:
— Construct a graph/hypergraph from the input and output

— Decompose the total score along edge/hyperedges

— Inference is finding the shortest/longest path in this
weighted graph

Viterbi algorithm finds a shortest path in a specific graph!

22

Viterbi algorithm as best path

Goal: To find the highest scoring path in this trellis

Different
labels for ¢~
eachstep ™

Time steps

23

Viterbi algorithm as best path

Goal: To find the highest scoring path in this trellis

Different
labels for ¢~
eachstep ™

Viterbi algorithm as best path

Goal: To find the highest scoring path in this trellis

Different
labels for ¢~
eachstep °

No cycles
Nodes and edges have a specific meaning

Ordering helps =

Best path algorithms

* Dijkstra’s algorithm

— Cost functions should be non-negative

e Bellman-ford algorithm

— Slower than Dijkstra’s algorithm but works with negative
weights

e A* search

— If you have a heuristic that gives the future path cost from
a state but does not over-estimate it

26

Inference as search: Setting

Predicting a graph as a sequence of decisions

Data structures:

— State: Encodes partial structure

— Transitions: Move from one partial structure to another
— Start state

— End state: We have a full structure
* There may be more than one end state

Each transition is scored with the learned model

Goal: Find an end state that has the highest total score

27

Example

e State: Triples (y4, V3, Y3) all possibly unknown
® (AI W, _)I (_; AI A)I (_I W, ');---

* Transition: Fill in one of the unknowns
e Start state: (-,-,-)

* End state: All three y’s are assigned

Suppose each y can be one
of A,BorC

28

Example

Suppose each y can be one
of A,BorC

Start state: No assighnments

(_I_I_)

e State: Triples (y4, V3, Y3) all possibly unknown
® (/\I W, _)I (_; /\I A)1 (_I W, ');-“

* Transition: Fill in one of the unknowns
e Start state: (-,-,-)

* End state: All three y’s are assigned

Example

Suppose each y can be one
of A,BorC

(_I_I_)

» State: Triples (y4, V5, V3) all possibly unknown /N

(A5 -), (A A), (-). (A,-,-) (B,-,-) (C,--)

* Transition: Fill in one of the unknowns o .
Fill in a label in a slot. The

edge is scored by the factors

e Start state: (-,-,-)
that can be computed so far

* End state: All three y’s are assigned

30

Example

Suppose each y can be one

of A,BorC
(-I_I_)
e State: Triples (y4, V3, Y3) all possibly unknown /N
¢ AI_I_I_IAIAI_I_I_I"'
(b) (- -) (A,-,-) (B,-,-) (C,--)
* Transition: Fill in one of the unknowns \l \I
(AIAI_) """ (CICI_)

e Start state: (-,-,-)

_ Keep assigning values to slots
* End state: All three y’s are assigned

31

Example

Suppose each y can be one

of A,BorC
(_I_I_)
» State: Triples (y4, V5, V3) all possibly unknown /N
¢ AI_I_I_IAIAI_I_I_I"'
() () () (AI_I_) (BI_I_) (CI_I_)
* Transition: Fill in one of the unknowns \l \
(AIAI_) (CICI_)
e Start state: (-,-,-) / \
e End state: All three y’s are assigned (A,AA) (C,C,C)

Till we reach a goal state 3>

Example

e State: Triples (y4, V3, Y3) all possibly unknown
® (AI W, _)I (_; AI A)I (_I W, ');---

* Transition: Fill in one of the unknowns

e Start state: (-,-,-)

Suppose each y can be one

of A,BorC

ordering (yi, Y2, ¥3)

* End state: All three y’s are assigned

Note: Here we have assumed an

A/(_’;’_)NA
(A--) (B,-,-))
/ N\
(AA,-) (C,C,-)
(A,AA) (C,C,C)

33

Example

Suppose each y can be one
of A,BorC

Note: Here we have assumed an
ordering (y1, Y2, Y3)

How do the transitions get scored?

» State: Triples (y4, V5, V3) all possibly unknown /N

° AI_I_I_IAIAI_I_I_I"'
() () () (AI_I_) (BI_I_) (CI_I_)
* Transition: Fill in one of the unknowns \l \
(AIAI_) (CICI_)
e Start state: (-,-,-) / \
e End state: All three y’s are assigned (A,AA) (C,C,C)

34

Example

e State: Triples (y4, V3, Y3) all possibly unknown
® (AI W, _)I (_; AI A)I (_I W, ');---

* Transition: Fill in one of the unknowns

e Start state: (-,-,-)

Suppose each y can be one
of A,BorC

The goal of inference: To traverse
this graph from the start state and
reach the end state that has the
best (highest/lowest) score

* End state: All three y’s are assigned

a-] [e-a] [
[N\
(AA,-) (C,C,-)
(A,AA) (C,C,C)

35

Graph search algorithms

e Standard graph search algorithms can be used for inference

* Breadth/depth first search

— Keep a stack/queue/priority queue of “open” states
* That s, states that are to be explored

— The good: Guaranteed to be correct
* Explores every option

— The bad?

* Explores every option: Memory is an issue
* Could be slow for any non-trivial graph

36

Greedy search

e At each state, choose the highest scoring next transition

— Keep only one state in memory: The current state

e What is the problem?
— Local decisions may override global optimum

— Does not explore full search space

* Greedy algorithms can give the true optimum for special
classes of problems

— Eg: Maximum-spanning tree algorithms are greedy

Questions?

37

Beam search: A compromise

» Keep size-limited priority queue of states
— Called the beam, sorted by total score for the state

e At each step:
— Explore all transitions from the current state
— Add all to beam and trim the size

38

Beam search: A compromise

» Keep size-limited priority queue of states
— Called the beam, sorted by total score for the state

e At each step:
— Explore all transitions from the current state
— Add all to beam and trim the size

Example: Suppose we have a beam of size k = 2

39

Beam search: A compromise

» Keep size-limited priority queue of states
— Called the beam, sorted by total score for the state

e At each step:
— Explore all transitions from the current state
— Add all to beam and trim the size

Example: Suppose we have a beam of size k = 2

At the beginning, the beam has
==, — only one element, the start state

)

40

Beam search: A compromise

» Keep size-limited priority queue of states
— Called the beam, sorted by total score for the state

e At each step:
— Explore all transitions from the current state
— Add all to beam and trim the size

Example: Suppose we have a beam of size k = 2

7 (A=) Expand all the states in the beam

R N G > (B)_r_)
)) [~~._

T (Cr) _)

41

Beam search: A compromise

» Keep size-limited priority queue of states
— Called the beam, sorted by total score for the state

e At each step:
— Explore all transitions from the current state
— Add all to beam and trim the size

Example: Suppose we have a beam of size k = 2

7 (A,——) 059 Expand all the states in the beam

(— — — P > (B,——) 10 Score the newly created states

42

Beam search: A compromise

» Keep size-limited priority queue of states
— Called the beam, sorted by total score for the state

e At each step:
— Explore all transitions from the current state
— Add all to beam and trim the size

Example: Suppose we have a beam of size k = 2

7 (A,——) 059 Expand all the states in the beam

(— — — P > (B,——) 10 Score the newly created states

43

Beam search: A compromise

» Keep size-limited priority queue of states
— Called the beam, sorted by total score for the state

e At each step:
— Explore all transitions from the current state

— Add all to beam and trim the size

Example: Suppose we have a beam of size k = 2

7 (4,—,—-) 09 Expand all the states in the beam
(— — — P > (B,——) 10 Score the newly created states
B (S . The top k new states form the

new beam (sorted)

44

Beam search: A compromise

» Keep size-limited priority queue of states
— Called the beam, sorted by total score for the state

e At each step:
— Explore all transitions from the current state
— Add all to beam and trim the size

Example: Suppose we have a beam of size k = 2

Expand all the states in the beam

)

(== — (B,—, —) Score the newly created states

(A —,—) The top k new states form the
new beam (sorted)

45

Beam search: A compromise

» Keep size-limited priority queue of states
— Called the beam, sorted by total score for the state

e At each step:
— Explore all transitions from the current state
— Add all to beam and trim the size

Example: Suppose we have a beam of size k = 2

Expand all the states in the beam

)

(== — (B,—, —) Score the newly created states

(A —,—) The top k new states form the
new beam (sorted)

Now we are ready for the next step
46

Beam search: A compromise

» Keep size-limited priority queue of states
— Called the beam, sorted by total score for the state

e At each step:
— Explore all transitions from the current state
— Add all to beam and trim the size

Example: Suppose we have a beam of size k = 2

Expand all the states in the beam

(Br Ar _)

(B, B, _)

(_; T > (Br D _) ________ S (B, C, —)
(A, -, —) (A, A, _)

(Ar Br _)

(Ar Cr _)

47

Beam search: A compromise

» Keep size-limited priority queue of states

— Called the beam, sorted by total score for the state

e At each step:

— Explore all transitions from the current state

— Add all to beam and trim the size

(-

)

Example: Suppose we have a beam of size k = 2

(Br) _)

(Ar) _)

-------- >

(Br Ar _)
(B, B, _)
(B' C' _)
(A, A, _)
(Ar Br _)
(Ar Cr _)

0.1
-3
10
20
-1
4.1

Expand all the states in the beam

Score the newly created states

48

Beam search: A compromise

» Keep size-limited priority queue of states
— Called the beam, sorted by total score for the state

e At each step:
— Explore all transitions from the current state
— Add all to beam and trim the size

Example: Suppose we have a beam of size k = 2

Expand all the states in the beam

(B,A,—) 0.1
(B, B, _) -3
Score the newly created states
T T B; T —
e e S e
4 --) EA’ B _% 1 The top k new states form the

(AC—) 4.1 new beam (sorted)

49

Beam search: A compromise

» Keep size-limited priority queue of states
— Called the beam, sorted by total score for the state

e At each step:
— Explore all transitions from the current state
— Add all to beam and trim the size

Example: Suppose we have a beam of size k = 2

Expand all the states in the beam

)

(== — (B,—, —) (A A, —) Score the newly created states

(A —,—) (B,C,—) The top k new states form the
new beam (sorted)

50

Beam search: A compromise

» Keep size-limited priority queue of states
— Called the beam, sorted by total score for the state

e At each step:
— Explore all transitions from the current state
— Add all to beam and trim the size

Example: Suppose we have a beam of size k = 2

(_' T (B') _) (A, A, _) (A' A' B)

(A —,-) (B,C,—) (B,C,0)

Beam search: A compromise

» Keep size-limited priority queue of states
— Called the beam, sorted by total score for the state

e At each step:
— Explore all transitions from the current state
— Add all to beam and trim the size

Example: Suppose we have a beam of size k = 2

(_' T (B') _) (A, A, _) (Ar Ar B)
(A —,—) (B,C,—) (B,C,C)

Final answer: Top of the beam at the end of search

Beam search: A compromise

» Keep size-limited priority queue of states
— Called the beam, sorted by total score for the state

e At each step:
— Explore all transitions from the current state
— Add all to beam and trim the size

 The good: Explores more than greedy search
— Greedy search is beam search with beam size 1

 The bad: A good state might fall out of the beam

* In general, easy to implement, very popular

— No guarantees

53

Beam search: A compromise

» Keep size-limited priority queue of states
— Called the beam, sorted by total score for the state

e At each step:
— Explore all transitions from the current state
— Add all to beam and trim the size

 The good: Explores more than greedy search
— Greedy search is beam search with beam size 1

 The bad: A good state might fall out of the beam

* In general, easy to implement, very popular

— No guarantees

Questions? 9

Summary: Inference as graph search

 MAP inference with discrete random variables involves
finding a score maximizing assignment to variables

 We can incrementally construct such an assignment
using graph algorithms

— Many inference algorithms are efficient dynamic programming
formulations

— General graph search is also helpful

e Popular heuristics in this family of methods:
— Greedy search
— Beam search

55

