
CS 6355: Structured Prediction

Inference: Graph Search
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So far in the class

• Thinking about structures
– A graph, a collection of parts that are labeled jointly, a collection of 

decisions 

• Algorithms for learning
– Local learning

• Learn parameters for individual components independently 
• Learning algorithm not aware of the full structure

– Global learning
• Learn parameters for the full structure 
• Learning algorithm “knows” about the full structure

• Next: Prediction
– Sets structured prediction apart from binary/multiclass
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Inference

• What is inference?
– An overview of what we have seen before
– Combinatorial optimization
– Different views of inference

• Graph algorithms
– Dynamic programming, greedy algorithms, search

• Integer programming

• Heuristics for inference
– Sampling

• Learning to search
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Inference

• What is inference?
– An overview of what we have seen before
– Combinatorial optimization
– Different views of inference

• Graph algorithms
– Dynamic programming, greedy algorithms, search

• Integer programming

• Heuristics for inference
– Sampling

• Learning to search
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Variable elimination: Max-product

We have a collection of inference variables that need to be 
assigned 

𝐲 = (𝑦1, 𝑦2,!)
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Variable elimination: Max-product

We have a collection of inference variables that need to be 
assigned 

𝐲 = (𝑦1, 𝑦2,!)

General algorithm
– First fix an ordering of the variables, say (𝑦1, 𝑦2,!)
– Iteratively:
• Find the best value for yi given the values of the 

previous neighbors
– Use back pointers to find final answer
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assigned 

𝐲 = (𝑦1, 𝑦2,!)
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– Use back pointers to find final answer
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Viterbi is an instance of max-product variable elimination



Variable elimination example
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emissions 𝑦!

transitions(𝑦!, 𝑦")



Variable elimination example
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y2 y3y1 yn…

A

B

C

D

A B C D
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C

D

score−local 𝑦# , 𝑦#$! = emissions 𝑦#$! + transitions(𝑦# , 𝑦#$!)

emissions 𝑦!

transitions(𝑦!, 𝑦")



Variable elimination example
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y2 y3y1 yn…

First eliminate y1

A

B
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D

A B C D
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B

C

D

score" 𝑦" = max
%!

score! 𝑦! + score−local 𝑦!, 𝑦"

score−local 𝑦# , 𝑦#$! = emissions 𝑦#$! + transitions(𝑦# , 𝑦#$!)

emissions 𝑦!

transitions(𝑦!, 𝑦")



Variable elimination example
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y2 y3 yn…

A

B

C

D

A B C D

A

B

C

D

score−local 𝑦# , 𝑦#$! = emissions 𝑦#$! + transitions(𝑦# , 𝑦#$!)

score" 𝑦"

transitions(𝑦", 𝑦&)



Variable elimination example
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y2 y3 yn…

A

B

C

D

A B C D

A

B

C

D

Next eliminate y2 score& 𝑦& = max
%"

score" 𝑦" + score−local 𝑦", 𝑦&

score−local 𝑦# , 𝑦#$! = emissions 𝑦#$! + transitions(𝑦# , 𝑦#$!)

score" 𝑦"

transitions(𝑦", 𝑦&)



Variable elimination example
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y3 yn…

A

B

C

D

A B C D

A

B

C

D

score−local 𝑦# , 𝑦#$! = emissions 𝑦#$! + transitions(𝑦# , 𝑦#$!)

score& 𝑦&

transitions(𝑦&, 𝑦')



Variable elimination example
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y3 yn…

A

B

C

D

A B C D

A

B

C

D

Next eliminate y3 score' 𝑦' = max
%#

score& 𝑦& + score−local 𝑦&, 𝑦'

score−local 𝑦# , 𝑦#$! = emissions 𝑦#$! + transitions(𝑦# , 𝑦#$!)

score& 𝑦&

transitions(𝑦&, 𝑦')



Variable elimination example

15

yn

A

B

C

D

We have all the information to make a decision for yn

score( 𝑦)
After n such steps



Variable elimination: Max-product

We have a collection of inference variables that need to be 
assigned 

𝐲 = (𝑦1, 𝑦2,!)

General algorithm
– First fix an ordering of the variables, say (𝑦1, 𝑦2,!)
– Iteratively:
• Find the best value for yi given the values of the 

previous neighbors
– Use back pointers to find final answer
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Viterbi is an instance of max-product variable elimination



Variable elimination: Max-product

We have a collection of inference variables that need to be 
assigned 

𝐲 = (𝑦1, 𝑦2,!)

General algorithm
– First fix an ordering of the variables, say (𝑦1, 𝑦2,!)
– Iteratively:
• Find the best value for yi given the values of the 

previous neighbors
– Use back pointers to find final answer
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Viterbi is an instance of max-product variable elimination

Challenge: What makes a good order?



Max-product algorithm

• Where is the “product” in max-product?

𝐰4𝜙 𝐱, 𝐲 =*
5

score−local(𝑦5, 𝑦567)

• Generalizes beyond sequence models
– Requires a clever ordering of the output variables
– Exact inference when the output is a tree

• If not, no guarantees

• Also works for summing over all structures
– Sum-product message passing
– Belief propagation
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Max-product algorithm

• Where is the “product” in max-product?

𝐰4𝜙 𝐱, 𝐲 =*
5

score−local(𝑦5, 𝑦567)

• Generalizes beyond sequence models
– Requires a clever ordering of the output variables
– Exact inference when the output is a tree

• If not, no guarantees

• Also works for summing over all structures
– Sum-product message passing
– Belief propagation
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Dynamic programming

• General solution strategy for inference

• Examples
– Viterbi, CKY algorithm, Dijkstra’s algorithm, and many more

• Key ideas:
– Memoization: Don’t re-compute something you already have
– Requires an ordering of the variables

• Remember:
– The hypergraph may not allow for the best ordering of the variables
– Existence of a dynamic programming algorithm does not mean polynomial 

time/space. 
• State space may be too big. Use heuristics such as beam search
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Graph algorithms for inference

• Many graph algorithms you have seen are applicable 
for inference

• Some examples
– “Best” path. Eg: Viterbi, parsing
– Min-cut/max-flow. Eg: Image segmentation
– Maximum spanning tree. Eg: Dependency parsing
– Bipartite matching. Eg: Aligning sequences
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Best path for inference

• Broad description of approach:
– Construct a graph/hypergraph from the input and output

– Decompose the total score along edge/hyperedges

– Inference is finding the shortest/longest path in this 
weighted graph

Viterbi algorithm finds a shortest path in a specific graph!
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Viterbi algorithm as best path

23

Goal: To find the highest scoring path in this trellis

Time steps

Different 
labels for 
each step



Viterbi algorithm as best path
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Goal: To find the highest scoring path in this trellis

Different 
labels for 
each step



Viterbi algorithm as best path
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Goal: To find the highest scoring path in this trellis

No cycles
Nodes and edges have a specific meaning
Ordering helps

Different 
labels for 
each step



Best path algorithms

• Dijkstra’s algorithm
– Cost functions should be non-negative

• Bellman-ford algorithm
– Slower than Dijkstra’s algorithm but works with negative 

weights

• A* search 
– If you have a heuristic that gives the future path cost from 

a state but does not over-estimate it
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Inference as search: Setting

• Predicting a graph as a sequence of decisions

• Data structures:
– State: Encodes partial structure
– Transitions: Move from one partial structure to another
– Start state
– End state: We have a full structure

• There may be more than one end state

• Each transition is scored with the learned model

• Goal: Find an end state that has the highest total score
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Example
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x1 x2 x3

y3

y2

y1

• State: Triples (y1, y2, y3) all possibly unknown
• (A, -, -), (-, A, A), (-, -, -),…

• Transition: Fill in one of the unknowns

• Start state: (-,-,-)

• End state: All three y’s are assigned

Suppose each y can be one 
of A, B or C



Example
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x1 x2 x3

y3

y2

y1

• State: Triples (y1, y2, y3) all possibly unknown
• (A, -, -), (-, A, A), (-, -, -),…

• Transition: Fill in one of the unknowns

• Start state: (-,-,-)

• End state: All three y’s are assigned

(-,-,-)

Suppose each y can be one 
of A, B or C

Start state: No assignments



Example
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x1 x2 x3

y3

y2

y1

• State: Triples (y1, y2, y3) all possibly unknown
• (A, -, -), (-, A, A), (-, -, -),…

• Transition: Fill in one of the unknowns

• Start state: (-,-,-)

• End state: All three y’s are assigned

(-,-,-)

(A,-,-) (B,-,-) (C,-,-)

Suppose each y can be one 
of A, B or C

Fill in a label in a slot. The 
edge is scored by the factors 
that can be computed so far



Example
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x1 x2 x3

y3

y2

y1

• State: Triples (y1, y2, y3) all possibly unknown
• (A, -, -), (-, A, A), (-, -, -),…

• Transition: Fill in one of the unknowns

• Start state: (-,-,-)

• End state: All three y’s are assigned

(-,-,-)

(A,-,-) (B,-,-) (C,-,-)

(A,A,-) (C,C,-)…..

Suppose each y can be one 
of A, B or C

Keep assigning values to slots



Example
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x1 x2 x3

y3

y2

y1

• State: Triples (y1, y2, y3) all possibly unknown
• (A, -, -), (-, A, A), (-, -, -),…

• Transition: Fill in one of the unknowns

• Start state: (-,-,-)

• End state: All three y’s are assigned

(-,-,-)

(A,-,-) (B,-,-) (C,-,-)

(A,A,-) (C,C,-)

(A,A,A) (C,C,C)

…..

Suppose each y can be one 
of A, B or C

Till we reach a goal state



Example
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x1 x2 x3

y3

y2

y1

Suppose each y can be one 
of A, B or C

• State: Triples (y1, y2, y3) all possibly unknown
• (A, -, -), (-, A, A), (-, -, -),…

• Transition: Fill in one of the unknowns

• Start state: (-,-,-)

• End state: All three y’s are assigned

(-,-,-)

(A,-,-) (B,-,-) (C,-,-)

(A,A,-) (C,C,-)

(A,A,A) (C,C,C)

…..

Note: Here we have assumed an 
ordering (y1, y2, y3)



Example
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x1 x2 x3

y3

y2

y1

Suppose each y can be one 
of A, B or C

• State: Triples (y1, y2, y3) all possibly unknown
• (A, -, -), (-, A, A), (-, -, -),…

• Transition: Fill in one of the unknowns

• Start state: (-,-,-)

• End state: All three y’s are assigned

(-,-,-)

(A,-,-) (B,-,-) (C,-,-)

(A,A,-) (C,C,-)

(A,A,A) (C,C,C)

…..

Note: Here we have assumed an 
ordering (y1, y2, y3)

How do the transitions get scored?



Example
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x1 x2 x3

y3

y2

y1

Suppose each y can be one 
of A, B or C

• State: Triples (y1, y2, y3) all possibly unknown
• (A, -, -), (-, A, A), (-, -, -),…

• Transition: Fill in one of the unknowns

• Start state: (-,-,-)

• End state: All three y’s are assigned

(-,-,-)

(A,-,-) (B,-,-) (C,-,-)

(A,A,-) (C,C,-)

(A,A,A) (C,C,C)

…..

The goal of inference: To traverse 
this graph from the start state and 
reach the end state that has the 
best (highest/lowest) score



Graph search algorithms

• Standard graph search algorithms can be used for inference

• Breadth/depth first search
– Keep a stack/queue/priority queue of “open” states

• That is, states that are to be explored

– The good: Guaranteed to be correct
• Explores every option

– The bad?
• Explores every option: Memory is an issue
• Could be slow for any non-trivial graph
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Greedy search

• At each state, choose the highest scoring next transition
– Keep only one state in memory: The current state

• What is the problem?
– Local decisions may override global optimum
– Does not explore full search space

• Greedy algorithms can give the true optimum for special 
classes of problems 
– Eg: Maximum-spanning tree algorithms are greedy

37Questions?



Beam search: A compromise
• Keep size-limited priority queue of states

– Called the beam, sorted by total score for the state

• At each step:
– Explore all transitions from the current state
– Add all to beam and trim the size 
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Beam search: A compromise
• Keep size-limited priority queue of states

– Called the beam, sorted by total score for the state

• At each step:
– Explore all transitions from the current state
– Add all to beam and trim the size 
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Example: Suppose we have a beam of size k = 2



Beam search: A compromise
• Keep size-limited priority queue of states

– Called the beam, sorted by total score for the state

• At each step:
– Explore all transitions from the current state
– Add all to beam and trim the size 
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Example: Suppose we have a beam of size k = 2

(−,−,−)
At the beginning, the beam has 
only one element, the start state



Beam search: A compromise
• Keep size-limited priority queue of states

– Called the beam, sorted by total score for the state

• At each step:
– Explore all transitions from the current state
– Add all to beam and trim the size 
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Example: Suppose we have a beam of size k = 2

(−,−,−)

Expand all the states in the beam(A, −, −)

(B, −, −)

(C, −, −)



Beam search: A compromise
• Keep size-limited priority queue of states

– Called the beam, sorted by total score for the state

• At each step:
– Explore all transitions from the current state
– Add all to beam and trim the size 
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Example: Suppose we have a beam of size k = 2

(−,−,−)

Expand all the states in the beam

Score the newly created states

(A, −, −)

(B, −, −)

(C, −, −)

0.9

10

-3



Beam search: A compromise
• Keep size-limited priority queue of states

– Called the beam, sorted by total score for the state

• At each step:
– Explore all transitions from the current state
– Add all to beam and trim the size 
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Example: Suppose we have a beam of size k = 2

(−,−,−)

Expand all the states in the beam

Score the newly created states

(A, −, −)

(B, −, −)

(C, −, −)

0.9

10

-3



Beam search: A compromise
• Keep size-limited priority queue of states

– Called the beam, sorted by total score for the state

• At each step:
– Explore all transitions from the current state
– Add all to beam and trim the size 
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Example: Suppose we have a beam of size k = 2

(−,−,−)

Expand all the states in the beam

Score the newly created states

The top k new states form the 
new beam (sorted)

(𝐴, −, −)

(𝐵, −, −)

(C, −, −)

0.9

10

-3



Beam search: A compromise
• Keep size-limited priority queue of states

– Called the beam, sorted by total score for the state

• At each step:
– Explore all transitions from the current state
– Add all to beam and trim the size 
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Example: Suppose we have a beam of size k = 2

(−,−,−)

Expand all the states in the beam

Score the newly created states

The top k new states form the 
new beam (sorted)

(B, −, −)
(A, −, −)



Beam search: A compromise
• Keep size-limited priority queue of states

– Called the beam, sorted by total score for the state

• At each step:
– Explore all transitions from the current state
– Add all to beam and trim the size 
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Example: Suppose we have a beam of size k = 2

(−,−,−)

Expand all the states in the beam

Score the newly created states

The top k new states form the 
new beam (sorted)

(B, −, −)
(A, −, −)

Now we are ready for the next step



Beam search: A compromise
• Keep size-limited priority queue of states

– Called the beam, sorted by total score for the state

• At each step:
– Explore all transitions from the current state
– Add all to beam and trim the size 
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Example: Suppose we have a beam of size k = 2

(−,−,−)

Expand all the states in the beam

(B, −, −)
(A, −, −)

B, A, −
(B, B, −)
(B, C, −)
(A, A, −)
(A, B, −)
(A, C, −)



Beam search: A compromise
• Keep size-limited priority queue of states

– Called the beam, sorted by total score for the state

• At each step:
– Explore all transitions from the current state
– Add all to beam and trim the size 
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Example: Suppose we have a beam of size k = 2

(−,−,−)

Expand all the states in the beam

Score the newly created states(B, −, −)
(A, −, −)

B, A, −
(B, B, −)
(B, C, −)
(A, A, −)
(A, B, −)
(A, C, −)

0.1
-3
10
20
-1
4.1



Beam search: A compromise
• Keep size-limited priority queue of states

– Called the beam, sorted by total score for the state

• At each step:
– Explore all transitions from the current state
– Add all to beam and trim the size 

49

Example: Suppose we have a beam of size k = 2

(−,−,−)

Expand all the states in the beam

Score the newly created states

The top k new states form the 
new beam (sorted)

(B, −, −)
(A, −, −)

0.1
-3
10
20
-1
4.1

B, A, −
(B, B, −)
(B, C, −)
(A, A, −)
(A, B, −)
(A, C, −)



Beam search: A compromise
• Keep size-limited priority queue of states

– Called the beam, sorted by total score for the state

• At each step:
– Explore all transitions from the current state
– Add all to beam and trim the size 
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Example: Suppose we have a beam of size k = 2

(−,−,−)

Expand all the states in the beam

Score the newly created states

The top k new states form the 
new beam (sorted)

(B, −, −)
(A, −, −)

(A, A, −)
(B, C, −)



Beam search: A compromise
• Keep size-limited priority queue of states

– Called the beam, sorted by total score for the state

• At each step:
– Explore all transitions from the current state
– Add all to beam and trim the size 
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Example: Suppose we have a beam of size k = 2

(−,−,−) (B, −, −)
(A, −, −)

(A, A, −)
(B, C, −)

(A, A, B)
(B, C, C)



Beam search: A compromise
• Keep size-limited priority queue of states

– Called the beam, sorted by total score for the state

• At each step:
– Explore all transitions from the current state
– Add all to beam and trim the size 
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Example: Suppose we have a beam of size k = 2

(−,−,−) (B, −, −)
(A, −, −)

(A, A, −)
(B, C, −)

(𝐴, 𝐴, 𝐵)
(B, C, C)

Final answer: Top of the beam at the end of search



Beam search: A compromise
• Keep size-limited priority queue of states

– Called the beam, sorted by total score for the state

• At each step:
– Explore all transitions from the current state
– Add all to beam and trim the size 

• The good: Explores more than greedy search
– Greedy search is beam search with beam size 1

• The bad: A good state might fall out of the beam

• In general, easy to implement, very popular
– No guarantees
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Beam search: A compromise
• Keep size-limited priority queue of states

– Called the beam, sorted by total score for the state

• At each step:
– Explore all transitions from the current state
– Add all to beam and trim the size 

• The good: Explores more than greedy search
– Greedy search is beam search with beam size 1

• The bad: A good state might fall out of the beam

• In general, easy to implement, very popular
– No guarantees
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Summary: Inference as graph search

• MAP inference with discrete random variables involves 
finding a score maximizing assignment to variables

• We can incrementally construct such an assignment 
using graph algorithms
– Many inference algorithms are efficient dynamic programming 

formulations
– General graph search is also helpful

• Popular heuristics in this family of methods:
– Greedy search
– Beam search
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