
CS 6355: Structured Prediction

Learning to Search

1
Some slides adapted from Daumé and Ross

Inference

• What is inference?
– An overview of what we have seen before
– Combinatorial optimization
– Different views of inference

• Graph algorithms
– Dynamic programming, greedy algorithms, search

• Integer programming

• Heuristics for inference
– Sampling

• Learning to search

2

Learning to Search

We have seen that inference as graph search
– Iteratively construct a series of partial structures
– Find the highest scoring structure in this fashion

Can we learn a model that is designed with such inference in mind?
– Learning to search is a way of formulating structured prediction

problems as a search problem
– Integrates learning and prediction into a unified framework

3

Overview

1. Preliminaries
– Learning to minimize costs
– Search problems and a generic search algorithm

2. Learning to search: A general formulation
3. LaSO: Learning as Search Optimization
4. SEARN: Search and Learning
5. DAgger: Dataset Aggregation

4

Overview

1. Preliminaries
– Learning to minimize costs
– Search problems and a generic search algorithm

2. Learning to search: A general formulation
3. LaSO: Learning as Search Optimization
4. SEARN: Search and Learning
5. DAgger: Dataset Aggregation

5

Learning to minimize prediction cost

6

x1 x2 x3

y3

y2

y1

Suppose each y can be one of A,
B or C, and the true label is
(𝑦1 = A, 𝑦2 = B, 𝑦3 = C)

𝐲 = (𝑦1, 𝑦2, 𝑦3)

Learning to minimize prediction cost

7

x1 x2 x3

y3

y2

y1

𝑐(𝐴, 𝐴, 𝐴) = 1
𝑐(𝐴, 𝐴, 𝐵) = 1
𝑐(𝐴, 𝐴, 𝐶) = 1

…
𝑐(𝐴, 𝐵, 𝐶) = 0

…
𝑐(𝐶, 𝐶, 𝐵) = 1
𝑐(𝐶, 𝐶, 𝐶) = 1

Suppose each y can be one of A,
B or C, and the true label is
(𝑦1 = A, 𝑦2 = B, 𝑦3 = C)

𝐲 = (𝑦1, 𝑦2, 𝑦3)

The cost vector for this input x can be:

The goal: Learn a classifier
that has lowest cost

Learning to minimize prediction cost

8

x1 x2 x3

y3

y2

y1

𝑐(𝐴, 𝐴, 𝐴) = 1
𝑐(𝐴, 𝐴, 𝐵) = 1
𝑐(𝐴, 𝐴, 𝐶) = 1

…
𝑐(𝐴, 𝐵, 𝐶) = 0

…
𝑐(𝐶, 𝐶, 𝐵) = 1
𝑐(𝐶, 𝐶, 𝐶) = 1

𝑐(𝐴, 𝐴, 𝐴) = 2
𝑐(𝐴, 𝐴, 𝐵) = 2
𝑐(𝐴, 𝐴, 𝐶) = 1

…
𝑐(𝐴, 𝐵, 𝐶) = 0

…
𝑐(𝐶, 𝐶, 𝐵) = 3
𝑐(𝐶, 𝐶, 𝐶) = 2

Hamming
Distance

or

Suppose each y can be one of A,
B or C, and the true label is
(𝑦1 = A, 𝑦2 = B, 𝑦3 = C)

𝐲 = (𝑦1, 𝑦2, 𝑦3)

The cost vector for this input x can be:

The goal: Learn a classifier
that has lowest cost

Learning to minimize prediction cost

9

x1 x2 x3

y3

y2

y1

𝑐(𝐴, 𝐴, 𝐴) = 1
𝑐(𝐴, 𝐴, 𝐵) = 1
𝑐(𝐴, 𝐴, 𝐶) = 1

…
𝑐(𝐴, 𝐵, 𝐶) = 0

…
𝑐(𝐶, 𝐶, 𝐵) = 1
𝑐(𝐶, 𝐶, 𝐶) = 1

𝑐(𝐴, 𝐴, 𝐴) = 2
𝑐(𝐴, 𝐴, 𝐵) = 2
𝑐(𝐴, 𝐴, 𝐶) = 1

…
𝑐(𝐴, 𝐵, 𝐶) = 0

…
𝑐(𝐶, 𝐶, 𝐵) = 3
𝑐(𝐶, 𝐶, 𝐶) = 2

Hamming
Distance

or

Suppose each y can be one of A,
B or C, and the true label is
(𝑦1 = A, 𝑦2 = B, 𝑦3 = C)

𝐲 = (𝑦1, 𝑦2, 𝑦3)

The cost vector for this input x can be:

The goal: Learn a classifier
that has lowest cost

What is the
dimensionality of the
cost vector c?

A Structured Prediction Problem

Learn a mapping ℎ(𝐱) from inputs 𝐱 to outputs 𝐲

• Each 𝐲 decomposes into decisions/labels (𝑦1, 𝑦2, … , 𝑦𝑇)

• Each 𝐱 is associated with a cost vector 𝐜
– 𝐜 has 2! components if the 𝑦𝑖’s are binary

• Each component specifies the cost of the corresponding full
assignment 𝐲

– Sometimes thought of as a function

• The goal is to minimize 𝐿 ℎ = 𝐸[𝑐"($)]

10

Overview

1. Preliminaries
– Learning to minimize costs
– Search problems and a generic search algorithm

2. Learning to search: A general formulation
3. LaSO: Learning as Search Optimization
4. SEARN: Search and Learning
5. DAgger: Dataset Aggregation

11

Formalizing search problems

• Initial state: denoted by s0
– The starting point for the search

• Actions: Actions(s)
– The set of actions that can be performed at a state

• Transition: Result(s, a)
– “Applies” an action a to a state s to produce the next state

• Goal test: A check for whether the search is complete or not
• Path cost/score: A score for the path from the start state to any state

12

Formalizing search problems

• Initial state: denoted by s0
– The starting point for the search

• Actions: Actions(s)
– The set of actions that can be performed at a state

• Transition: Result(s, a)
– “Applies” an action a to a state s to produce the next state

• Goal test: A check for whether the search is complete or not
• Path cost/score: A score for the path from the start state to any state

A solution is an action sequence that leads from initial state to a goal state.
An optimal solution has the lowest path cost or highest score.

13

Example Search Problem: 8-puzzle

7 2 4

5 blank 6

8 3 1

14

blank 1 2

3 4 5

6 7 8

Initial State Goal State

Example Search Problem: 8-puzzle

7 2 4

5 blank 6

8 3 1

15

blank 1 2

3 4 5

6 7 8

Initial State Goal State

Initial state: s0
Actions: Actions(s)
Transition model: Result(s, a)
Goal test
Path cost / score

What are these five components for 8-puzzle?

Generic Search Algorithm

16

How do we solve a search problem?

Answer: By starting at the initial state, and navigating the state space till we get to
an answer

Generic Search Algorithm

17

Algo Search(problem, initial, enqueue):

Generic Search Algorithm

18

Algo Search(problem, initial, enqueue):
nodes = MakeQueue(MakeNode(problem, initial))

Generic Search Algorithm

19

Algo Search(problem, initial, enqueue):
nodes = MakeQueue(MakeNode(problem, initial))
while nodes is not empty:

Generic Search Algorithm

20

Algo Search(problem, initial, enqueue):
nodes = MakeQueue(MakeNode(problem, initial))
while nodes is not empty:

node = Pop(nodes)

Generic Search Algorithm

21

Algo Search(problem, initial, enqueue):
nodes = MakeQueue(MakeNode(problem, initial))
while nodes is not empty:

node = Pop(nodes)
if GoalTest(node) then return node

Generic Search Algorithm

22

Algo Search(problem, initial, enqueue):
nodes = MakeQueue(MakeNode(problem, initial))
while nodes is not empty:

node = Pop(nodes)
if GoalTest(node) then return node
next = Result(node, Actions(node))

Generic Search Algorithm

23

Algo Search(problem, initial, enqueue):
nodes = MakeQueue(MakeNode(problem, initial))
while nodes is not empty:

node = Pop(nodes)
if GoalTest(node) then return node
next = Result(node, Actions(node))
nodes = enqueue(problem, nodes, next)

Generic Search Algorithm

24

Algo Search(problem, initial, enqueue):
nodes = MakeQueue(MakeNode(problem, initial))
while nodes is not empty:

node = Pop(nodes)
if GoalTest(node) then return node
next = Result(node, Actions(node))
nodes = enqueue(problem, nodes, next)

return failure

Generic Search Algorithm

25

Algo Search(problem, initial, enqueue):
nodes = MakeQueue(MakeNode(problem, initial))
while nodes is not empty:

node = Pop(nodes)
if GoalTest(node) then return node
next = Result(node, Actions(node))
nodes = enqueue(problem, nodes, next)

return failure

All magic happens in the enqueue function (BFS, DFS, beam, A*)
Or is there any magic?

Overview

1. Preliminaries
– Learning to minimize costs
– Search problems and a generic search algorithm

2. Learning to search: A general formulation
3. LaSO: Learning as Search Optimization
4. SEARN: Search and Learning
5. DAgger: Dataset Aggregation

26

Learning to search: General setting

The high level idea:
– Frame the problem of structured prediction as a generic

search problem

– Learn to enqueue nodes so that “good” states are explored
first, and we get to a solution easily.

27

Predicting an output 𝐲 as a sequence of decisions

Learning to search: General setting

General data structures
– State: Partial assignments to (𝑦1, 𝑦2, … , 𝑦𝑇)

28

Predicting an output 𝐲 as a sequence of decisions

Learning to search: General setting

General data structures
– State: Partial assignments to (𝑦1, 𝑦2, … , 𝑦𝑇)
– Initial state: Empty assignments (−,−,… ,−)

29

Predicting an output 𝐲 as a sequence of decisions

Learning to search: General setting

General data structures
– State: Partial assignments to (𝑦1, 𝑦2, … , 𝑦𝑇)
– Initial state: Empty assignments (−,−,… ,−)
– Actions: Pick a 𝑦𝑖 component and assign a label to it

30

Predicting an output 𝐲 as a sequence of decisions

Learning to search: General setting

General data structures
– State: Partial assignments to (𝑦1, 𝑦2, … , 𝑦𝑇)
– Initial state: Empty assignments (−,−,… ,−)
– Actions: Pick a 𝑦𝑖 component and assign a label to it
– Transition model: Move from one partial structure to another

31

Predicting an output 𝐲 as a sequence of decisions

Learning to search: General setting

General data structures
– State: Partial assignments to (𝑦1, 𝑦2, … , 𝑦𝑇)
– Initial state: Empty assignments (−,−,… ,−)
– Actions: Pick a 𝑦𝑖 component and assign a label to it
– Transition model: Move from one partial structure to another
– Goal test: Whether all 𝑦 components are assigned

• A goal state does not need to be optimal

32

Predicting an output 𝐲 as a sequence of decisions

Learning to search: General setting

General data structures
– State: Partial assignments to (𝑦1, 𝑦2, … , 𝑦𝑇)
– Initial state: Empty assignments (−,−,… ,−)
– Actions: Pick a 𝑦𝑖 component and assign a label to it
– Transition model: Move from one partial structure to another
– Goal test: Whether all 𝑦 components are assigned

• A goal state does not need to be optimal
– Path cost/score function: 𝐰𝑇 𝜙(𝐱, node)

• or, a neural network that depends on the 𝐱 and the node
• A node contains the current state and the back pointer to trace

back the search path

33

Predicting an output 𝐲 as a sequence of decisions

Example

34

x1 x2 x3

y3

y2

y1

Suppose each y can be one
of A, B or C

Example

35

x1 x2 x3

y3

y2

y1

• State: Triples (y1, y2, y3) all possibly unknown
• (A, -, -), (-, A, A), (-, -, -),…

• Transition: Fill in one of the unknowns

• Start state: (-,-,-)

• End state: All three y’s are assigned

Suppose each y can be one
of A, B or C

Example

36

x1 x2 x3

y3

y2

y1

• State: Triples (y1, y2, y3) all possibly unknown
• (A, -, -), (-, A, A), (-, -, -),…

• Transition: Fill in one of the unknowns

• Start state: (-,-,-)

• End state: All three y’s are assigned

(-,-,-)

(A,-,-) (B,-,-) (C,-,-)

(A,A,-) (C,C,-)

(A,A,A) (C,C,C)

…..

Suppose each y can be one
of A, B or C

LaSO: Learning as Search Optimization

37

1st Framework:

[Hal Daumé III and Daniel Marcu, ICML 2005]

The enqueue function in LaSO

38

The enqueue function in LaSO

• The goal of learning is to produce an enqueue
function that
– places good hypotheses high on the queue
– places bad hypotheses low on the queue

39

The enqueue function in LaSO

• The goal of learning is to produce an enqueue
function that
– places good hypotheses high on the queue
– places bad hypotheses low on the queue

• LaSO assumes enqueue is based on two components
g + h

40

The enqueue function in LaSO

• The goal of learning is to produce an enqueue
function that
– places good hypotheses high on the queue
– places bad hypotheses low on the queue

• LaSO assumes enqueue is based on two components
g + h
– g: path component. (g = wT φ(x, node))

41

The enqueue function in LaSO

• The goal of learning is to produce an enqueue
function that
– places good hypotheses high on the queue
– places bad hypotheses low on the queue

• LaSO assumes enqueue is based on two components
g + h
– g: path component. (g = wT φ(x, node))
– h: heuristic component. (h is given)

• A* if h is admissible, heuristic search if h is not admissible, best
first search if h = 0, beam search if queue is limited.

42

The enqueue function in LaSO

• The goal of learning is to produce an enqueue
function that
– places good hypotheses high on the queue
– places bad hypotheses low on the queue

• LaSO assumes enqueue is based on two components
g + h
– g: path component. (g = wT φ(x, node))
– h: heuristic component. (h is given)

• A* if h is admissible, heuristic search if h is not admissible, best
first search if h = 0, beam search if queue is limited.

43

The goal is to learn w.
How?

“y-good” node

44

“y-good” node

Assumption: for any given node s and an gold output y,
we can tell whether s can or cannot lead to y.

45

“y-good” node

Assumption: for any given node s and an gold output y,
we can tell whether s can or cannot lead to y.

Definition: The node s is y-good if s can lead to y

46

“y-good” node

Assumption: for any given node s and an gold output y,
we can tell whether s can or cannot lead to y.

Definition: The node s is y-good if s can lead to y

47

Suppose each y can be one
of A, B or C, and the true
label is (y1=A, y2=B, y3=C)

y = (y1, y2, y3)

“y-good” node

Assumption: for any given node s and an gold output y,
we can tell whether s can or cannot lead to y.

Definition: The node s is y-good if s can lead to y

48

Suppose each y can be one
of A, B or C, and the true
label is (y1=A, y2=B, y3=C)

y = (y1, y2, y3)
(-,-,-)

(A,-,-) (-,B,-) (C,-,-)

(A,A,-) (C,C,-)

(A,A,A) (C,C,C)

…..

Learning in LaSO

49

Learning in LaSO

• Search as if in the prediction phase, but when an
error is made:

50

Learning in LaSO

• Search as if in the prediction phase, but when an
error is made:
– update w

51

Learning in LaSO

• Search as if in the prediction phase, but when an
error is made:
– update w
– clear the queue and insert all the correct moves

52

Learning in LaSO

• Search as if in the prediction phase, but when an
error is made:
– update w
– clear the queue and insert all the correct moves

• Two kinds of errors:

53

Learning in LaSO

• Search as if in the prediction phase, but when an
error is made:
– update w
– clear the queue and insert all the correct moves

• Two kinds of errors:
– Error type 1: none of the queue is y-good

54

Learning in LaSO

• Search as if in the prediction phase, but when an
error is made:
– update w
– clear the queue and insert all the correct moves

• Two kinds of errors:
– Error type 1: none of the queue is y-good
– Error type 2: the goal state is not y-good

55

Learning Algorithm in LaSO

56

Learning Algorithm in LaSO

57

Algo Learn(problem, initial, enqueue, w, x, y)
nodes = MakeQueue(MakeNode(problem, initial))
while nodes is not empty:

node = Pop(nodes)
if error

step 1:
update w

step 2:
refresh queue

else
if GoalTest(node) then return w
next = Result(node, Actions(node))
nodes = enqueue(problem, nodes, next, w)

Learning Algorithm in LaSO

58

Algo Learn(problem, initial, enqueue, w, x, y)
nodes = MakeQueue(MakeNode(problem, initial))
while nodes is not empty:

node = Pop(nodes)
if error

step 1:
update w

step 2:
refresh queue

else
if GoalTest(node) then return w
next = Result(node, Actions(node))
nodes = enqueue(problem, nodes, next, w)

Learning Algorithm in LaSO

59

Algo Learn(problem, initial, enqueue, w, x, y)
nodes = MakeQueue(MakeNode(problem, initial))
while nodes is not empty:

node = Pop(nodes)
if error

step 1:
update w

step 2:
refresh queue

else
if GoalTest(node) then return w
next = Result(node, Actions(node))
nodes = enqueue(problem, nodes, next, w)

Learning Algorithm in LaSO

60

Algo Learn(problem, initial, enqueue, w, x, y)
nodes = MakeQueue(MakeNode(problem, initial))
while nodes is not empty:

node = Pop(nodes)
if error

step 1:
update w

step 2:
refresh queue

else
if GoalTest(node) then return w
next = Result(node, Actions(node))
nodes = enqueue(problem, nodes, next, w)

Learning Algorithm in LaSO

61

Algo Learn(problem, initial, enqueue, w, x, y)
nodes = MakeQueue(MakeNode(problem, initial))
while nodes is not empty:

node = Pop(nodes)
if error

step 1:
update w

step 2:
refresh queue

else
if GoalTest(node) then return w
next = Result(node, Actions(node))
nodes = enqueue(problem, nodes, next, w)

Learning Algorithm in LaSO

62

Algo Learn(problem, initial, enqueue, w, x, y)
nodes = MakeQueue(MakeNode(problem, initial))
while nodes is not empty:

node = Pop(nodes)
if error

step 1:
update w

step 2:
refresh queue

else
if GoalTest(node) then return w
next = Result(node, Actions(node))
nodes = enqueue(problem, nodes, next, w)

Learning Algorithm in LaSO

63

Algo Learn(problem, initial, enqueue, w, x, y)
nodes = MakeQueue(MakeNode(problem, initial))
while nodes is not empty:

node = Pop(nodes)
if error

step 1:
update w

step 2:
refresh queue

else
if GoalTest(node) then return w
next = Result(node, Actions(node))
nodes = enqueue(problem, nodes, next, w)

Learning Algorithm in LaSO

64

Algo Learn(problem, initial, enqueue, w, x, y)
nodes = MakeQueue(MakeNode(problem, initial))
while nodes is not empty:

node = Pop(nodes)
if error

step 1:
update w

step 2:
refresh queue

else
if GoalTest(node) then return w
next = Result(node, Actions(node))
nodes = enqueue(problem, nodes, next, w)

Learning Algorithm in LaSO

65

Algo Learn(problem, initial, enqueue, w, x, y)
nodes = MakeQueue(MakeNode(problem, initial))
while nodes is not empty:

node = Pop(nodes)
if error

step 1:
update w

step 2:
refresh queue

else
if GoalTest(node) then return w
next = Result(node, Actions(node))
nodes = enqueue(problem, nodes, next, w)

Learning Algorithm in LaSO

66

Algo Learn(problem, initial, enqueue, w, x, y)
nodes = MakeQueue(MakeNode(problem, initial))
while nodes is not empty:

node = Pop(nodes)
if error

step 1:
update w

step 2:
refresh queue

else
if GoalTest(node) then return w
next = Result(node, Actions(node))
nodes = enqueue(problem, nodes, next, w)

Learning Algorithm in LaSO

67

Algo Learn(problem, initial, enqueue, w, x, y)
nodes = MakeQueue(MakeNode(problem, initial))
while nodes is not empty:

node = Pop(nodes)
if error

step 1:
update w

step 2:
refresh queue

else
if GoalTest(node) then return w
next = Result(node, Actions(node))
nodes = enqueue(problem, nodes, next, w)

What should learning do?

node 1
y-good

node 2
y-good

node 4
y-good

current

node 3
y-good

node 5
y-good

68

Let’s say we found an error (of either type) at the current node, then
we should have made the choice of node 4 instead of the current node

What should learning do?

node 1
y-good

node 2
y-good

node 4
y-good

current

node 3
y-good

node 5
y-good

69

Let’s say we found an error (of either type) at the current node, then
we should have made the choice of node 4 instead of the current node

Node 4 is the y-good sibling of the current node

Learning Algorithm in LaSO

70

Algo Learn(problem, initial, enqueue, w, x, y)
nodes = MakeQueue(MakeNode(problem, initial))
while nodes is not empty:

node = Pop(nodes)
if none of (node + nodes) is y-good or

GoalTest(node) and node is not y-good then
sibs = siblings(node, y)
w = update(w, x, sibs, node, nodes)
nodes = MakeQueue(sibs)

else
if GoalTest(node) then return w
next = Result(node, Actions(node))
nodes = enqueue(problem, nodes, next, w)

Learning Algorithm in LaSO

71

Algo Learn(problem, initial, enqueue, w, x, y)
nodes = MakeQueue(MakeNode(problem, initial))
while nodes is not empty:

node = Pop(nodes)
if none of (node + nodes) is y-good or

GoalTest(node) and node is not y-good then
sibs = siblings(node, y)
w = update(w, x, sibs, node, nodes)
nodes = MakeQueue(sibs)

else
if GoalTest(node) then return w
next = Result(node, Actions(node))
nodes = enqueue(problem, nodes, next, w)

Learning Algorithm in LaSO

72

Algo Learn(problem, initial, enqueue, w, x, y)
nodes = MakeQueue(MakeNode(problem, initial))
while nodes is not empty:

node = Pop(nodes)
if none of (node + nodes) is y-good or

GoalTest(node) and node is not y-good then
sibs = siblings(node, y)
w = update(w, x, sibs, node, nodes)
nodes = MakeQueue(sibs)

else
if GoalTest(node) then return w
next = Result(node, Actions(node))
nodes = enqueue(problem, nodes, next, w)

Learning Algorithm in LaSO

73

Algo Learn(problem, initial, enqueue, w, x, y)
nodes = MakeQueue(MakeNode(problem, initial))
while nodes is not empty:

node = Pop(nodes)
if none of (node + nodes) is y-good or

GoalTest(node) and node is not y-good then
sibs = siblings(node, y)
w = update(w, x, sibs, {node, nodes})
nodes = MakeQueue(sibs)

else
if GoalTest(node) then return w
next = Result(node, Actions(node))
nodes = enqueue(problem, nodes, next, w)

Learning Algorithm in LaSO

74

Algo Learn(problem, initial, enqueue, w, x, y)
nodes = MakeQueue(MakeNode(problem, initial))
while nodes is not empty:

node = Pop(nodes)
if none of (node + nodes) is y-good or

GoalTest(node) and node is not y-good then
sibs = siblings(node, y)
w = update(w, x, sibs, {node, nodes})
nodes = MakeQueue(sibs)

else
if GoalTest(node) then return w
next = Result(node, Actions(node))
nodes = enqueue(problem, nodes, next, w)

Parameter Updates

75

We need to specify w = update(w, x, sibs, nodes)

A simple perceptron-style update rule: w = w + Δ

It comes with the usual perceptron-style mistake bound and generalization bound.
(See references)

� =
X

n2sibs

�(x, n)

|sibs| �
X

n2nodes

�(x, n)

|nodes|

SEARN: Search and Learning

76

2nd Framework:

Hal Daumé III, John Langford, Daniel Marcu (2007)

Policy

• A policy is a mapping from a state to an action
• For a given node, the policy tells what action should be taken

77

Policy

• A policy is a mapping from a state to an action
• For a given node, the policy tells what action should be taken

• A policy gives a search path in the search space.
– Different policy means different search path
– Can be thought as the “driver” in the search space

78

Policy

• A policy is a mapping from a state to an action
• For a given node, the policy tells what action should be taken

• A policy gives a search path in the search space.
– Different policy means different search path
– Can be thought as the “driver” in the search space

• A policy may be deterministic, or may contain some randomness.
(More on this later)

79

Reference Policy and Learned Policy

80

Reference Policy and Learned Policy

• We assume we already have a good reference policy 𝜋 for
training data (𝐱, 𝐜)
– i.e. examples associated with costs for outputs

81

Reference Policy and Learned Policy

• We assume we already have a good reference policy 𝜋 for
training data (𝐱, 𝐜)
– i.e. examples associated with costs for outputs

• Goal: Learn a good policy for test data when we do not have
access to cost vector c. (Imitation Learning)

82

Reference Policy and Learned Policy

• We assume we already have a good reference policy 𝜋 for
training data (𝐱, 𝐜)
– i.e. examples associated with costs for outputs

• Goal: Learn a good policy for test data when we do not have
access to cost vector c. (Imitation Learning)

83

What's the (biggest) failure mode?

ππrefref

The expert never gets stuck next to pipes

fi Classifier doesn't learn to recover!

Reference Policy and Learned Policy

• We assume we already have a good reference policy 𝜋 for
training data (𝐱, 𝐜)
– i.e. examples associated with costs for outputs

• Goal: Learn a good policy for test data when we do not have
access to cost vector c. (Imitation Learning)

84

What's the (biggest) failure mode?

ππrefref

The expert never gets stuck next to pipes

fi Classifier doesn't learn to recover!

For example if we are using Hamming distance
for cost vector 𝐜, then the reference policy is trivial
to compute, why?

Reference Policy and Learned Policy

• We assume we already have a good reference policy 𝜋 for
training data (𝐱, 𝐜)
– i.e. examples associated with costs for outputs

• Goal: Learn a good policy for test data when we do not have
access to cost vector c. (Imitation Learning)

85

What's the (biggest) failure mode?

ππrefref

The expert never gets stuck next to pipes

fi Classifier doesn't learn to recover!

For example if we are using Hamming distance
for cost vector 𝐜, then the reference policy is trivial
to compute, why?

Just make the right decision at every step

Reference Policy and Learned Policy

• We assume we already have a good reference policy 𝜋 for
training data (𝐱, 𝐜)
– i.e. examples associated with costs for outputs

• Goal: Learn a good policy for test data when we do not have
access to cost vector c. (Imitation Learning)

86

What's the (biggest) failure mode?

ππrefref

The expert never gets stuck next to pipes

fi Classifier doesn't learn to recover!

For example if we are using Hamming distance
for cost vector 𝐜, then the reference policy is trivial
to compute, why?

Just make the right decision at every step

Suppose gold state is (A, B, C, A)
and we are at the state (A, C, -, -)
The reference policy tells us the next action is assigned C to the third slot.

Cost-Sensitive Classification

Suppose we want to learn a classifier ℎ that maps examples to one of 𝐾 labels

Standard multiclass classification
• Training data: Pairs of examples associated with labels

– 𝑥, 𝑦 ∈ 𝑋 ×[𝐾]
• Learning goal: To find a classifier that has low error

– min
$
Pr ℎ 𝑥 ≠ 𝑦

Cost-sensitive classification
• Training data: An example paired with a cost vector that lists out the cost

of predicting each label
– 𝑥, 𝐜 ∈ 𝑋 × 0,∞ %

• Learning goal: To find a classifier that has low cost
– min

$
𝐸&,(𝑐$ &

87

Cost-Sensitive Classification

Suppose we want to learn a classifier ℎ that maps examples to one of 𝐾 labels

Standard multiclass classification
• Training data: Pairs of examples associated with labels

– 𝑥, 𝑦 ∈ 𝑋 ×[𝐾]
• Learning goal: To find a classifier that has low error

– min
$
Pr ℎ 𝑥 ≠ 𝑦

Cost-sensitive classification
• Training data: An example paired with a cost vector that lists out the cost

of predicting each label
– 𝑥, 𝐜 ∈ 𝑋 × 0,∞ %

• Learning goal: To find a classifier that has low cost
– min

$
𝐸&,(𝑐$ &

88

Cost-Sensitive Classification

Suppose we want to learn a classifier ℎ that maps examples to one of 𝐾 labels

Standard multiclass classification
• Training data: Pairs of examples associated with labels

– 𝑥, 𝑦 ∈ 𝑋 ×[𝐾]
• Learning goal: To find a classifier that has low error

– min
$
Pr ℎ 𝑥 ≠ 𝑦

Cost-sensitive classification
• Training data: An example paired with a cost vector that lists out the cost

of predicting each label
– 𝑥, 𝐜 ∈ 𝑋 × 0,∞ %

• Learning goal: To find a classifier that has low cost
– min

$
𝐸&,(𝑐$ &

89

Cost-Sensitive Classification

Suppose we want to learn a classifier ℎ that maps examples to one of 𝐾 labels

Standard multiclass classification
• Training data: Pairs of examples associated with labels

– 𝑥, 𝑦 ∈ 𝑋 ×[𝐾]
• Learning goal: To find a classifier that has low error

– min
$
Pr ℎ 𝑥 ≠ 𝑦

Cost-sensitive classification
• Training data: An example paired with a cost vector that lists out the cost

of predicting each label
– 𝑥, 𝐜 ∈ 𝑋 × 0,∞ %

• Learning goal: To find a classifier that has low cost
– min

$
𝐸&,(𝑐$ &

90

Exercise: How would
you design a cost-
sensitive learner?

Cost-Sensitive Classification

Suppose we want to learn a classifier ℎ that maps examples to one of 𝐾 labels

Standard multiclass classification
• Training data: Pairs of examples associated with labels

– 𝑥, 𝑦 ∈ 𝑋 ×[𝐾]
• Learning goal: To find a classifier that has low error

– min
$
Pr ℎ 𝑥 ≠ 𝑦

Cost-sensitive classification
• Training data: An example paired with a cost vector that lists out the cost

of predicting each label
– 𝑥, 𝐜 ∈ 𝑋 × 0,∞ %

• Learning goal: To find a classifier that has low cost
– min

$
𝐸&,(𝑐$ &

91
SEARN uses a cost-sensitive learner to learn a policy

SEARN at test time

We already have learned a policy. We can use this
policy to construct a sequence of decisions y and get
the final structured output.

92

SEARN at test time

We already have learned a policy. We can use this
policy to construct a sequence of decisions y and get
the final structured output.

1. Use the learned policy on initial state (-,…, -) to
compute y1

93

SEARN at test time

We already have learned a policy. We can use this
policy to construct a sequence of decisions y and get
the final structured output.

1. Use the learned policy on initial state (-,…, -) to
compute y1

2. Use the learned policy on state (y1, -,…,-) to
compute y2

94

SEARN at test time

We already have learned a policy. We can use this
policy to construct a sequence of decisions y and get
the final structured output.

1. Use the learned policy on initial state (-,…, -) to
compute y1

2. Use the learned policy on state (y1, -,…,-) to
compute y2

3. Keep going until we get y = (y1,…,yn)

95

SEARN at training time

96

SEARN at training time

• The core idea in training is to notice that at each
decision step, we are actually doing a cost-sensitive
classification

97

SEARN at training time

• The core idea in training is to notice that at each
decision step, we are actually doing a cost-sensitive
classification

• Construct cost-sensitive classification examples (s, c)
with state s and cost vector c.

98

SEARN at training time

• The core idea in training is to notice that at each
decision step, we are actually doing a cost-sensitive
classification

• Construct cost-sensitive classification examples (s, c)
with state s and cost vector c.

• Learn a cost-sensitive classifier. (This is nothing but a
policy)

99

Roll-in, Roll-out

100

Roll-in, Roll-out

101

roll in

At each state, use some policy to move to a new state.

Roll-in, Roll-out

102

roll in

What is the cost of
deviating from the
policy at this step?

Roll-in, Roll-out

103

roll in

one step deviation

What is the cost of
deviating from the
policy at this step?

Assuming that there
are three possible
actions at this state

Roll-in, Roll-out

104

roll in

one step deviation

What is the cost of
deviating from the
policy at this step?

Roll-in, Roll-out

105

roll in

one step deviation

roll out

roll out

What is the cost of
deviating from the
policy at this step?

Once we make the one-
step deviation, we could
use some policy to get to
a goal state again

Roll-in, Roll-out

106

roll in

one step deviation

roll out

roll out

What is the cost of
deviating from the
policy at this step?

Learning to search:

AggraVaTe

1.Generate an initial
trajectory using the
current policy

2.Foreach decision on that trajectory with obs. o:
a)Foreach possible action a (one-step deviations)

i. Take that action

ii. Complete this trajectory using reference policy

iii.Obtain a final loss, ca
b)Generate a cost-sensitive classification example:

(o, c)

? E

E

E

rollin

rollout

o
n
e
-
s
t
e
p

d
e
v
i
a
t
i
o
n
s

loss=.2

loss=0

loss=.8

SEARN at training time (continued)

107

Learning to search:

AggraVaTe

1.Generate an initial
trajectory using the
current policy

2.Foreach decision on that trajectory with obs. o:
a)Foreach possible action a (one-step deviations)

i. Take that action

ii. Complete this trajectory using reference policy

iii.Obtain a final loss, ca
b)Generate a cost-sensitive classification example:

(o, c)

? E

E

E

rollin

rollout

o
n
e
-
s
t
e
p

d
e
v
i
a
t
i
o
n
s

loss=.2

loss=0

loss=.8

SEARN at training time (continued)

108

• Generate a search path

Learning to search:

AggraVaTe

1.Generate an initial
trajectory using the
current policy

2.Foreach decision on that trajectory with obs. o:
a)Foreach possible action a (one-step deviations)

i. Take that action

ii. Complete this trajectory using reference policy

iii.Obtain a final loss, ca
b)Generate a cost-sensitive classification example:

(o, c)

? E

E

E

rollin

rollout

o
n
e
-
s
t
e
p

d
e
v
i
a
t
i
o
n
s

loss=.2

loss=0

loss=.8

SEARN at training time (continued)

109

• Generate a search path
• Construct a cost-sensitive example: (?-state, c=(0, 0.2, 0.8))

Learning to search:

AggraVaTe

1.Generate an initial
trajectory using the
current policy

2.Foreach decision on that trajectory with obs. o:
a)Foreach possible action a (one-step deviations)

i. Take that action

ii. Complete this trajectory using reference policy

iii.Obtain a final loss, ca
b)Generate a cost-sensitive classification example:

(o, c)

? E

E

E

rollin

rollout

o
n
e
-
s
t
e
p

d
e
v
i
a
t
i
o
n
s

loss=.2

loss=0

loss=.8

SEARN at training time (continued)

110

• Generate a search path
• Construct a cost-sensitive example: (?-state, c=(0, 0.2, 0.8))
• Do this for every step along the path

Learning to search:

AggraVaTe

1.Generate an initial
trajectory using the
current policy

2.Foreach decision on that trajectory with obs. o:
a)Foreach possible action a (one-step deviations)

i. Take that action

ii. Complete this trajectory using reference policy

iii.Obtain a final loss, ca
b)Generate a cost-sensitive classification example:

(o, c)

? E

E

E

rollin

rollout

o
n
e
-
s
t
e
p

d
e
v
i
a
t
i
o
n
s

loss=.2

loss=0

loss=.8

SEARN at training time (continued)

111

• Generate a search path
• Construct a cost-sensitive example: (?-state, c=(0, 0.2, 0.8))
• Do this for every step along the path
• And for every structured training example

Learning to search:

AggraVaTe

1.Generate an initial
trajectory using the
current policy

2.Foreach decision on that trajectory with obs. o:
a)Foreach possible action a (one-step deviations)

i. Take that action

ii. Complete this trajectory using reference policy

iii.Obtain a final loss, ca
b)Generate a cost-sensitive classification example:

(o, c)

? E

E

E

rollin

rollout

o
n
e
-
s
t
e
p

d
e
v
i
a
t
i
o
n
s

loss=.2

loss=0

loss=.8

SEARN at training time (continued)

112

• Generate a search path
• Construct a cost-sensitive example: (?-state, c=(0, 0.2, 0.8))
• Do this for every step along the path
• And for every structured training example
• Collect all these cost-sensitive examples to train a improved policy h’

Learning to search:

AggraVaTe

1.Generate an initial
trajectory using the
current policy

2.Foreach decision on that trajectory with obs. o:
a)Foreach possible action a (one-step deviations)

i. Take that action

ii. Complete this trajectory using reference policy

iii.Obtain a final loss, ca
b)Generate a cost-sensitive classification example:

(o, c)

? E

E

E

rollin

rollout

o
n
e
-
s
t
e
p

d
e
v
i
a
t
i
o
n
s

loss=.2

loss=0

loss=.8

SEARN at training time (continued)

113

• Generate a search path
• Construct a cost-sensitive example: (?-state, c=(0, 0.2, 0.8))
• Do this for every step along the path
• And for every structured training example
• Collect all these cost-sensitive examples to train a improved policy h’
• Interpolate: h �h0 + (1� �)h

Learning to search:

AggraVaTe

1.Generate an initial
trajectory using the
current policy

2.Foreach decision on that trajectory with obs. o:
a)Foreach possible action a (one-step deviations)

i. Take that action

ii. Complete this trajectory using reference policy

iii.Obtain a final loss, ca
b)Generate a cost-sensitive classification example:

(o, c)

? E

E

E

rollin

rollout

o
n
e
-
s
t
e
p

d
e
v
i
a
t
i
o
n
s

loss=.2

loss=0

loss=.8

SEARN at training time (continued)

114

• Generate a search path
• Construct a cost-sensitive example: (?-state, c=(0, 0.2, 0.8))
• Do this for every step along the path
• And for every structured training example
• Collect all these cost-sensitive examples to train a improved policy h’
• Interpolate:
• Repeat

h �h0 + (1� �)h

Learning to search:

AggraVaTe

1.Generate an initial
trajectory using the
current policy

2.Foreach decision on that trajectory with obs. o:
a)Foreach possible action a (one-step deviations)

i. Take that action

ii. Complete this trajectory using reference policy

iii.Obtain a final loss, ca
b)Generate a cost-sensitive classification example:

(o, c)

? E

E

E

rollin

rollout

o
n
e
-
s
t
e
p

d
e
v
i
a
t
i
o
n
s

loss=.2

loss=0

loss=.8

SEARN at training time (continued)

115

Roll-in with
current policy h

• Generate a search path
• Construct a cost-sensitive example: (?-state, c=(0, 0.2, 0.8))
• Do this for every step along the path
• And for every structured training example
• Collect all these cost-sensitive examples to train a improved policy h’
• Interpolate:
• Repeat

h �h0 + (1� �)h

Learning to search:

AggraVaTe

1.Generate an initial
trajectory using the
current policy

2.Foreach decision on that trajectory with obs. o:
a)Foreach possible action a (one-step deviations)

i. Take that action

ii. Complete this trajectory using reference policy

iii.Obtain a final loss, ca
b)Generate a cost-sensitive classification example:

(o, c)

? E

E

E

rollin

rollout

o
n
e
-
s
t
e
p

d
e
v
i
a
t
i
o
n
s

loss=.2

loss=0

loss=.8

SEARN at training time (continued)

116

Roll-in with
current policy h

Roll-out with
current policy h

• Generate a search path
• Construct a cost-sensitive example: (?-state, c=(0, 0.2, 0.8))
• Do this for every step along the path
• And for every structured training example
• Collect all these cost-sensitive examples to train a improved policy h’
• Interpolate:
• Repeat

h �h0 + (1� �)h

Learning to search:

AggraVaTe

1.Generate an initial
trajectory using the
current policy

2.Foreach decision on that trajectory with obs. o:
a)Foreach possible action a (one-step deviations)

i. Take that action

ii. Complete this trajectory using reference policy

iii.Obtain a final loss, ca
b)Generate a cost-sensitive classification example:

(o, c)

? E

E

E

rollin

rollout

o
n
e
-
s
t
e
p

d
e
v
i
a
t
i
o
n
s

loss=.2

loss=0

loss=.8

SEARN at training time (continued)

117

Roll-in with
current policy h

Roll-out with
current policy h

• If h is deterministic:

lh(c, s, a) = cy(s,a,h) �min
a0

cy(s,a0,h)

Learning to search:

AggraVaTe

1.Generate an initial
trajectory using the
current policy

2.Foreach decision on that trajectory with obs. o:
a)Foreach possible action a (one-step deviations)

i. Take that action

ii. Complete this trajectory using reference policy

iii.Obtain a final loss, ca
b)Generate a cost-sensitive classification example:

(o, c)

? E

E

E

rollin

rollout

o
n
e
-
s
t
e
p

d
e
v
i
a
t
i
o
n
s

loss=.2

loss=0

loss=.8

SEARN at training time (continued)

118

Roll-in with
current policy h

Roll-out with
current policy h

• If h is deterministic:

• If h contains randomness:

lh(c, s, a) = cy(s,a,h) �min
a0

cy(s,a0,h)

lh(c, s, a) = Ey⇠(s,a,h)cy �min
a0

Ey⇠(s,a0,h)cy

Learning to search:

AggraVaTe

1.Generate an initial
trajectory using the
current policy

2.Foreach decision on that trajectory with obs. o:
a)Foreach possible action a (one-step deviations)

i. Take that action

ii. Complete this trajectory using reference policy

iii.Obtain a final loss, ca
b)Generate a cost-sensitive classification example:

(o, c)

? E

E

E

rollin

rollout

o
n
e
-
s
t
e
p

d
e
v
i
a
t
i
o
n
s

loss=.2

loss=0

loss=.8

SEARN at training time (continued)

119

Roll-in with
current policy h

Roll-out with
current policy h

• If h is deterministic:

• If h contains randomness:

lh(c, s, a) = cy(s,a,h) �min
a0

cy(s,a0,h)

lh(c, s, a) = Ey⇠(s,a,h)cy �min
a0

Ey⇠(s,a0,h)cy

The loss defined this
way is called regret

DAgger: Dataset Aggregation

120

3rd Framework:

[Stéphane Ross, Geoffrey J. Gordon, J. Andrew Bagnell, 2011]

Dagger Algorithm (Simplified Version)

Warm-up II: Imitation learning

ππrefref

1. Collect trajectories from expert πref

2. Dataset D0 = { (o, πref(o,y)) | o ~ πref }

3. Train π1 on D0

4. Collect new trajectories from π1

➢ But let the expert steer!

5. Dataset D1 = { (o, πref(o,y)) | o ~ π1 }

6. Train π2 on D0 ∪ D1

● In general:

● Dn = { (o, πref(o,y)) | o ~ πn }

● Train πn+1 on ∪i≤n Di

ππ11

ππ22

If N = T log T,

L(πn) < T N + O(1)

for some n

121

Dagger Algorithm (Simplified Version)

Warm-up II: Imitation learning

ππrefref

1. Collect trajectories from expert πref

2. Dataset D0 = { (o, πref(o,y)) | o ~ πref }

3. Train π1 on D0

4. Collect new trajectories from π1

➢ But let the expert steer!

5. Dataset D1 = { (o, πref(o,y)) | o ~ π1 }

6. Train π2 on D0 ∪ D1

● In general:

● Dn = { (o, πref(o,y)) | o ~ πn }

● Train πn+1 on ∪i≤n Di

ππ11

ππ22

If N = T log T,

L(πn) < T N + O(1)

for some n

122

• Initialize Dataset 𝐷 = ∅
• Collect trajectories with reference policy 𝜋456 (the expert)

• Dataset 𝐷7 = 𝑠, 𝜋456 𝑠
• Aggregate Datasets 𝐷 = 𝐷 ∪ 𝐷7
• Train 𝜋7 on 𝐷

• Collect new trajectories with 𝜋7
• New Dataset 𝐷8 = 𝑠, 𝜋456 𝑠
• Aggregate Datasets 𝐷 = 𝐷 ∪ 𝐷8
• Train 𝜋8 on 𝐷

Dagger Algorithm (Simplified Version)

Warm-up II: Imitation learning

ππrefref

1. Collect trajectories from expert πref

2. Dataset D0 = { (o, πref(o,y)) | o ~ πref }

3. Train π1 on D0

4. Collect new trajectories from π1

➢ But let the expert steer!

5. Dataset D1 = { (o, πref(o,y)) | o ~ π1 }

6. Train π2 on D0 ∪ D1

● In general:

● Dn = { (o, πref(o,y)) | o ~ πn }

● Train πn+1 on ∪i≤n Di

ππ11

ππ22

If N = T log T,

L(πn) < T N + O(1)

for some n

123

• Initialize Dataset 𝐷 = ∅
• Collect trajectories with reference policy 𝜋456 (the expert)

• Dataset 𝐷7 = 𝑠, 𝜋456 𝑠
• Aggregate Datasets 𝐷 = 𝐷 ∪ 𝐷7
• Train 𝜋7 on 𝐷

• Collect new trajectories with 𝜋7
• New Dataset 𝐷8 = 𝑠, 𝜋456 𝑠
• Aggregate Datasets 𝐷 = 𝐷 ∪ 𝐷8
• Train 𝜋8 on 𝐷

Dagger Algorithm (Simplified Version)

Warm-up II: Imitation learning

ππrefref

1. Collect trajectories from expert πref

2. Dataset D0 = { (o, πref(o,y)) | o ~ πref }

3. Train π1 on D0

4. Collect new trajectories from π1

➢ But let the expert steer!

5. Dataset D1 = { (o, πref(o,y)) | o ~ π1 }

6. Train π2 on D0 ∪ D1

● In general:

● Dn = { (o, πref(o,y)) | o ~ πn }

● Train πn+1 on ∪i≤n Di

ππ11

ππ22

If N = T log T,

L(πn) < T N + O(1)

for some n

124

• Initialize Dataset 𝐷 = ∅
• Collect trajectories with reference policy 𝜋456 (the expert)

• Dataset 𝐷7 = 𝑠, 𝜋456 𝑠
• Aggregate Datasets 𝐷 = 𝐷 ∪ 𝐷7
• Train 𝜋7 on 𝐷

• Collect new trajectories with 𝜋7
• New Dataset 𝐷8 = 𝑠, 𝜋456 𝑠
• Aggregate Datasets 𝐷 = 𝐷 ∪ 𝐷8
• Train 𝜋8 on 𝐷

Dagger Algorithm (Simplified Version)

Warm-up II: Imitation learning

ππrefref

1. Collect trajectories from expert πref

2. Dataset D0 = { (o, πref(o,y)) | o ~ πref }

3. Train π1 on D0

4. Collect new trajectories from π1

➢ But let the expert steer!

5. Dataset D1 = { (o, πref(o,y)) | o ~ π1 }

6. Train π2 on D0 ∪ D1

● In general:

● Dn = { (o, πref(o,y)) | o ~ πn }

● Train πn+1 on ∪i≤n Di

ππ11

ππ22

If N = T log T,

L(πn) < T N + O(1)

for some n

125

• Initialize Dataset 𝐷 = ∅
• Collect trajectories with reference policy 𝜋456 (the expert)

• Dataset 𝐷7 = 𝑠, 𝜋456 𝑠
• Aggregate Datasets 𝐷 = 𝐷 ∪ 𝐷7
• Train 𝜋7 on 𝐷

• Collect new trajectories with 𝜋7
• New Dataset 𝐷8 = 𝑠, 𝜋456 𝑠
• Aggregate Datasets 𝐷 = 𝐷 ∪ 𝐷8
• Train 𝜋8 on 𝐷

Dagger Algorithm (Simplified Version)

Warm-up II: Imitation learning

ππrefref

1. Collect trajectories from expert πref

2. Dataset D0 = { (o, πref(o,y)) | o ~ πref }

3. Train π1 on D0

4. Collect new trajectories from π1

➢ But let the expert steer!

5. Dataset D1 = { (o, πref(o,y)) | o ~ π1 }

6. Train π2 on D0 ∪ D1

● In general:

● Dn = { (o, πref(o,y)) | o ~ πn }

● Train πn+1 on ∪i≤n Di

ππ11

ππ22

If N = T log T,

L(πn) < T N + O(1)

for some n

126

• Initialize Dataset 𝐷 = ∅
• Collect trajectories with reference policy 𝜋456 (the expert)

• Dataset 𝐷7 = 𝑠, 𝜋456 𝑠
• Aggregate Datasets 𝐷 = 𝐷 ∪ 𝐷7
• Train 𝜋7 on 𝐷

• Collect new trajectories with 𝜋7
• New Dataset 𝐷8 = 𝑠, 𝜋456 𝑠
• Aggregate Datasets 𝐷 = 𝐷 ∪ 𝐷8
• Train 𝜋8 on 𝐷

Dagger Algorithm (Simplified Version)

Warm-up II: Imitation learning

ππrefref

1. Collect trajectories from expert πref

2. Dataset D0 = { (o, πref(o,y)) | o ~ πref }

3. Train π1 on D0

4. Collect new trajectories from π1

➢ But let the expert steer!

5. Dataset D1 = { (o, πref(o,y)) | o ~ π1 }

6. Train π2 on D0 ∪ D1

● In general:

● Dn = { (o, πref(o,y)) | o ~ πn }

● Train πn+1 on ∪i≤n Di

ππ11

ππ22

If N = T log T,

L(πn) < T N + O(1)

for some n

127

• Initialize Dataset 𝐷 = ∅
• Collect trajectories with reference policy 𝜋456 (the expert)

• Dataset 𝐷7 = 𝑠, 𝜋456 𝑠
• Aggregate Datasets 𝐷 = 𝐷 ∪ 𝐷7
• Train 𝜋7 on 𝐷

• Collect new trajectories with 𝜋7
• New Dataset 𝐷8 = 𝑠, 𝜋456 𝑠
• Aggregate Datasets 𝐷 = 𝐷 ∪ 𝐷8
• Train 𝜋8 on 𝐷

Dagger Algorithm (Simplified Version)

Warm-up II: Imitation learning

ππrefref

1. Collect trajectories from expert πref

2. Dataset D0 = { (o, πref(o,y)) | o ~ πref }

3. Train π1 on D0

4. Collect new trajectories from π1

➢ But let the expert steer!

5. Dataset D1 = { (o, πref(o,y)) | o ~ π1 }

6. Train π2 on D0 ∪ D1

● In general:

● Dn = { (o, πref(o,y)) | o ~ πn }

● Train πn+1 on ∪i≤n Di

ππ11

ππ22

If N = T log T,

L(πn) < T N + O(1)

for some n

128

• Initialize Dataset 𝐷 = ∅
• Collect trajectories with reference policy 𝜋456 (the expert)

• Dataset 𝐷7 = 𝑠, 𝜋456 𝑠
• Aggregate Datasets 𝐷 = 𝐷 ∪ 𝐷7
• Train 𝜋7 on 𝐷

• Collect new trajectories with 𝜋7
• New Dataset 𝐷8 = 𝑠, 𝜋456 𝑠
• Aggregate Datasets 𝐷 = 𝐷 ∪ 𝐷8
• Train 𝜋8 on 𝐷

Dagger Algorithm (Simplified Version)

Warm-up II: Imitation learning

ππrefref

1. Collect trajectories from expert πref

2. Dataset D0 = { (o, πref(o,y)) | o ~ πref }

3. Train π1 on D0

4. Collect new trajectories from π1

➢ But let the expert steer!

5. Dataset D1 = { (o, πref(o,y)) | o ~ π1 }

6. Train π2 on D0 ∪ D1

● In general:

● Dn = { (o, πref(o,y)) | o ~ πn }

● Train πn+1 on ∪i≤n Di

ππ11

ππ22

If N = T log T,

L(πn) < T N + O(1)

for some n

129

• Initialize Dataset 𝐷 = ∅
• Collect trajectories with reference policy 𝜋456 (the expert)

• Dataset 𝐷7 = 𝑠, 𝜋456 𝑠
• Aggregate Datasets 𝐷 = 𝐷 ∪ 𝐷7
• Train 𝜋7 on 𝐷

• Collect new trajectories with 𝜋7
• New Dataset 𝐷8 = 𝑠, 𝜋456 𝑠
• Aggregate Datasets 𝐷 = 𝐷 ∪ 𝐷8
• Train 𝜋8 on 𝐷

Dagger Algorithm (Simplified Version)

Warm-up II: Imitation learning

ππrefref

1. Collect trajectories from expert πref

2. Dataset D0 = { (o, πref(o,y)) | o ~ πref }

3. Train π1 on D0

4. Collect new trajectories from π1

➢ But let the expert steer!

5. Dataset D1 = { (o, πref(o,y)) | o ~ π1 }

6. Train π2 on D0 ∪ D1

● In general:

● Dn = { (o, πref(o,y)) | o ~ πn }

● Train πn+1 on ∪i≤n Di

ππ11

ππ22

If N = T log T,

L(πn) < T N + O(1)

for some n

130

• Initialize Dataset 𝐷 = ∅
• Collect trajectories with reference policy 𝜋456 (the expert)

• Dataset 𝐷7 = 𝑠, 𝜋456 𝑠
• Aggregate Datasets 𝐷 = 𝐷 ∪ 𝐷7
• Train 𝜋7 on 𝐷

• Collect new trajectories with 𝜋7
• New Dataset 𝐷8 = 𝑠, 𝜋456 𝑠
• Aggregate Datasets 𝐷 = 𝐷 ∪ 𝐷8
• Train 𝜋8 on 𝐷

DAgger V.S. SEARN

Similarities:
• Dagger also treats a structured prediction problem as a

sequence of multiclass classification problem.
• Roll-in with current policy
• Iteratively improving the current policy by learning better

multiclass classifiers.
Differences:
• There is no roll-out stage
• At each step we just have a regular multiclass example

(not cost-sensitive example), given by the expert.
• Aggregate dataset

131

DAgger V.S. SEARN

Similarities:
• Dagger also treats a structured prediction problem as a

sequence of multiclass classification problem.
• Roll-in with current policy
• Iteratively improving the current policy by learning better

multiclass classifiers.
Differences:
• There is no roll-out stage
• At each step we just have a regular multiclass example

(not cost-sensitive example), given by the expert.
• Aggregate dataset

132

DAgger V.S. SEARN

Similarities:
• Dagger also treats a structured prediction problem as a

sequence of multiclass classification problem.
• Roll-in with current policy
• Iteratively improving the current policy by learning better

multiclass classifiers.
Differences:
• There is no roll-out stage
• At each step we just have a regular multiclass example

(not cost-sensitive example), given by the expert.
• Aggregate dataset

133

DAgger V.S. SEARN

Similarities:
• Dagger also treats a structured prediction problem as a

sequence of multiclass classification problem.
• Roll-in with current policy
• Iteratively improving the current policy by learning better

multiclass classifiers.
Differences:
• There is no roll-out stage
• At each step we just have a regular multiclass example

(not cost-sensitive example), given by the expert.
• Aggregate dataset

134

DAgger V.S. SEARN

Similarities:
• Dagger also treats a structured prediction problem as a

sequence of multiclass classification problem.
• Roll-in with current policy
• Iteratively improving the current policy by learning better

multiclass classifiers.
Differences:
• There is no roll-out stage
• At each step we just have a regular multiclass example

(not cost-sensitive example), given by the expert.
• Aggregate dataset

135

DAgger V.S. SEARN

Similarities:
• Dagger also treats a structured prediction problem as a

sequence of multiclass classification problem.
• Roll-in with current policy
• Iteratively improving the current policy by learning better

multiclass classifiers.
Differences:
• There is no roll-out stage
• At each step we just have a regular multiclass example

(not cost-sensitive example), given by the expert.
• Aggregate dataset

136

DAgger V.S. SEARN

Similarities:
• Dagger also treats a structured prediction problem as a

sequence of multiclass classification problem.
• Roll-in with current policy
• Iteratively improving the current policy by learning better

multiclass classifiers.
Differences:
• There is no roll-out stage
• At each step we just have a regular multiclass example

(not cost-sensitive example), given by the expert.
• Aggregate dataset

137

DAgger V.S. SEARN

Similarities:
• Dagger also treats a structured prediction problem as a

sequence of multiclass classification problem.
• Roll-in with current policy
• Iteratively improving the current policy by learning better

multiclass classifiers.
Differences:
• There is no roll-out stage
• At each step we just have a regular multiclass example

(not cost-sensitive example), given by the expert.
• Aggregate dataset

138

Other related algorithms

• Incremental Perceptron (2002)
– Based on structured Perceptron
– Instead of finishing inference during training, when inference

makes its first mistake, stop and update parameters

• AggreVaTe: Aggregate Values to Imitate (2014)
– Combines ideas from DAgger and SEARN
– Cost-sensitive learning + dataset aggregation

• LOLS: Locally Optimal Learning to Search (2015)
– What if the reference policy is not good?
– Changes roll-outs to account for this

139

Learning to search: Summary

• Inference in structured prediction can be framed as
search
– Can we learn a model that explicitly helps inference

navigate the search space?

• Several algorithms:
– LaSO, SEARN, DAgger, etc
– Often easy to implement with simpler building blocks

• Can be the basis of a general purpose structured prediction
framework

140

