
CS 6355: Structured Prediction

Learning to Search
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Some slides adapted from Daumé and Ross



Inference

• What is inference?
– An overview of what we have seen before
– Combinatorial optimization
– Different views of inference

• Graph algorithms
– Dynamic programming, greedy algorithms, search

• Integer programming

• Heuristics for inference
– Sampling

• Learning to search
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Learning to Search

We have seen that inference as graph search
– Iteratively construct a series of partial structures
– Find the highest scoring structure in this fashion

Can we learn a model that is designed with such inference in mind?
– Learning to search is a way of formulating structured prediction 

problems as a search problem
– Integrates learning and prediction into a unified framework
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Overview

1. Preliminaries
– Learning to minimize costs
– Search problems and a generic search algorithm

2. Learning to search: A general formulation
3. LaSO: Learning as Search Optimization
4. SEARN: Search and Learning
5. DAgger: Dataset Aggregation

4



Overview

1. Preliminaries
– Learning to minimize costs
– Search problems and a generic search algorithm

2. Learning to search: A general formulation
3. LaSO: Learning as Search Optimization
4. SEARN: Search and Learning
5. DAgger: Dataset Aggregation

5



Learning to minimize prediction cost
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Suppose each y can be one of A, 
B or C, and the true label is 
(𝑦1 = A, 𝑦2 = B, 𝑦3 = C)

𝐲 = (𝑦1, 𝑦2, 𝑦3)



Learning to minimize prediction cost
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…
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Suppose each y can be one of A, 
B or C, and the true label is 
(𝑦1 = A, 𝑦2 = B, 𝑦3 = C)

𝐲 = (𝑦1, 𝑦2, 𝑦3)

The cost vector for this input x can be:

The goal: Learn a classifier 
that has lowest cost



Learning to minimize prediction cost

8

x1 x2 x3

y3

y2

y1

𝑐(𝐴, 𝐴, 𝐴) = 1
𝑐(𝐴, 𝐴, 𝐵) = 1
𝑐(𝐴, 𝐴, 𝐶) = 1

…
𝑐(𝐴, 𝐵, 𝐶) = 0

…
𝑐(𝐶, 𝐶, 𝐵) = 1
𝑐(𝐶, 𝐶, 𝐶) = 1

𝑐(𝐴, 𝐴, 𝐴) = 2
𝑐(𝐴, 𝐴, 𝐵) = 2
𝑐(𝐴, 𝐴, 𝐶) = 1

…
𝑐(𝐴, 𝐵, 𝐶) = 0

…
𝑐(𝐶, 𝐶, 𝐵) = 3
𝑐(𝐶, 𝐶, 𝐶) = 2

Hamming 
Distance

or

Suppose each y can be one of A, 
B or C, and the true label is 
(𝑦1 = A, 𝑦2 = B, 𝑦3 = C)

𝐲 = (𝑦1, 𝑦2, 𝑦3)

The cost vector for this input x can be:

The goal: Learn a classifier 
that has lowest cost



Learning to minimize prediction cost
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B or C, and the true label is 
(𝑦1 = A, 𝑦2 = B, 𝑦3 = C)

𝐲 = (𝑦1, 𝑦2, 𝑦3)

The cost vector for this input x can be:
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that has lowest cost

What is the 
dimensionality of the 
cost vector c? 



A Structured Prediction Problem

Learn a mapping ℎ(𝐱) from inputs 𝐱 to outputs 𝐲

• Each 𝐲 decomposes into decisions/labels (𝑦1, 𝑦2, … , 𝑦𝑇)

• Each 𝐱 is associated with a cost vector 𝐜
– 𝐜 has 2! components if the 𝑦𝑖’s are binary

• Each component specifies the cost of the corresponding full 
assignment 𝐲

– Sometimes thought of as a function

• The goal is to minimize 𝐿 ℎ = 𝐸[𝑐"($)]
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Overview

1. Preliminaries
– Learning to minimize costs
– Search problems and a generic search algorithm

2. Learning to search: A general formulation
3. LaSO: Learning as Search Optimization
4. SEARN: Search and Learning
5. DAgger: Dataset Aggregation
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Formalizing search problems

• Initial state: denoted by s0
– The starting point for the search

• Actions: Actions(s)
– The set of actions that can be performed at a state

• Transition: Result(s, a)
– “Applies” an action a to a state s to produce the next state

• Goal test: A check for whether the search is complete or not
• Path cost/score: A score for the path from the start state to any state
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Formalizing search problems

• Initial state: denoted by s0
– The starting point for the search

• Actions: Actions(s)
– The set of actions that can be performed at a state

• Transition: Result(s, a)
– “Applies” an action a to a state s to produce the next state

• Goal test: A check for whether the search is complete or not
• Path cost/score: A score for the path from the start state to any state

A solution is an action sequence that leads from initial state to a goal state.
An optimal solution has the lowest path cost or highest score.
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Example Search Problem: 8-puzzle

7 2 4

5 blank 6

8 3 1

14

blank 1 2

3 4 5

6 7 8

Initial State Goal State



Example Search Problem: 8-puzzle

7 2 4

5 blank 6

8 3 1

15

blank 1 2

3 4 5

6 7 8

Initial State Goal State

Initial state: s0
Actions: Actions(s)
Transition model: Result(s, a)
Goal test
Path cost / score

What are these five components for 8-puzzle?



Generic Search Algorithm
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How do we solve a search problem? 

Answer: By starting at the initial state, and navigating the state space till we get to 
an answer



Generic Search Algorithm
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Algo Search(problem, initial, enqueue):



Generic Search Algorithm
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Algo Search(problem, initial, enqueue):
nodes = MakeQueue(MakeNode(problem, initial))
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Algo Search(problem, initial, enqueue):
nodes = MakeQueue(MakeNode(problem, initial))
while nodes is not empty:
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Algo Search(problem, initial, enqueue):
nodes = MakeQueue(MakeNode(problem, initial))
while nodes is not empty:

node = Pop(nodes)



Generic Search Algorithm
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Algo Search(problem, initial, enqueue):
nodes = MakeQueue(MakeNode(problem, initial))
while nodes is not empty:

node = Pop(nodes)
if GoalTest(node) then return node



Generic Search Algorithm
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Algo Search(problem, initial, enqueue):
nodes = MakeQueue(MakeNode(problem, initial))
while nodes is not empty:
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if GoalTest(node) then return node
next = Result(node, Actions(node))
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Algo Search(problem, initial, enqueue):
nodes = MakeQueue(MakeNode(problem, initial))
while nodes is not empty:
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next = Result(node, Actions(node))
nodes = enqueue(problem, nodes, next)



Generic Search Algorithm
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Algo Search(problem, initial, enqueue):
nodes = MakeQueue(MakeNode(problem, initial))
while nodes is not empty:

node = Pop(nodes)
if GoalTest(node) then return node
next = Result(node, Actions(node))
nodes = enqueue(problem, nodes, next)

return failure



Generic Search Algorithm
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Algo Search(problem, initial, enqueue):
nodes = MakeQueue(MakeNode(problem, initial))
while nodes is not empty:

node = Pop(nodes)
if GoalTest(node) then return node
next = Result(node, Actions(node))
nodes = enqueue(problem, nodes, next)

return failure

All magic happens in the enqueue function (BFS, DFS, beam, A*)
Or is there any magic?
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Learning to search: General setting

The high level idea: 
– Frame the problem of structured prediction as a generic 

search problem

– Learn to enqueue nodes so that “good” states are explored 
first, and we get to a solution easily.
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Predicting an output 𝐲 as a sequence of decisions



Learning to search: General setting

General data structures
– State: Partial assignments to (𝑦1, 𝑦2, … , 𝑦𝑇)
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Learning to search: General setting

General data structures
– State: Partial assignments to (𝑦1, 𝑦2, … , 𝑦𝑇)
– Initial state: Empty assignments (−,−,… ,−)
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Learning to search: General setting

General data structures
– State: Partial assignments to (𝑦1, 𝑦2, … , 𝑦𝑇)
– Initial state: Empty assignments (−,−,… ,−)
– Actions: Pick a 𝑦𝑖 component and assign a label to it
– Transition model: Move from one partial structure to another
– Goal test: Whether all 𝑦 components are assigned

• A goal state does not need to be optimal
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Learning to search: General setting

General data structures
– State: Partial assignments to (𝑦1, 𝑦2, … , 𝑦𝑇)
– Initial state: Empty assignments (−,−,… ,−)
– Actions: Pick a 𝑦𝑖 component and assign a label to it
– Transition model: Move from one partial structure to another
– Goal test: Whether all 𝑦 components are assigned

• A goal state does not need to be optimal
– Path cost/score function: 𝐰𝑇 𝜙(𝐱, node)

• or, a neural network that depends on the 𝐱 and the node
• A node contains the current state and the back pointer to trace 

back the search path
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Predicting an output 𝐲 as a sequence of decisions



Example
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x1 x2 x3
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Suppose each y can be one 
of A, B or C



Example
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x1 x2 x3

y3

y2

y1

• State: Triples (y1, y2, y3) all possibly unknown
• (A, -, -), (-, A, A), (-, -, -),…

• Transition: Fill in one of the unknowns

• Start state: (-,-,-)

• End state: All three y’s are assigned

Suppose each y can be one 
of A, B or C



Example
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x1 x2 x3

y3

y2

y1

• State: Triples (y1, y2, y3) all possibly unknown
• (A, -, -), (-, A, A), (-, -, -),…

• Transition: Fill in one of the unknowns

• Start state: (-,-,-)

• End state: All three y’s are assigned

(-,-,-)

(A,-,-) (B,-,-) (C,-,-)

(A,A,-) (C,C,-)

(A,A,A) (C,C,C)

…..

Suppose each y can be one 
of A, B or C



LaSO: Learning as Search Optimization
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1st Framework:

[Hal Daumé III and Daniel Marcu, ICML 2005]



The enqueue function in LaSO
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The enqueue function in LaSO

• The goal of learning is to produce an enqueue
function that
– places good hypotheses high on the queue
– places bad hypotheses low on the queue
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g + h
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The enqueue function in LaSO

• The goal of learning is to produce an enqueue
function that
– places good hypotheses high on the queue
– places bad hypotheses low on the queue

• LaSO assumes enqueue is based on two components
g + h
– g: path component. (g = wT φ(x, node))
– h: heuristic component. (h is given)

• A* if h is admissible, heuristic search if h is not admissible, best 
first search if h = 0, beam search if queue is limited.
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The enqueue function in LaSO

• The goal of learning is to produce an enqueue
function that
– places good hypotheses high on the queue
– places bad hypotheses low on the queue

• LaSO assumes enqueue is based on two components
g + h
– g: path component. (g = wT φ(x, node))
– h: heuristic component. (h is given)

• A* if h is admissible, heuristic search if h is not admissible, best 
first search if h = 0, beam search if queue is limited.
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The goal is to learn w.
How?



“y-good” node
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“y-good” node

Assumption: for any given node s and an gold output y, 
we can tell whether s can or cannot lead to y.
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we can tell whether s can or cannot lead to y.

Definition: The node s is y-good if s can lead to y
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“y-good” node

Assumption: for any given node s and an gold output y, 
we can tell whether s can or cannot lead to y.

Definition: The node s is y-good if s can lead to y
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Suppose each y can be one 
of A, B or C, and the true 
label is (y1=A, y2=B, y3=C)

y = (y1, y2, y3)



“y-good” node

Assumption: for any given node s and an gold output y, 
we can tell whether s can or cannot lead to y.

Definition: The node s is y-good if s can lead to y
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Suppose each y can be one 
of A, B or C, and the true 
label is (y1=A, y2=B, y3=C)

y = (y1, y2, y3)
(-,-,-)

(A,-,-) (-,B,-) (C,-,-)

(A,A,-) (C,C,-)

(A,A,A) (C,C,C)

…..



Learning in LaSO
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Learning in LaSO

• Search as if in the prediction phase, but when an 
error is made:
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• Search as if in the prediction phase, but when an 
error is made:
– update w
– clear the queue and insert all the correct moves

• Two kinds of errors:
– Error type 1: none of the queue is y-good
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Learning in LaSO

• Search as if in the prediction phase, but when an 
error is made:
– update w
– clear the queue and insert all the correct moves

• Two kinds of errors:
– Error type 1: none of the queue is y-good
– Error type 2: the goal state is not y-good
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Learning Algorithm in LaSO
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Learning Algorithm in LaSO
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Algo Learn(problem, initial, enqueue, w, x, y)
nodes = MakeQueue(MakeNode(problem, initial))
while nodes is not empty:

node = Pop(nodes)
if error

step 1:
update w

step 2:
refresh queue

else
if GoalTest(node) then return w
next = Result(node, Actions(node))
nodes = enqueue(problem, nodes, next, w)
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66
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Learning Algorithm in LaSO
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Algo Learn(problem, initial, enqueue, w, x, y)
nodes = MakeQueue(MakeNode(problem, initial))
while nodes is not empty:

node = Pop(nodes)
if error

step 1:
update w

step 2:
refresh queue

else
if GoalTest(node) then return w
next = Result(node, Actions(node))
nodes = enqueue(problem, nodes, next, w)



What should learning do?

node 1
y-good

node 2
y-good

node 4
y-good

current 

node 3
y-good

node 5
y-good

68

Let’s say we found an error (of either type) at the current node, then
we should have made the choice of node 4 instead of the current node



What should learning do?

node 1
y-good

node 2
y-good

node 4
y-good

current 

node 3
y-good

node 5
y-good
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Let’s say we found an error (of either type) at the current node, then
we should have made the choice of node 4 instead of the current node

Node 4 is the y-good sibling of the current node



Learning Algorithm in LaSO
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Algo Learn(problem, initial, enqueue, w, x, y)
nodes = MakeQueue(MakeNode(problem, initial))
while nodes is not empty:

node = Pop(nodes)
if none of (node + nodes) is y-good or

GoalTest(node) and node is not y-good then
sibs = siblings(node, y)
w = update(w, x, sibs, node, nodes)
nodes = MakeQueue(sibs)

else
if GoalTest(node) then return w
next = Result(node, Actions(node))
nodes = enqueue(problem, nodes, next, w)
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Algo Learn(problem, initial, enqueue, w, x, y)
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while nodes is not empty:
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nodes = MakeQueue(sibs)
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Algo Learn(problem, initial, enqueue, w, x, y)
nodes = MakeQueue(MakeNode(problem, initial))
while nodes is not empty:

node = Pop(nodes)
if none of (node + nodes) is y-good or

GoalTest(node) and node is not y-good then
sibs = siblings(node, y)
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Learning Algorithm in LaSO
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Algo Learn(problem, initial, enqueue, w, x, y)
nodes = MakeQueue(MakeNode(problem, initial))
while nodes is not empty:

node = Pop(nodes)
if none of (node + nodes) is y-good or

GoalTest(node) and node is not y-good then
sibs = siblings(node, y)
w = update(w, x, sibs, {node, nodes})
nodes = MakeQueue(sibs)

else
if GoalTest(node) then return w
next = Result(node, Actions(node))
nodes = enqueue(problem, nodes, next, w)



Learning Algorithm in LaSO
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Algo Learn(problem, initial, enqueue, w, x, y)
nodes = MakeQueue(MakeNode(problem, initial))
while nodes is not empty:

node = Pop(nodes)
if none of (node + nodes) is y-good or

GoalTest(node) and node is not y-good then
sibs = siblings(node, y)
w = update(w, x, sibs, {node, nodes})
nodes = MakeQueue(sibs)

else
if GoalTest(node) then return w
next = Result(node, Actions(node))
nodes = enqueue(problem, nodes, next, w)



Parameter Updates
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We need to specify w = update(w, x, sibs, nodes)

A simple perceptron-style update rule: w = w + Δ

It comes with the usual perceptron-style mistake bound and generalization bound.
(See references)

� =
X

n2sibs

�(x, n)

|sibs| �
X

n2nodes

�(x, n)

|nodes|



SEARN: Search and Learning
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2nd Framework:

Hal Daumé III, John Langford, Daniel Marcu (2007)



Policy

• A policy is a mapping from a state to an action
• For a given node, the policy tells what action should be taken
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Policy

• A policy is a mapping from a state to an action
• For a given node, the policy tells what action should be taken

• A policy gives a search path in the search space.
– Different policy means different search path
– Can be thought as the “driver” in the search space
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Policy

• A policy is a mapping from a state to an action
• For a given node, the policy tells what action should be taken

• A policy gives a search path in the search space.
– Different policy means different search path
– Can be thought as the “driver” in the search space

• A policy may be deterministic, or may contain some randomness. 
(More on this later)
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Reference Policy and Learned Policy
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Reference Policy and Learned Policy

• We assume we already have a good reference policy 𝜋 for 
training data (𝐱, 𝐜)
– i.e. examples associated with costs for outputs
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Reference Policy and Learned Policy
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What's the (biggest) failure mode?

ππrefref

The expert never gets stuck next to pipes

fi Classifier doesn't learn to recover!

For example if we are using Hamming distance
for cost vector 𝐜, then the reference policy is trivial
to compute, why?

Just make the right decision at every step

Suppose gold state is (A, B, C, A)
and we are at the state (A, C, -, -)
The reference policy tells us the next action is assigned C to the third slot.



Cost-Sensitive Classification

Suppose we want to learn a classifier ℎ that maps examples to one of 𝐾 labels

Standard multiclass classification
• Training data: Pairs of examples associated with labels

– 𝑥, 𝑦 ∈ 𝑋 ×[𝐾]
• Learning goal: To find a classifier that has low error

– min
$
Pr ℎ 𝑥 ≠ 𝑦

Cost-sensitive classification
• Training data: An example paired with a cost vector that lists out the cost 

of predicting each label
– 𝑥, 𝐜 ∈ 𝑋 × 0,∞ %

• Learning goal: To find a classifier that has low cost
– min

$
𝐸&,( 𝑐$ &
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SEARN at test time

We already have learned a policy.  We can use this 
policy to construct a sequence of decisions y and get 
the final structured output.
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We already have learned a policy.  We can use this 
policy to construct a sequence of decisions y and get 
the final structured output.

1. Use the learned policy on initial state (-,…, -) to 
compute y1

2. Use the learned policy on state (y1, -,…,-) to 
compute y2
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SEARN at test time

We already have learned a policy.  We can use this 
policy to construct a sequence of decisions y and get 
the final structured output.

1. Use the learned policy on initial state (-,…, -) to 
compute y1

2. Use the learned policy on state (y1, -,…,-) to 
compute y2

3. Keep going until we get y = (y1,…,yn)
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SEARN at training time
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SEARN at training time

• The core idea in training is to notice that at each 
decision step, we are actually doing a cost-sensitive 
classification
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with state s and cost vector c.
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SEARN at training time

• The core idea in training is to notice that at each 
decision step, we are actually doing a cost-sensitive 
classification

• Construct cost-sensitive classification examples (s, c) 
with state s and cost vector c.

• Learn a cost-sensitive classifier. (This is nothing but a 
policy)
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roll in

At each state, use some policy to move to a new state.
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roll in

What is the cost of 
deviating from the 
policy at this step?



Roll-in, Roll-out
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roll in

one step deviation

What is the cost of 
deviating from the 
policy at this step?

Assuming that there 
are three possible 
actions at this state
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roll in

one step deviation
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deviating from the 
policy at this step?
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roll in

one step deviation

roll out

roll out

What is the cost of 
deviating from the 
policy at this step?

Once we make the one-
step deviation, we could 
use some policy to get to 
a goal state again
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roll in

one step deviation

roll out

roll out

What is the cost of 
deviating from the 
policy at this step?



Learning to search:

AggraVaTe

1.Generate an initial
trajectory using the 
current policy

2.Foreach decision on that trajectory with obs. o:
a)Foreach possible action a (one-step deviations)

i. Take that action

ii. Complete this trajectory using reference policy

iii.Obtain a final loss, ca
b)Generate a cost-sensitive classification example:

( o, c )

? E

E

E

rollin

rollout
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SEARN at training time (continued)
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• Generate a search path
• Construct a cost-sensitive example: (?-state, c=(0, 0.2, 0.8))



Learning to search:

AggraVaTe

1.Generate an initial
trajectory using the 
current policy

2.Foreach decision on that trajectory with obs. o:
a)Foreach possible action a (one-step deviations)

i. Take that action

ii. Complete this trajectory using reference policy

iii.Obtain a final loss, ca
b)Generate a cost-sensitive classification example:

( o, c )

? E

E

E

rollin

rollout
 
 
o
n
e
-
s
t
e
p

d
e
v
i
a
t
i
o
n
s

loss=.2

loss=0

loss=.8

SEARN at training time (continued)

110

• Generate a search path
• Construct a cost-sensitive example: (?-state, c=(0, 0.2, 0.8))
• Do this for every step along the path
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• Generate a search path
• Construct a cost-sensitive example: (?-state, c=(0, 0.2, 0.8))
• Do this for every step along the path
• And for every structured training example
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• Generate a search path
• Construct a cost-sensitive example: (?-state, c=(0, 0.2, 0.8))
• Do this for every step along the path
• And for every structured training example
• Collect all these cost-sensitive examples to train a improved policy h’
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• Generate a search path
• Construct a cost-sensitive example: (?-state, c=(0, 0.2, 0.8))
• Do this for every step along the path
• And for every structured training example
• Collect all these cost-sensitive examples to train a improved policy h’
• Interpolate: h �h0 + (1� �)h
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• And for every structured training example
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Roll-in with
current policy h

Roll-out with
current policy h

• If h is deterministic:

lh(c, s, a) = cy(s,a,h) �min
a0

cy(s,a0,h)
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Roll-in with
current policy h

Roll-out with
current policy h

• If h is deterministic:

• If h contains randomness:
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Roll-in with
current policy h

Roll-out with
current policy h

• If h is deterministic:

• If h contains randomness:

lh(c, s, a) = cy(s,a,h) �min
a0

cy(s,a0,h)

lh(c, s, a) = Ey⇠(s,a,h)cy �min
a0

Ey⇠(s,a0,h)cy

The loss defined this 
way is called regret



DAgger: Dataset Aggregation
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3rd Framework:

[Stéphane Ross, Geoffrey J. Gordon, J. Andrew Bagnell, 2011]



Dagger Algorithm (Simplified Version)

Warm-up II: Imitation learning

ππrefref

1. Collect trajectories from expert πref

2. Dataset D0 = { ( o, πref(o,y) ) | o ~ πref }

3. Train π1 on D0

4. Collect new trajectories from π1

➢ But let the expert steer!

5. Dataset D1 = { ( o, πref(o,y) ) | o ~ π1 }

6. Train π2 on  D0 ∪ D1

● In general:

● Dn = { ( o, πref(o,y) ) | o ~ πn }

● Train πn+1 on ∪i≤n Di

ππ11

ππ22

If N = T log T,

L(πn) < T N + O(1)

for some n
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• Initialize Dataset 𝐷 = ∅
• Collect trajectories with reference policy 𝜋456 (the expert)

• Dataset 𝐷7 = 𝑠, 𝜋456 𝑠
• Aggregate Datasets 𝐷 = 𝐷 ∪ 𝐷7
• Train 𝜋7 on 𝐷

• Collect new trajectories with 𝜋7
• New Dataset 𝐷8 = 𝑠, 𝜋456 𝑠
• Aggregate Datasets 𝐷 = 𝐷 ∪ 𝐷8
• Train 𝜋8 on 𝐷
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DAgger V.S. SEARN

Similarities:
• Dagger also treats a structured prediction problem as a 

sequence of multiclass classification problem.
• Roll-in with current policy
• Iteratively improving the current policy by learning better 

multiclass classifiers.
Differences:
• There is no roll-out stage
• At each step we just have a regular multiclass example 

(not cost-sensitive example), given by the expert.
• Aggregate dataset
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Other related algorithms

• Incremental Perceptron (2002)
– Based on structured Perceptron
– Instead of finishing inference during training, when inference 

makes its first mistake, stop and update parameters

• AggreVaTe: Aggregate Values to Imitate (2014)
– Combines ideas from DAgger and SEARN
– Cost-sensitive learning + dataset aggregation

• LOLS: Locally Optimal Learning to Search (2015)
– What if the reference policy is not good?
– Changes roll-outs to account for this
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Learning to search: Summary

• Inference in structured prediction can be framed as 
search
– Can we learn a model that explicitly helps inference 

navigate the search space?

• Several algorithms:
– LaSO, SEARN, DAgger, etc
– Often easy to implement with simpler building blocks

• Can be the basis of a general purpose structured prediction 
framework
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