Least Mean Squares Regression
Least Squares Method for regression

• Examples

• The LMS objective

• Gradient descent

• Incremental/stochastic gradient descent
Least Squares Method for regression

- Examples
- The LMS objective
- Gradient descent
- Incremental/stochastic gradient descent
What’s the mileage?

Suppose we want to predict the mileage of a car from its weight and age

What we want: A function that can predict mileage using x_1 and x_2

<table>
<thead>
<tr>
<th>Weight (x 100 lb)</th>
<th>Age (years)</th>
<th>Mileage</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_1</td>
<td>x_2</td>
<td></td>
</tr>
<tr>
<td>31.5</td>
<td>6</td>
<td>21</td>
</tr>
<tr>
<td>36.2</td>
<td>2</td>
<td>25</td>
</tr>
<tr>
<td>43.1</td>
<td>0</td>
<td>18</td>
</tr>
<tr>
<td>27.6</td>
<td>2</td>
<td>30</td>
</tr>
</tbody>
</table>
Linear regression: The strategy

Predicting continuous values using a linear model

Assumption: The output is a linear function of the inputs

\[
\text{Mileage} = w_0 + w_1 x_1 + w_2 x_2
\]

Learning: Using the training data to find the best possible value of \(w \)

Prediction: Given the values for \(x_1, x_2 \) for a new car, use the learned \(w \) to predict the \text{Mileage} for the new car
Linear regression: The strategy
Predicting continuous values using a linear model

Assumption: The output is a linear function of the inputs
\[\text{Mileage} = w_0 + w_1 x_1 + w_2 x_2 \]

Learning: Using the training data to find the \textit{best} possible value of \(w \)

Prediction: Given the values for \(x_1, x_2 \) for a new car, use the learned \(w \) to predict the \textit{Mileage} for the new car

Parameters of the model
Also called \textit{weights}
Collectively, a vector
Linear regression: The strategy

- **Inputs** are vectors: \(\mathbf{x} \in \mathbb{R}^d \)
- **Outputs** are real numbers: \(y \in \mathbb{R} \)

- We have a training set
 \[D = \{ (\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \ldots \} \]

- We want to approximate \(y \) as
 \[y = w_1 + w_2 x_2 + \cdots + w_d x_d \]
 \[y = \mathbf{w}^T \mathbf{x} \]
 \(\mathbf{w} \) is the learned weight vector in \(\mathbb{R}^d \)

For simplicity, we will assume that the first feature is always 1.

\[\mathbf{x} = \begin{bmatrix} 1 \\ x_2 \\ \vdots \\ x_d \end{bmatrix} \]

This lets makes notation easier.
Examples

One dimensional input
Examples

Predict using $y = w_1 + w_2 \, x_2$

One dimensional input
Examples

The linear function is not our only choice. We could have tried to fit the data as another polynomial.

Predict using $y = w_1 + w_2 x_2$
Examples

The linear function is not our only choice. We could have tried to fit the data as another polynomial.

One dimensional input

Two dimensional input

Predict using \(y = w_1 + w_2 x_2 \)

Predict using \(y = w_1 + w_2 x_2 + w_3 x_3 \)
Least Squares Method for regression

- Examples

- The LMS objective

- Gradient descent

- Incremental/stochastic gradient descent
What is the best weight vector?

Question: How do we know which weight vector is the *best* one for a training set?
What is the best weight vector?

Question: How do we know which weight vector is the best one for a training set?

For an input \((x_i, y_i)\) in the training set, the *cost* of a mistake is

\[
\left| y_i - w^T x_i \right|
\]
What is the best weight vector?

Question: How do we know which weight vector is the *best* one for a training set?

For an input \((x_i, y_i)\) in the training set, the *cost* of a mistake is

\[|y_i - w^T x_i| \]

Define the cost (or *loss*) for a particular weight vector \(w\) to be

\[
J(w) = \frac{1}{2} \sum_{i=1}^{m} (y_i - w^T x_i)^2
\]
What is the best weight vector?

Question: How do we know which weight vector is the *best* one for a training set?

For an input \((x_i, y_i)\) in the training set, the **cost** of a mistake is

\[
|y_i - w^T x_i|
\]

Define the cost (or **loss**) for a particular weight vector \(w\) to be

\[
J(w) = \frac{1}{2} \sum_{i=1}^{m} (y_i - w^T x_i)^2
\]

Sum of squared costs over the training set
What is the best weight vector?

Question: How do we know which weight vector is the best one for a training set?

For an input \((x_i, y_i)\) in the training set, the cost of a mistake is

\[|y_i - w^T x_i|\]

Define the cost (or loss) for a particular weight vector \(w\) to be

\[J(w) = \frac{1}{2} \sum_{i=1}^{m} (y_i - w^T x_i)^2\]

One strategy for learning: Find the \(w\) with least cost on this data
Least Mean Squares (LMS) Regression

Learning: minimizing mean squared error

\[
\min_w \frac{1}{2} \sum_{i=1}^{m} (y_i - w^T x_i)^2
\]
Least Mean Squares (LMS) Regression

\[
\min_w \frac{1}{2} \sum_{i=1}^{m} (y_i - w^T x_i)^2
\]

Learning: minimizing mean squared error

Different strategies exist for learning by optimization

- Gradient descent is a popular algorithm

(For this particular minimization objective, there is also an analytical solution. No need for gradient descent)
Least Squares Method for regression

• Examples

• The LMS objective

• Gradient descent

• Incremental/stochastic gradient descent
Gradient descent

General strategy for minimizing a function $J(w)$

• Start with an initial guess for w, say w^0

• Iterate till convergence:
 – Compute the gradient of the gradient of J at w^t
 – Update w^t to get w^{t+1} by taking a step in the opposite direction of the gradient

We are trying to minimize

$$J(w) = \frac{1}{2} \sum_{i=1}^{m} (y_i - w^T x_i)^2$$

Intuition: The gradient is the direction of steepest increase in the function. To get to the minimum, go in the opposite direction
Gradient descent

General strategy for minimizing a function $J(w)$

- Start with an initial guess for w, say w^0
- Iterate till convergence:
 - Compute the gradient of the gradient of J at w^t
 - Update w^t to get w^{t+1} by taking a step in the opposite direction of the gradient

Intuition: The gradient is the direction of steepest increase in the function. To get to the minimum, go in the opposite direction

We are trying to minimize

$$J(w) = \frac{1}{2} \sum_{i=1}^{m} (y_i - w^T x_i)^2$$
Gradient descent

General strategy for minimizing a function $J(w)$

- Start with an initial guess for w, say w^0
- Iterate till convergence:
 - Compute the gradient of the gradient of J at w^t
 - Update w^t to get w^{t+1} by taking a step in the opposite direction of the gradient

Intuition: The gradient is the direction of steepest increase in the function. To get to the minimum, go in the opposite direction

We are trying to minimize

$$J(w) = \frac{1}{2} \sum_{i=1}^{m} (y_i - w^T x_i)^2$$
Gradient descent

General strategy for minimizing a function $J(w)$

- Start with an initial guess for w, say w^0
- Iterate till convergence:
 - Compute the gradient of the gradient of J at w^t
 - Update w^t to get w^{t+1} by taking a step in the opposite direction of the gradient

Intuition: The gradient is the direction of steepest increase in the function. To get to the minimum, go in the opposite direction

We are trying to minimize

$$J(w) = \frac{1}{2} \sum_{i=1}^{m} (y_i - w^T x_i)^2$$
Gradient descent

General strategy for minimizing a function $J(w)$

- Start with an initial guess for w, say w^0
- Iterate till convergence:
 - Compute the gradient of the gradient of J at w^t
 - Update w^t to get w^{t+1} by taking a step in the opposite direction of the gradient

Intuition: The gradient is the direction of steepest increase in the function. To get to the minimum, go in the opposite direction

We are trying to minimize

$$J(w) = \frac{1}{2} \sum_{i=1}^{m} (y_i - w^T x_i)^2$$
Gradient descent

General strategy for minimizing a function $J(w)$

- Start with an initial guess for w, say w^0
- Iterate till convergence:
 - Compute the gradient of the gradient of J at w^t
 - Update w^t to get w^{t+1} by taking a step in the opposite direction of the gradient

We are trying to minimize

$$J(w) = \frac{1}{2} \sum_{i=1}^{m} (y_i - w^T x_i)^2$$

Intuition: The gradient is the direction of steepest increase in the function. To get to the minimum, go in the opposite direction.
Gradient descent for LMS

1. Initialize \(w^0 \)

2. For \(t = 0, 1, 2, \ldots \)
 1. Compute gradient of \(J(w) \) at \(w^t \). Call it \(r J(w^t) \)

2. Update \(w \) as follows:

\[
w^{t+1} = w^t - r \nabla J(w^t)
\]

\(r \): Called the learning rate
(For now, a small constant. We will get to this later)
Gradient descent for LMS

1. Initialize w^0

2. For $t = 0, 1, 2, \ldots$

 1. Compute gradient of $J(w)$ at w^t. Call it $r J(w^t)$

 2. Update w as follows:

 $$w^{t+1} = w^t - r \nabla J(w^t)$$

 r: Called the learning rate

 (For now, a small constant. We will get to this later)

We are trying to minimize

$$J(w) = \frac{1}{2} \sum_{i=1}^{m} (y_i - w^T x_i)^2$$
Gradient of the cost

• The gradient is of the form \(\nabla J(w^t) = \left[\frac{\partial J}{\partial w_1}, \frac{\partial J}{\partial w_2}, \ldots, \frac{\partial J}{\partial w_d} \right] \)

• Remember that \(w \) is a vector with \(d \) elements
 – \(w = [w_1, w_2, w_3, \ldots w_j, \ldots, w_d] \)

We are trying to minimize

\[
J(w) = \frac{1}{2} \sum_{i=1}^{m} (y_i - w^T x_i)^2
\]
Gradient of the cost

We are trying to minimize

\[J(w) = \frac{1}{2} \sum_{i=1}^{m} (y_i - w^T x_i)^2 \]

• The gradient is of the form

\[\nabla J(w^t) = \left[\frac{\partial J}{\partial w_1}, \frac{\partial J}{\partial w_2}, \ldots, \frac{\partial J}{\partial w_d} \right] \]

\[
\frac{\partial J}{\partial w_j} = \frac{\partial}{\partial w_j} \frac{1}{2} \sum_{i=1}^{m} (y_i - w^T x_i)^2
\]
Gradient of the cost

- The gradient is of the form $\nabla J(w^t) = \left[\frac{\partial J}{\partial w_1}, \frac{\partial J}{\partial w_2}, \ldots, \frac{\partial J}{\partial w_d} \right]$

$$\frac{\partial J}{\partial w_j} = \frac{\partial}{\partial w_j} \frac{1}{2} \sum_{i=1}^{m} (y_i - w^T x_i)^2$$

$$= \frac{1}{2} \sum_{i=1}^{m} \frac{\partial}{\partial w_j} (y_i - w^T x_i)^2$$

We are trying to minimize

$$J(w) = \frac{1}{2} \sum_{i=1}^{m} (y_i - w^T x_i)^2$$
Gradient of the cost

- The gradient is of the form \(\nabla J(w^t) = \left[\frac{\partial J}{\partial w_1}, \frac{\partial J}{\partial w_2}, \ldots, \frac{\partial J}{\partial w_d} \right] \)

\[
\frac{\partial J}{\partial w_j} = \frac{\partial}{\partial w_j} \frac{1}{2} \sum_{i=1}^{m} (y_i - w^T x_i)^2 \\
= \frac{1}{2} \sum_{i=1}^{m} \frac{\partial}{\partial w_j} (y_i - w^T x_i)^2 \\
= \frac{1}{2} \sum_{i=1}^{m} 2(y_i - w^T x_i) \frac{\partial}{\partial w_j} (y_i - w_1 x_{i1} - \cdots - w_j x_{ij} - \cdots)
\]

We are trying to minimize

\[
J(w) = \frac{1}{2} \sum_{i=1}^{m} (y_i - w^T x_i)^2
\]
Gradient of the cost

The gradient is of the form $\nabla J(w^t) = \left[\frac{\partial J}{\partial w_1}, \frac{\partial J}{\partial w_2}, \ldots, \frac{\partial J}{\partial w_d} \right]$

\[
\frac{\partial J}{\partial w_j} = \frac{\partial}{\partial w_j} \frac{1}{2} \sum_{i=1}^{m} (y_i - w^T x_i)^2
\]

\[
= \frac{1}{2} \sum_{i=1}^{m} \frac{\partial}{\partial w_j} (y_i - w^T x_i)^2
\]

\[
= \frac{1}{2} \sum_{i=1}^{m} 2(y_i - w^T x_i) \frac{\partial}{\partial w_j} (y_i - w_1 x_{i1} - \cdots w_j x_{ij} - \cdots)
\]

\[
= \frac{1}{2} \sum_{i=1}^{m} 2(y_i - w^T x_i)(-x_{ij})
\]

We are trying to minimize

\[
J(w) = \frac{1}{2} \sum_{i=1}^{m} (y_i - w^T x_i)^2
\]
Gradient of the cost

We are trying to minimize

\[J(w) = \frac{1}{2} \sum_{i=1}^{m} (y_i - w^T x_i)^2 \]

• The gradient is of the form \(\nabla J(w^t) = \left[\frac{\partial J}{\partial w_1}, \frac{\partial J}{\partial w_2}, \ldots, \frac{\partial J}{\partial w_d} \right] \)

\[
\frac{\partial J}{\partial w_j} = \frac{\partial}{\partial w_j} \frac{1}{2} \sum_{i=1}^{m} (y_i - w^T x_i)^2 \\
= \frac{1}{2} \sum_{i=1}^{m} \frac{\partial}{\partial w_j} (y_i - w^T x_i)^2 \\
= \frac{1}{2} \sum_{i=1}^{m} 2(y_i - w^T x_i) \frac{\partial}{\partial w_j} (y_i - w_1 x_{i1} - \cdots - w_j x_{ij} - \cdots) \\
= \frac{1}{2} \sum_{i=1}^{m} 2(y_i - w^T x_i)(-x_{ij}) \\
= - \sum_{i=1}^{m} (y_i - w^T x_i) x_{ij}
\]
Gradient of the cost

We are trying to minimize

\[J(w) = \frac{1}{2} \sum_{i=1}^{m} (y_i - w^T x_i)^2 \]

• The gradient is of the form \(\nabla J(w^t) = \left[\frac{\partial J}{\partial w_1}, \frac{\partial J}{\partial w_2}, \ldots, \frac{\partial J}{\partial w_d} \right] \)

\[
\frac{\partial J}{\partial w_j} = \frac{1}{2} \sum_{i=1}^{m} \left(y_i - w^T x_i \right)^2 \frac{\partial}{\partial w_j} \left(y_i - w^T x_i \right) \\
= \frac{1}{2} \sum_{i=1}^{m} 2(y_i - w^T x_i) \frac{\partial}{\partial w_j} (y_i - w_1 x_{i1} - \cdots w_j x_{ij} - \cdots) \\
= \frac{1}{2} \sum_{i=1}^{m} 2(y_i - w^T x_i) (-x_{ij}) \\
= -\sum_{i=1}^{m} (y_i - w^T x_i) x_{ij}
\]
Gradient of the cost

• The gradient is of the form \(\nabla J(w^t) = \left[\frac{\partial J}{\partial w_1}, \frac{\partial J}{\partial w_2}, \ldots, \frac{\partial J}{\partial w_d} \right] \)

\[
\frac{\partial J}{\partial w_j} = \frac{1}{2} \sum_{i=1}^{m} (y_i - w^T x_i)^2 \\
= \frac{1}{2} \sum_{i=1}^{m} \frac{\partial}{\partial w_j} (y_i - w^T x_i)^2 \\
= \frac{1}{2} \sum_{i=1}^{m} 2(y_i - w^T x_i) \frac{\partial}{\partial w_j} (y_i - w_1 x_{i1} - \cdots w_j x_{ij} - \cdots) \\
= \frac{1}{2} \sum_{i=1}^{m} 2(y_i - w^T x_i)(-x_{ij}) \\
= - \sum_{i=1}^{m} (y_i - w^T x_i) x_{ij}
\]

We are trying to minimize

\[
J(w) = \frac{1}{2} \sum_{i=1}^{m} (y_i - w^T x_i)^2
\]
Gradient descent for LMS

1. Initialize w^0

2. For $t = 0, 1, 2, \ldots$
 1. Compute gradient of $J(w)$ at w^t. Call it $\nabla J(w^t)$

 Evaluate the function for each training example to compute the error and construct the gradient vector

 $$\frac{\partial J}{\partial w_j} = - \sum_{i=1}^{m} (y_i - w^T x_i)x_{ij}$$

We are trying to minimize

$$J(w) = \frac{1}{2} \sum_{i=1}^{m} (y_i - w^T x_i)^2$$
Gradient descent for LMS

1. Initialize \mathbf{w}^0

2. For $t = 0, 1, 2, \ldots$

 1. Compute gradient of $J(\mathbf{w})$ at \mathbf{w}^t. Call it $\nabla J(\mathbf{w}^t)$

 Evaluate the function for each training example to compute the error and construct the gradient vector

 $$
 \frac{\partial J}{\partial w_j} = - \sum_{i=1}^{m} (y_i - \mathbf{w}^T \mathbf{x}_i) x_{ij}
 $$

 One element of $\nabla J(\mathbf{w}^t)$

We are trying to minimize

$$
J(\mathbf{w}) = \frac{1}{2} \sum_{i=1}^{m} (y_i - \mathbf{w}^T \mathbf{x}_i)^2
$$
Gradient descent for LMS

1. Initialize \(w^0 \)

2. For \(t = 0, 1, 2, \ldots \)

 1. Compute gradient of \(J(w) \) at \(w^t \). Call it \(\nabla J(w^t) \)

 Evaluate the function for each training example to compute the error and construct the gradient vector

 \[
 \frac{\partial J}{\partial w_j} = -\sum_{i=1}^{m} (y_i - w^T x_i) x_{ij}
 \]

 2. Update \(w \) as follows:

 \[
 w^{t+1} = w^t - r \nabla J(w^t)
 \]

We are trying to minimize

\[
J(w) = \frac{1}{2} \sum_{i=1}^{m} (y_i - w^T x_i)^2
\]
Gradient descent for LMS

1. Initialize \mathbf{w}^0

2. For $t = 0, 1, 2, \ldots$ (until total error is below a threshold)
 1. Compute gradient of $J(\mathbf{w})$ at \mathbf{w}^t. Call it $\nabla J(\mathbf{w}^t)$
 Evaluate the function for each training example to compute the error and construct the gradient vector
 \[
 \frac{\partial J}{\partial w_j} = - \sum_{i=1}^{m} (y_i - \mathbf{w}^T \mathbf{x}_i) x_{ij}
 \]
 One element of $\nabla J(\mathbf{w}^t)$
 2. Update \mathbf{w} as follows: $\mathbf{w}^{t+1} = \mathbf{w}^t - r \nabla J(\mathbf{w}^t)$

We are trying to minimize
\[
J(\mathbf{w}) = \frac{1}{2} \sum_{i=1}^{m} (y_i - \mathbf{w}^T \mathbf{x}_i)^2
\]
Gradient descent for LMS

1. Initialize w^0

2. For $t = 0, 1, 2, \ldots$ (until total error is below a threshold)
 1. Compute gradient of $J(w)$ at w^t. Call it $\nabla J(w^t)$
 Evaluate the function for each training example to compute the error and construct the gradient vector
 \[
 \frac{\partial J}{\partial w_j} = -\sum_{i=1}^{m} (y_i - w^T x_i) x_{ij}
 \]
 One element of $\nabla J(w^t)$

2. Update w as follows:
 \[w^{t+1} = w^t - r \nabla J(w^t) \]
 r: Called the learning rate
 (For now, a small constant. We will get to this later)

We are trying to minimize
\[
J(w) = \frac{1}{2} \sum_{i=1}^{m} (y_i - w^T x_i)^2
\]
Gradient descent for LMS

1. Initialize \mathbf{w}^0

2. For $t = 0, 1, 2, \ldots$ (until total error is below a threshold)
 1. Compute gradient of $J(\mathbf{w})$ at \mathbf{w}^t. Call it $\nabla J(\mathbf{w}^t)$

 Evaluate the function for each training example to compute the error and construct the gradient vector

 $$\frac{\partial J}{\partial w_j} = - \sum_{i=1}^{m} (y_i - \mathbf{w}^T \mathbf{x}_i)x_{ij}$$

 One element of $\nabla J(\mathbf{w}^t)$

 2. Update \mathbf{w} as follows: $\mathbf{w}^{t+1} = \mathbf{w}^t - r \nabla J(\mathbf{w}^t)$

 r: Called the learning rate
 (For now, a small constant. We will get to this later)

This algorithm is guaranteed to converge to the minimum of J if r is small enough.
Why? The objective J is a convex function
Least Squares Method for regression

• Examples

• The LMS objective

• Gradient descent

• Incremental/stochastic gradient descent
Gradient descent for LMS

1. Initialize \(\mathbf{w}^0 \)

2. For \(t = 0, 1, 2, \ldots \) (until total error is below a threshold)
 1. Compute gradient of \(J(\mathbf{w}) \) at \(\mathbf{w}^t \). Call it \(\nabla J(\mathbf{w}^t) \)

 Evaluate the function for each training example to compute the error and construct the gradient vector

 \[
 \frac{\partial J}{\partial w_j} = -\sum_{i=1}^{m} (y_i - \mathbf{w}^T \mathbf{x}_i) x_{ij}
 \]

 2. Update \(\mathbf{w} \) as follows: \(\mathbf{w}^{t+1} = \mathbf{w}^t - r \nabla J(\mathbf{w}^t) \)

We are trying to minimize \(J(\mathbf{w}) = \frac{1}{2} \sum_{i=1}^{m} (y_i - \mathbf{w}^T \mathbf{x}_i)^2 \)
Gradient descent for LMS

1. Initialize w^0

2. For $t = 0, 1, 2, \ldots$ (until total error is below a threshold)

 1. Compute gradient of $J(w)$ at w^t. Call it $\nabla J(w^t)$

 Evaluate the function for each training example to compute the error and construct the gradient vector

 \[
 \frac{\partial J}{\partial w_j} = -\sum_{i=1}^{m} (y_i - w^T x_i) x_{ij}
 \]

 2. Update w as follows:

 \[
 w^{t+1} = w^t - r \nabla J(w^t)
 \]

 The weight vector is not updated until all errors are calculated

Why not make early updates to the weight vector as soon as we encounter errors instead of waiting for a full pass over the data?
Incremental/Stochastic gradient descent

• Repeat for each example \((x_i, y_i)\)
 – Pretend that the entire training set is represented by this single example
 – Use this example to calculate the gradient and update the model

• Contrast with *batch gradient descent* which makes one update to the weight vector for every pass over the data
Incremental/Stochastic gradient descent

1. Initialize \(w \)

2. For \(t = 0, 1, 2, \ldots \) (until error below some threshold)
 - For each training example \((x_i, y_i)\):
 - Update \(w \). For each element of the weight vector \((w_j)\):
 \[
 w_j^{t+1} = w_j^t + r(y_i - w^T x_i) x_{ij}
 \]
Incremental/Stochastic gradient descent

1. Initialize \mathbf{w}

2. For $t = 0, 1, 2, \ldots$ (until error below some threshold)

 - For each training example (\mathbf{x}_i, y_i):

 • Update \mathbf{w}. For each element of the weight vector (w_j):

 $w_{j}^{t+1} = w_{j}^{t} + r(y_i - \mathbf{w}^T \mathbf{x}_i)x_{ij}$

Contrast with the previous method, where the weights are updated only after all examples are processed once
Incremental/Stochastic gradient descent

1. Initialize w

2. For $t = 0, 1, 2, \ldots$ (until error below some threshold)
 - For each training example (x_i, y_i):
 - Update w. For each element of the weight vector (w_j):
 $$w_j^{t+1} = w_j^t + r(y_i - w^T x_i)x_{ij}$$

This update rule is also called the Widrow-Hoff rule in the neural networks literature
Incremental/Stochastic gradient descent

1. Initialize \mathbf{w}

2. For $t = 0, 1, 2, \ldots$ (until error below some threshold)
 - For each training example (\mathbf{x}_i, y_i):
 - Update \mathbf{w}. For each element of the weight vector (w_j):
 \[
 w_j^{t+1} = w_j^t + r(y_i - \mathbf{w}^T \mathbf{x}_i)x_{ij}
 \]

 This update rule is also called the Widrow-Hoff rule in the neural networks literature

Online/Incremental algorithms are often preferred when the training set is very large

May get close to optimum much faster than the batch version
Learning Rates and Convergence

• In the general (non-separable) case the learning rate r must decrease to zero to guarantee convergence.

• The learning rate is called the *step size*. More sophisticated algorithms choose the step size automatically and converge faster.

• Choosing a better starting point can also have impact.

• Gradient descent and its stochastic version are very simple algorithms. Yet, almost all the algorithms we will learn in the class can be traced back to gradient decent algorithms for different loss functions and different hypotheses spaces.
Linear regression: Summary

- **What we want**: Predict a real valued output using a feature representation of the input

- **Assumption**: Output is a linear function of the inputs

- **Learning by minimizing total cost**
 - Gradient descent and stochastic gradient descent to find the best weight vector
 - This particular optimization can be computed directly by framing the problem as a matrix problem
Exercises

1. Use the gradient descent algorithms to solve the mileage problem (on paper, or write a small program)

2. LMS regression can be solved analytically. Given a dataset \(D = \{ (x_1, y_1), (x_2, y_2), \ldots, (x_m, y_m) \} \), define matrix \(X \) and vector \(Y \) as follows:

\[
X = \begin{bmatrix} \mathbf{x}_1 & \mathbf{x}_2 & \cdots & \mathbf{x}_m \end{bmatrix}_{d \times m}, \quad Y = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{bmatrix}_{m \times 1}
\]

Show that the optimization problem we saw earlier is equivalent to

\[
\min_{\mathbf{w}} (X^T \mathbf{w} - Y)^T (X^T \mathbf{w} - Y)
\]

This can be solved analytically. Show that the solution \(\mathbf{w}^* \) is

\[
\mathbf{w}^* = (X X^T)^{-1} XY
\]

Hint: You have to take the derivative of the objective with respect to the vector \(\mathbf{w} \) and set it to zero.