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What’s the mileage?

Suppose we want to predict the mileage of a car from
its weight and age

What we want: A

Weight Age | function that can
x 12? b) (yexjrs) B predict mileage
s 5 ~ using x, and x,
36.2 2 25
43.1 0 18
27.6 2 30




Linear regression: The strategy

Predicting continuous values using a linear model

Assumption: The output is a linear function of the inputs

Mileage = wy + Wy X; + W, X,
Learning: Using the training data to find the best possible value

of w

Prediction: Given the values for x;, x, for a new car, use the
learned w to predict the Mileage for the new car



Linear regression: The strategy

Predicting continuous values using a linear model

Assumption: The output is a linear function of the inputs

Mileage = wy + Wy X; + W, X,

N Parameters of the model
Also called weights

Collectively, a vector

Learning: Using the training data to find the best possible value
of w

Prediction: Given the values for x;, x, for a new car, use the
learned w to predict the Mileage for the new car



Linear regression: The strategy

For simplicity, we will assume

[ J ¢ d
InPUtS are vectors: X € R that the first feature is always 1.
e Qutputs are real numbers: y € R -
x= |2
* We have a training set o

D={(x1,y1), X2,¥2), -}

This lets makes notation easier

 We want to approximate Yy as
YV =W; +WyXy + -+ WgaXg

y =wlx

w is the learned weight vector in R¢
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One dimensional input



Examples
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Predict usingy = w; + w; X,

-
-

One dimensional input



Examples

y

One dimensional input

X1

Predict usingy = w; + w; X,

The linear function is
not our only choice.
We could have tried
to fit the data as

s another polynomial
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Examples

y

Predict usingy = w; + w; X,

The linear function is
not our only choice.
~.- e We could have tried
- to fit the data as

s another polynomial

. . . X
One dimensional input !

Two dimensional input

Predict using y = w; + W, X5 +W3 X3
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What is the best weight vector?

Question: How do we know which weight vector is the best one
for a training set?
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What is the best weight vector?

Question: How do we know which weight vector is the best one
for a training set?

For an input (x, y;) in the training set, the cost of a mistake is

T
‘yi — W X
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What is the best weight vector?

Question: How do we know which weight vector is the best one
for a training set?

For an input (x, y;) in the training set, the cost of a mistake is
‘yi — WTXq;‘

Define the cost (or loss) for a particular weight vector w to be

lz - wlx;)’

()
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What is the best weight vector?

Question: How do we know which weight vector is the best one
for a training set?

For an input (x, y;) in the training set, the cost of a mistake is

T
‘yi - W Xi‘

Define the cost (or loss) for a particular weight vector w to be

1 Sum of squared
o E —w' Xz costs over the

training set

()
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What is the best weight vector?

Question: How do we know which weight vector is the best one
for a training set?

For an input (x, y;) in the training set, the cost of a mistake is
‘yi — WTXq;‘

Define the cost (or loss) for a particular weight vector w to be

1 Sum of squared

5 Z —w' Xz costs over the

training set

()

One strategy for learning: Find the w with least cost on this data



Least Mean Squares (LMS) Regression

Xz

mw %i i —w'
a4

Learnlng minimizin dan S quared error
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Least Mean Squares (LMS) Regression

mw %i i — W Xz2

e

Learning: minimizing mean squared error

Different strategies exist for learning by optimization

* Gradient descent is a popular algorithm

(For this particular minimization objective, there is also an analytical solution. No
need for gradient descent)
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We are trying to minimize
T

Gradient descent Tw) = 23 (i~ wx)”

=1
J(w)

General strategy for minimizing
a function J(w)
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We are trying to minimize

m

Gradient descent Tw) = 5 3 (0= wx,)°

=1

J(w)

General strategy for minimizing
a function J(w)

e Start with an initial guess for
w, say w°
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We are trying to minimize

m

Gradient descent ) =33 = v

J(w)

General strategy for minimizing
a function J(w)

e Start with an initial guess for
w, say w°

o o
e

Intuition: The gradient is the direction

of steepest increase in the function. To

get to the minimum, go in the opposite

direction

23



Gradient descent

General strategy for minimizing
a function J(w)

e Start with an initial guess for
w, say w°

* |terate till convergence:

— Compute the gradient of the
gradient of J at wt

— Update wt to get wt*! by taking
a step in the opposite direction
of the gradient

We are trying to minimize

m

Tw) = 53 (5~ W)’

=1

O O: >
w o woe
Intuition: The gradient is the direction
of steepest increase in the function. To
get to the minimum, go in the opposite
direction
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Gradient descent

General strategy for minimizing
a function J(w)

e Start with an initial guess for
w, say w°

* |terate till convergence:

— Compute the gradient of the
gradient of J at wt

— Update wt to get wt*! by taking
a step in the opposite direction
of the gradient

We are trying to minimize

m

Tw) = 53 (5~ W)’

=1

o o s >
w? wl  wo
Intuition: The gradient is the direction
of steepest increase in the function. To
get to the minimum, go in the opposite
direction
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Gradient descent

General strategy for minimizing
a function J(w)

e Start with an initial guess for
w, say w°

* |terate till convergence:

— Compute the gradient of the
gradient of J at wt

— Update wt to get wt*! by taking
a step in the opposite direction
of the gradient

We are trying to minimize

m

Tw) = 53 (5~ W)’

=1

O o o o >
w> o ow?wl o wo
Intuition: The gradient is the direction
of steepest increase in the function. To
get to the minimum, go in the opposite
direction
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Gradient descent

General strategy for minimizing
a function J(w)

e Start with an initial guess for
w, say w°

* |terate till convergence:

— Compute the gradient of the
gradient of J at wt

— Update wt to get wt*! by taking
a step in the opposite direction
of the gradient

We are trying to minimize

m

Tw) = 53 (5~ W)’

=1

Intuition: The gradient is the direction
of steepest increase in the function. To
get to the minimum, go in the opposite
direction
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We are trying to minimize
1 m

Gradient descent for LMS 7™ =35> (w-w")’

=1

1. Initialize w°

2. Fort=0,1,2, ...
1. Compute gradient of J(w?) at wt. Call it V] (w?)

2. Update w as follows:
with = w! — rVJ(w)

r: Called the learning rate
(For now, a small constant. We will get to this later)
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We are trying to minimize

m

Gradient descent for LMS /=33 tu—w"x)’

=1

1. Initialize w°

2. Fort=0,1,2, .. What is the gradient of J?
1. | Compute gradient of J(w?) at wt. Call it V] (w?)

2. Update w as follows:
with = w! — rVJ(w)

r: Called the learning rate
(For now, a small constant. We will get to this later)
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We are trying to minimize

m

Gradient of the cost Tw)= 5 3" (i~ wx)”

=1

9J oJ 9]
Owy Owy’ ' Owy

 The gradient is of the form vsw!) = [
e Remember that w is a vector with d elements

— W = [W1’ WZI W3, coe Wi, oo

[ Wd]
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We are trying to minimize

m

Gradient of the cost ) =33 = v
* The gradient is of the form viw?) = [%,%,...,%
&] _ ili(yi_WTxi)2

8—wj 8’[1)]'2_
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We are trying to minimize

Gradient of the cost ) =33 = v
* The gradient is of the form viw!) = L%],(%] ) gjd

oJ 0 1

a—wj — —5 —W XZ
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We are trying to minimize

m

Gradient of the cost ) =33 = v
* The gradient is of the form viw?) = [%,%,...,%
OJ 0 1 N
5‘_wj = 8—%§;(yz‘—w Xz‘)
- %ga—wj(yz—w X;)
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We are trying to minimize

m

. 1 - 9
Gradient of the cost Tw) = 3 2 (=W
* The gradient is of the form viw?) = [%,%,...,%

0J 0 1 & 2
Bu; ~ Bwya e TV
mo9

— %; 8_,wj (yz o Wsz)z

= liz(y —wa)i(y-—wm — W )

2i=1 v 7 awj () 1441 J&ig
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We are trying to minimize

m

Gradient of the cost ) = 53 = W)
* The gradient is of the form viw?) = [%,%,...,%
0J 0 1«
du; ~ Gy V)
£ & T \2
= 32y, W)
- %;2@ —waz>ai%(yi—w1xi1—---wj:vz-j—--->
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We are trying to minimize

- IS T
Gradient of the cost Jw) =52 (=)
* The gradient is of the form v.Jw!) = [6_‘7,5_'],...,8_‘]

Oowi’ Ows Owy
oJ  _ ﬂl S L
8wj - _72 1 Z
1o 0 2

— liz( -—WTX')i( . o= WX — )

— 2 = Yi () a’UJj Yi W1T41 W;Tig

RS < PO RV S

N 22,_212(‘% W i) (=) | One element !

— i of the gradient 1
=| =Y - wTxi)es —vector |
1=1
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We are trying to minimize

m

Gradient of the cost Tw) = 23 (i~ wx)”

=1

* The gradient is of the form v.Jw!) = [6_‘7,5_'],...,8_‘]
Oowi’ Ows Owy
o _ ﬂl S o
8wj - w4 2 1 XZ
1« 08 T \2
= 523—( i~ wxi)
1 0
= 3 ;Q(yz‘ = WTXz')a—wj (yi — w1z — - wizi; — )
= 1iQ(y-—wa-)(—ar:--) = mmm
2 &= ‘ “ | One element !
a0 i of the gradient 1
= = > —w i)y o guesEy
i=1 ‘ '
(>

v N
. N
Sumof Error X Input 37



We are trying to minimize

m

Gradient descent for LMS /=33 tu—w"x)’

=1

1. Initialize w°

2. Fort=0,1,2, ...
1. Compute gradient of J(w) at wt. Call it VJ(w?)

Evaluate the function for each training example to compute the error
and construct the gradient vector

k == Z(yz' — W X;) Ty

(9’11)j
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We are trying to minimize

m

Gradient descent for LMS /=33 tu—w"x)’

=1

1. Initialize w°

2. Fort=0,1,2, ...
1. Compute gradient of J(w) at wt. Call it VJ(w?)

Evaluate the function for each training example to compute the error
and construct the gradient vector

o.] m One element
== (g —wixg)wy; € | of YWwh)

8wj
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We are trying to minimize
1 m

Gradient descent for LMS 7™ =35> (w-w")’

=1

1. Initialize w°

2. Fort=0,1,2, ...
1. Compute gradient of J(w) at wt. Call it VJ(w?)

Evaluate the function for each training example to compute the error
and construct the gradient vector

One element

8—10,7__2 _W Xz SU'LJ/ of V/(w")

2. Update w as follows: w!t! = w! — rV.J(w?)
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We are trying to minimize
1 m

Gradient descent for LMS 7™ =35> (w-w")’

=1

1. Initialize w°

2. Fort=0,1, 2, .... (until total error is below a threshold)

1. Compute gradient of J(w) at wt. Call it VJ(w?)

Evaluate the function for each training example to compute the error
and construct the gradient vector

One element

8—10,7__2 _W Xz SUzJ/ of V/(w")

2. Update was follows: wit! = w'* — rVJ(w?)
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We are trying to minimize

m

Gradient descent for LMS /=33 tu—w"x)’

=1

1. Initialize w°

2. Fort=0,1, 2, .... (until total error is below a threshold)

1. Compute gradient of J(w) at wt. Call it VJ(w?)

Evaluate the function for each training example to compute the error
and construct the gradient vector

One element

8—10,7__2 _W Xz SUzJ/ of V/(w")

2. Update w as follows: w!t! = w! — rV.J(w?)

r: Called the learning rate
(For now, a small constant. We will get to this later)
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We are trying to minimize

m

Gradient descent for LMS /=33 tu—w"x)’

=1

1. Initialize w°

2. Fort=0,1, 2, .... (until total error is below a threshold)

1. Compute gradient of J(w) at wt. Call it VJ(w?)

Evaluate the function for each training example to compute the error
and construct the gradient vector

One element

8—10,7__2 _W Xz SUzJ/ of V/(w")

2. Update w as follows: w!t! = w! — rV.J(w?)

r: Called the learning rate
(For now, a small constant. We will get to this later)

This algorithm is guaranteed to converge to the minimum of J if r is small enough.
Why? The objective J is a convex function
73
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We are trying to minimize

m

Gradient descent for LMS /=33 tu—w"x)’

=1

1. Initialize w°

2. Fort=0,1, 2, .... (until total error is below a threshold)

1. Compute gradient of J(w) at wt. Call it VJ(w?)

Evaluate the function for each training example to compute the error
and construct the gradient vector

i; — WTXZ')SUZ'J'

2. Update w as follows: w!t! = w! — rV.J(w?)
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We are trying to minimize
1 m

Gradient descent for LMS 7™ =35> (w-w")’

=1

1. Initialize w°

2. Fort=0,1, 2, .... (until total error is below a threshold)

1. Compute gradient of J(w) at wt. Call it VJ(w?)

Evaluate the function for each training example to compute the error
and construct the gradient vector

i; — WTXi)CCij

2. Update w as follows: w!t! = w! — rV.J(w?)

The weight vector is not updated until all errors are calculated

Why not make early updates to the weight vector as soon as we encounter
errors instead of waiting for a full pass over the data?
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Incremental/Stochastic gradient descent

* Repeat for each example (x;, y;)

— Pretend that the entire training set is represented by this
single example

— Use this example to calculate the gradient and update the
model

* Contrast with batch gradient descent which makes
one update to the weight vector for every pass over
the data

47



Incremental/Stochastic gradient descent

1. Initialize w

2. Fort= O, 1, 2, .... (until error below some threshold)
— For each training example (x;, y;):
* Update w. For each element of the weight vector (w)):

t+1 _ ¢ o wTe Ve
w; —wj—l—r(yz—w X;)%i;
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Incremental/Stochastic gradient descent

1. Initialize w

2. Fort= O, 1, 2, .... (until error below some threshold)
— For each training example (x;, y;):
* Update w. For each element of the weight vector (w)):

t+1 _ ¢t _ T, N
w;T =w; + r(Yi — W X;)%s;
Contrast with the previous method, where the
weights are updated only after all examples are
processed once




Incremental/Stochastic gradient descent

1. Initialize w

2. Fort= O, 1, 2, .... (until error below some threshold)
— For each training example (x;, y;):
* Update w. For each element of the weight vector (w)):

1 _

W;

wt +r(y; — W' X))z

This update rule is also called the Widrow-Hoff
rule in the neural networks literature




Incremental/Stochastic gradient descent

1. Initialize w

2. Fort= O, 1, 2, .... (until error below some threshold)
— For each training example (x;, y;):
* Update w. For each element of the weight vector (w)):

t+1 _ ot  wTe Ve

This update rule is also called the Widrow-Hoff
rule in the neural networks literature

Online/Incremental algorithms are often preferred when the training
set is very large

May get close to optimum much faster than the batch version
51



Learning Rates and Convergence

* Inthe general (non-separable) case the learning rate r must
decrease to zero to guarantee convergence

* The learning rate is called the step size.

— More sophisticated algorithms choose the step size automatically and
converge faster

 Choosing a better starting point can also have impact

* Gradient descent and its stochastic version are very simple
algorithms

— Yet, almost all the algorithms we will learn in the class can be traced back
to gradient decent algorithms for different loss functions and different

hypotheses spaces
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Linear regression: Summary

 What we want: Predict a real valued output using a
feature representation of the input

e Assumption: Output is a linear function of the inputs

* Learning by minimizing total cost
— Gradient descent and stochastic gradient descent to find
the best weight vector

— This particular optimization can be computed directly by
framing the problem as a matrix problem
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Exercises

1. Use the gradient descent algorithms to solve the mileage problem (on
paper, or write a small program)

LMS regression can be solved analytically. Given a dataset

D ={(xy, Y1), (X5, ¥3), =+, (X, Vi) }, define matrix X and vector Y as follows:

X:[Xl X9

Xy |

dxm

Y =

Y1
Y2

Ym

mx1

Show that the optimization problem we saw earlier is equivalent to

min (XTW — Y)T (XTW — Y)

This can be solved analytically. Show that the solution w* is

w* = (XXT) ' Xy

Hint: You have to take the derivative of the objective with
respect to the vector w and set it to zero.

54



