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Where are we?

We have seen the following ideas
— Linear models
— Learning as loss minimization
— Bayesian learning criteria (MAP and MLE estimation)



This lecture

* Logistic regression
* Training a logistic regression classifier

e Back to loss minimization
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* Logistic regression
* Training a logistic regression classifier

e Back to loss minimization



Logistic Regression: Setup

 The setting
— Binary classification

— Inputs: Feature vectors x € R
— Labels: y € {—1, +1}

* Training data

— S ={(X;,y;)}, consisting of m examples



Classification, but...

The output y is discrete: Either —1 or +1

Instead of predicting a label, let us try to predict P(y = +1 | X)



Classification, but...

The output y is discrete: Either —1 or +1
Instead of predicting a label, let us try to predict P(y = +1 | X)

Expand hypothesis space to functions whose output is in the
range [0, 1]

e Original problem: R% - {—1,+1}
 Modified problem: R¢ - [0, 1]
e Effectively, make the problem a regression problem

Many hypothesis spaces possible



The Sigmoid function

The hypothesis space for logistic regression: All
functions of the form

hw(X) = o(w!x) = !

1+ exp(—w’'x)




The Sigmoid function

The hypothesis space for logistic regression: All
functions of the form

hw(x) = o(W' x) = 1+ expt—WTX)

That is, a linear function, composed with a sigmoid
function (the logistic function), defined as

1
7(2) = 1 4 exp(—2)

This is a reasonable choice. We will see why later



The Sigmoid function

The hypothesis space for logistic regression: All
functions of the form

hw(X) = o(w!x) = !

1+ exp(—w’'x)

That is, a linear function, composed with a sigmoid
function (the logistic function), defined as

1 What is the domain
O'(Z) p— and the range of the
1 _ sigmoid function?
+ exp(—=z

This is a reasonable choice. We will see why later
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The Sigmoid function

1

o(z) =

1 4 exp(—2)
1-
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The Sigmoid function

1
14 exp(—2)

o(z)

What is its derivative with respect to z?

do d 1

dz dz 1+ exp(—=z)
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The Sigmoid function

1

7(2) = 1 4 exp(—2)

What is its derivative with respect to z?

do  d 1
dz dz 1+ exp(—2z)
B 1
~ e Y

1 1

B (1 1 —I—exp(—z)) I + exp(—2)
= 0(2)(1—-0(2)).
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Predicting probabilities

According to the logistic regression model, we have

1
1 4 exp(—w!x)

P(y = 1jx;w) = o(w'x) =

Ply=—-lx;w)=1-0(w'x) = exp(—w" X)

1 + exp(—w!x)
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Predicting probabilities

According to the logistic regression model, we have

1
1 4 exp(—w!x)

P(y = 1jx;w) = o(w'x) =

Ply=—-lx;w)=1-0(w'x) = exp(—w"x)

1 + exp(—w!x)

v

1 4+ exp(w'x)
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Predicting probabilities

According to the logistic regression model, we have

1
1 4 exp(—w!x)

P(y = 1jx;w) = o(w'x) =

1

Py = —1jx;w) =1 - o(w'x) = 1 + exp(w?'x)
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Predicting probabilities

According to the logistic regression model, we have

1
1 4 exp(—w!x)

P(y = 1jx;w) = o(w'x) =

1

Py = —1jx;w) =1 - o(w'x) = 1 + exp(w?'x)

Or equivalently

1
1 + exp(—yw’'x)

P(ylx; w) =
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Predicting probabilities

According to the logistic regression model, we have

1
1 4 exp(—w!x)

P(y = 1jx;w) = o(w'x) =

1
Py = —1jx;w) =1 - o(w'x) = 1 + exp(w?'x)

Note that we are directly modeling

Or equivalently P(y | x) rather than P(x |y) and P(y)

1
1 + exp(—yw’'x)

P(ylx; w) =
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Predicting a label with logistic regression

1
P(y = 1|x;w) = o(w'x) = 1+ exp(—wIx)

e Compute P(y = +1|x; w)

e If this is greater than half, predict +1 else predict —1

— What does this correspond to in terms of w’x?
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Predicting a label with logistic regression

1
P(y = 1|x;w) = o(w'x) = 1+ exp(—wIx)

e Compute P(y = +1|x; w)

e If this is greater than half, predict +1 else predict —1

— What does this correspond to in terms of w’x?

— Prediction = sgn(w’x)
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This lecture

* Logistic regression

* Training a logistic regression classifier
— First: Maximum likelihood estimation

— Then: Adding priors = Maximum a Posteriori estimation

e Back to loss minimization

21



Maximum likelihood estimation

Let’s address the problem of learning

* Training data
— S ={(X;,y;)}, consisting of m examples

e What we want

— Find a weight vector w such that P(S | w) is maximized

— We know that our examples are drawn independently and
are identically distributed (i.i.d)

— How do we proceed?

22



Maximum likelihood estimation

3

argmax P(S|w) = argmax | | P(y;|x;, W)

wW wW 4
=1

The usual trick: Convert products to sums by taking log

Recall that this works only because log is an increasing
function and the maximizer will not change

23



Maximum likelihood estimation

argmax P(S|w) = argmax

w

w
I

m

J.L 4
=1

Equivalent to solving

|

m
maxz: log P(y;|x;, W)
w
i

P(yl |Xi; W)
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Maximum likelihood estimation

m

argmax P(S|w) = argmax | | P(y;|x;, W)

wW wW 4
=1

m
maxz log P(y;|x;, W)
w
i

But (by definition) we know that

1
1+ exp(—y;wlx;)

P(y;lw,x;) = a(y;w'x;) =
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1
1+ exp(—y;wTx;)

P(ylw,x) =

Maximum likelihood estimation

argmax P(S|w) = argmax

w

\%'%

m

A 4

i=1

P(yl |Xi; W)

m
maxz log P(y;|x;, W)
w
i

Equivalent to solving

|

m

maxz —log(1 + exp(—y;w’x;))
\"\'4

i
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1
1+ exp(—y;wTx;)

P(y|lw,x) =
Maximum likelihood estimation

m

argmax P(S|w) = argmax | | P(y;|x;, W)

wW wW 4
=1

m
maxz log P(y;|x;, W)
w
i

|
Equivalent to solving

|

m
minz log(1 + exp(—y;w'x;))
\"\'4
i

Maximizing a negative function is the same as minimizing the function
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1
1+ exp(—y;wTx;)

P(ylw,x) =

Maximum likelihood estimation

3

argmax P(S|w) = argmax | | P(y;|x;, W)
wW wW JiL= iL

likelihood training of a
discriminative I

m
The goal: Maximum maxz logP(inXi,W)
w
i

probabilistic classifier Equivalent to solving
under the logistic l

model for the posterior

distribution.

m
minz log(1 + exp(—y;w'x;))
\"\'4
i
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1
1+ exp(—y;wTx;)

P(ylw,x) =

Maximum likelihood estimation

3

argmax P(S|w) = argmax | | P(y;|x;, W)
wW wW JiL= iL

likelihood training of a
discriminative I

m
The goal: Maximum maxz logP(inXi,W)
w
i

probabilistic classifier Equivalent to solving
under the logistic l

model for the posterior

distribution.

m
minz log(1 + exp(—y;w'x;)
w
[
| Equivalent to: Training a linear classifier by minimizing the logistic loss.
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Maximum a posteriori estimation

We could also add a prior on the weights

Suppose each weight in the weight vector is drawn
independently from the normal distribution with zero
mean and standard deviation o

p(w) = ﬁp(wo - ]i[a e

j=1 ]:1

§
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MAP estimation for logistic regression

d 2

d
1 —Wj
p(w)=£[p(wi)= G 2ﬂexp( GVZ)

J=1

Let us work through this procedure again
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MAP estimation for Iogistic regression

Maximum likelihood estimarion

arg max P(S|w) = arg max H P(yi|xi, w)
=1

m
max Z log P(y;|x;, w
W i=1
]
Equivalent to solving

TTE

thax Z —log (1 + ﬂXP(‘H-&WTKi))

=1

p(W) = ﬂp(wo - ]_[w_exp(

Let us work through this procedure again

estimation

What is theg%*\ MAP estimation?

(In-maximum likelihood estimation, we maximized the likelihood of the data)

)

to see what changes from maximum likelihood

2
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MAP estimation for Iogistic regression

2
arg max P(S|w) = arg max Ply; 1 x:;, w) W) = 1_[ Wj;) = 1_[ eX
ks ks l[ / p( ) p( l) O'\/_ p( )

-
|||;:.\"} log P(y;|x;, w
W

max ) log (1 + exp(—y; W X;))
L

What is the goal of MAP estimation?

To maximize the posterior probability of the model given the data (i.e. to find the
most probable model, given the data)

P(wl|S) x P(S|w)P(w)
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MAP estimation for logistic regression

d d >
Il w) = [powo |
arg max P(S|w) = arg max P(y;|x;, w) p(wW) = p(w;) = exp
w w _ . . o 27T 0-2
. Jj=1 j=1
|||il.\:‘>1.t?:'..lr:l Yi | Xi, W . -
Y = Learning by solving

argmax P(w|S) = argmax P(S|w)P(w)
w w

34



MAP estimation for Iogistic regression

2
arg max P(S|w) = arg max I[ P(y;|xi, W) (W) — HP(WL) == 1_[ exp( )
w w ;1 O"\/

i £ A | Learning by solving
argmax P(S|w)P(w)
) | i -
“1L">_. log (1 + exp(—y:iw" x;)) Take log to simplify

max log P(S|w) + log P(w)
W
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MAP estimation for Iogistic regression

d 2

arg max P(S|w) = arg max Ply; |x;, W) p(W p W; ex

-
|||;:.\"} log P(y;|x;, w

W Lt Learning by solving

argmax P(S|w)P(w)
« : _ w
m\;\m ‘/__' log (1 + exp(—y; W X;)) e |Og s S|mp||fy
max log P(S|w) + log P (w)
W
We have already expanded out the first term.

m

Z —log(1 + exp(—y;w'x;)

i
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MAP estimation for logistic regression

d d 2
1 _Wi
arg max P(S|w) = arg max I[ P(y;|x;, w) p(W) — HP(WJ — eXp
w ; W _ ]=1
|||;:.\">1.n:-:',9” i [Xi, W . .
i Learning by solving
argmax P(S|w)P(w)
max >_‘ log (1 + expl W' X;))
w Take log to 5|mpI|fy

max log P(S|w) + log P(w)

Expand the log prior

m d 2
z —log(1 + exp(—y;w'x;) + z + constant
i =a
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MAP estimation for logistic regression

i d 2

d
" w) =[ [po0 =] [ e ()
arg max P(S|w) = arg max Py xi,w)| DWW) = p\w;) = exp
e -] [ Jroo =] [ e (5

: j=1

-
|||;:.\") log P(y;|x;, w

W Lt ' Learning by solving
argmax P(S|w)P(w)
w
nax » og (1 + exp(—y;w?’ x:))
' \/_. log (1 PLI=UiW Xi)) Take log to simplify

max log P(S|w) + log P(w)
w

m d 2

— W

max g —log(1 + exp(—y;w'x;) + E >
]:
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MAP estimation for logistic regression

d d >
e w0 =[ oo [ Jgon ()
arg max P(S|w) = arg max P(y;|x;, w) p W) = p(w;) = exp
o w H L1 L L] o2 o2

-
|||;:.\") log P(y;|x;, w

W Lt ' Learning by solving
argmax P(S|w)P(w)
- ’ . _1' Y w
m\;»_m l‘ log (1 + exp(—y; W™ X;)) Bl Iog o simplify
max log P(S|w) + log P(w)
W
S 1
maxz: —log(1 + exp(—y;w’x;) — —w w
w
l
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MAP estimation for logistic regression

d d 2
arg max (5|w) = arg max Ply; 1 x:;, w) W) = Wj;) = €ex
l‘ W W ][ Jll 5 = p . p ' O-v_ p
n_ ]:1
e lou E vty Learning by solving
argmax P(S|w)P(w)
w

nax y | og (1 + exp(—y;w’ x;))
‘w\{—f og (] P—HW Xi)) Take log to simplify

max log P(S|w) + log P(w)
W

1
mlnz log(1 + exp(—y;w’x;) + —w w

Maximizing a negative function is the same as minimizing the function
40



Learning a logistic regression classifier

Learning a logistic regression classifier is equivalent to
solving

1
mlnz log(1 + exp(—y;w!x;) + —w w
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Learning a logistic regression classifier

Learning a logistic regression classifier is equivalent to
solving

1
mlnz log(1 + exp(—y;w!x;) + —w w

Where have we seen this before?

42



Learning a logistic regression classifier

Learning a logistic regression classifier is equivalent to
solving

1
mlnz log(1 + exp(—y;w!x;) + —w w

Where have we seen this before?

Exercise: Write down the stochastic gradient descent (SGD) algorithm for this?

Other training algorithms exist. For example, the LBFGS algorithm is an example of
a quasi-Newton method. But gradient based methods like SGD and its variants are
way more commonly used. 45



Logistic regression is...

* Aclassifier that predicts the probability that the label is
+1 for a particular input

* The discriminative counter-part of the naive Bayes
classifier

e A discriminative classifier that can be trained via MAP or
MLE estimation

* Adiscriminative classifier that minimizes the logistic loss
over the training set

44



This lecture

* Logistic regression
* Training a logistic regression classifier

e Back to loss minimization
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Learning as loss minimization

 The setup
— Examples x drawn from a fixed, unknown distribution D
— Hidden oracle classifier f labels examples
— We wish to find a hypothesis h that mimics f

 The ideal situation
— Define a function L that penalizes bad hypotheses
— Learning: Pick a function h € H to minimize expected loss

hmEIEI Ex~D [L (h( ) f(x))] But distribution D is unknown

* Instead, minimize empirica/ loss on the training set

min — Z L(h’(xz f(xz))

heH T

46



Empirical loss minimization

Learning = minimize empirica/ loss on the training set

min — Z L(h(x;), f(x;))

heH m

Is there a problem here?

47



Empirical loss minimization

Learning = minimize empirical loss on the training set

Is there a problem here? | Overfitting!

We need something that biases the learner towards simpler
hypotheses

* Achieved using a regularizer, which penalizes complex
hypotheses

48



Regularized loss minimization

. . _ 1
* Learning: ﬁlﬁregul&rlzer(h)+C’ﬂ—EZi:L(h(xi),f(xz))

T - .1
* With linear classifiers: Irgn§wTW+CZL(yi,xi,W)

(using £ regularization)

* What is a loss function?
— Loss functions should penalize mistakes
— We are minimizing average loss over the training data

What is the ideal loss function for classification?

49



The 0-1 loss

Penalize classification mistakes between true label y and
prediction y’

1 ify#y,
LO—l(y7y,) — {0 lf y = yl

* For linear classifiers, the prediction y’ = sgn(w'x)
— Mistakeifywix < 0

1 ifywlx <o,

0 otherwise.

Lo-1(y,x,w) = {

Minimizing 0-1 loss is intractable. Need surrogates
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heH

min regularizer(h) + C% Z L(h(x;), f(x;))
The loss function zoo “

Many loss functions exist

— Perceptron IOSS L!-’rfrr.-ﬁpirnn.(ya X, W) — max([], _wax)
— Hinge loss (SVM) Lizinge(y, x, w) = max(0,1 — yw" x)
—ywlx

— Exponential loss (AdaBoost) L Ezponential (¥, X, W) = €

— Logistic loss (logistic regression) .
Lbngistic (yg X,W) — 10g(1 + e—yw x)
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hmelﬂ regularizer(h) + C'— Z L(h(x;), f(xi))

The loss function 20O

1.5;

Loss

vwTx =



hmelﬂ regularizer(h) + C'— Z L(h(x;), f(xi))

The loss functlon 200

1.5

1—— Zero-one

Loss
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The loss function zoo

Loss

1.5

Zero-one

min re
heH

N

Perceptron

gularizer(h) + Ci Z L(h(xi), f(xi))

T

Lf-‘ﬁw:ﬁpirmm(ya X, W) — max(U, _wax}
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Loss

1.5

Zero-one

min re
heH

The loss function zoo

Hinge: SVM

Perceptron

N\

gularizer(h) + C% Z L(h(xi), f(xi))

LI-"N‘r:r:pir‘m?.(ya X, W) — max((], _wax}

Lﬂmyf (y‘l X, W) = ITIEI.X(U, 1— wax)
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Loss

Zero-one

heH

The loss function zoo

Hinge: SVM

min regularizer(h) + Ci Z L(h(xi), f(xi))

Lf-‘ﬁw:ﬁpirmm(ya X, W) — max((), _wax}
Lﬂmyt (y‘l X, W) = ITIEI.X(U, 1— wax)

J
Liogistic(y,x,w) =log(l + e ¥V *)

Perceptron

\ Logistic regression
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hmelﬁ regularizer(h) + C'— Z L(h(x;), f(xi))

The loss function zoo

Zoomed out
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hmE% regularizer(h) + C' — Z L(h(x;), f(xi))

The loss functlon Z00

Zoomed out even more
7.5-

Loss

2.5

-10 7.5 -5 25 0
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hmelﬁ regularizer(h) + C'— Z L(h(x;), f(xi))

The loss function zoo

49 Zoomed out much more

Loss

20-

-40 -20 0
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This lecture

* Logistic regression
* Training a logistic regression classifier
e Back to loss minimization

* Connection to Naive Bayes

60



Naive Bayes and Logistic regression

Remember that the naive Bayes decision is a linear function

g PO = 1w

P(y +1|x, W) - WX

Here, the P’s represent the Naive Bayes posterior distribution,

and w can be used to calculate the priors and the likelihoods.

Thatis, P(y = 1| w,X) is computed using
Px|y=1Lw)and P(y =1]|w)
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Naive Bayes and Logistic regression

Remember that the naive Bayes decision is a linear function

g PO = 1w

P(y +1|x, W) - WX

But we also know that P(y = +1|x,w) =1 — P(y = —1|x,w)
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Naive Bayes and Logistic regression

Remember that the naive Bayes decision is a linear function

g PO = 1w

P(y +1|x, W) - WX

But we also know that P(y = +1|x,w) =1 — P(y = —1|x,w)

Substituting in the above expression, we will get

1
1+ exp(—wTx)

P(y = +1|lw,x) = o(wlx) =

Exercise: Show this formally
63



Naive Bayes and Logistic regression

Remember that the naive Bayes decision is a linear function

P(y = —1|x,w) .
log Dl — 1 dlw W X
That is, both naive Bayes and logistic regression try to
compute the same posterior distribution over the outputs
But we X, W)

Naive Bayes is a generative model.

Substit Logistic Regression is the discriminative version.

1
1+ exp(—wTx)

P(y = +1|lw,x) = o(wlx) =

64
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