Machine Learning

- The setup
 - Examples x drawn from a fixed, unknown distribution D
 - Hidden oracle classifier f labels examples
 - We wish to find a hypothesis h that mimics f

- The setup
 - Examples x drawn from a fixed, unknown distribution D
 - Hidden oracle classifier f labels examples
 - We wish to find a hypothesis h that mimics f
- The ideal situation
 - Define a function L that penalizes bad hypotheses
 - Learning: Pick a function $h \in H$ to minimize expected loss

- The setup
 - Examples x drawn from a fixed, unknown distribution D
 - Hidden oracle classifier f labels examples
 - We wish to find a hypothesis h that mimics f
- The ideal situation
 - Define a function L that penalizes bad hypotheses
 - Learning: Pick a function $h \in H$ to minimize expected loss $\min_{h \in H} E_{x \sim D} [L(h(x), f(x))]$

- The setup
 - Examples x drawn from a fixed, unknown distribution D
 - Hidden oracle classifier *f* labels examples
 - We wish to find a hypothesis h that mimics f
- The ideal situation
 - Define a function L that penalizes bad hypotheses
 - Learning: Pick a function $h \in H$ to minimize expected loss

 $\min_{h\in H} E_{x\sim D} \left[L(h(x), f(x)) \right]$

But distribution *D* is unknown

- The setup
 - Examples x drawn from a fixed, unknown distribution D
 - Hidden oracle classifier *f* labels examples
 - We wish to find a hypothesis h that mimics f
- The ideal situation
 - Define a function L that penalizes bad hypotheses
 - Learning: Pick a function $h \in H$ to minimize expected loss

 $\min_{h\in H} E_{x\sim D} \left[L(h(x), f(x)) \right]$

But distribution *D* is unknown

• Instead, minimize *empirical loss* on the training set

$$\min_{h\in H} \frac{1}{m} \sum_{i} L(h(x_i), f(x_i))$$

Empirical loss minimization

Learning = minimize *empirical loss* on the training set

$$\min_{h\in H}\frac{1}{m}\sum_{i}L(h(x_i),f(x_i))$$

Is there a problem here?

Empirical loss minimization

Learning = minimize *empirical loss* on the training set

$$\min_{h \in H} \frac{1}{m} \sum_{i} L(h(x_i), f(x_i))$$

Is there a problem here?

Overfitting!

We need something that biases the learner towards simpler hypotheses

Achieved using a regularizer, which penalizes complex hypotheses

• Learning:

$$\min_{h \in H} \left(\operatorname{regularizer}(h) + C \frac{1}{m} \sum_{i} L(h(x_i), f(x_i)) \right)$$

• Learning:

$$\min_{h \in H} \left(\text{regularizer}(h) + C \frac{1}{m} \sum_{i} L(h(x_i), f(x_i)) \right)$$

• With linear classifiers:

$$\min_{\mathbf{w}} \frac{1}{2} \mathbf{w}^T \mathbf{w} + C \sum_i L(y_i, \mathbf{x}_i, \mathbf{w})$$

• Learning:

$$\min_{h \in H} \left(\operatorname{regularizer}(h) + C \frac{1}{m} \sum_{i} L(h(x_i), f(x_i)) \right)$$

• With linear classifiers:

$$\min_{\mathbf{w}} \frac{1}{2} \mathbf{w}^T \mathbf{w} + \frac{C}{m} \sum_{i} L(y_i, \mathbf{x}_i, \mathbf{w})$$

- What is a loss function?
 - Loss functions should penalize mistakes
 - We are minimizing average loss over the training data

• Learning:

$$\min_{h \in H} \left(\operatorname{regularizer}(h) + C \frac{1}{m} \sum_{i} L(h(x_i), f(x_i)) \right)$$

• With linear classifiers:

$$\min_{\mathbf{w}} \frac{1}{2} \mathbf{w}^T \mathbf{w} + \frac{C}{m} \sum_{i} L(y_i, \mathbf{x}_i, \mathbf{w})$$

- What is a loss function?
 - Loss functions should penalize mistakes
 - We are minimizing average loss over the training data
- What is the ideal loss function for classification?

The 0-1 loss

Penalize classification mistakes between true label y and prediction y'

$$L_{0-1}(y, y') = \begin{cases} 1 & \text{if } y \neq y' \\ 0 & \text{if } y = y' \end{cases}$$

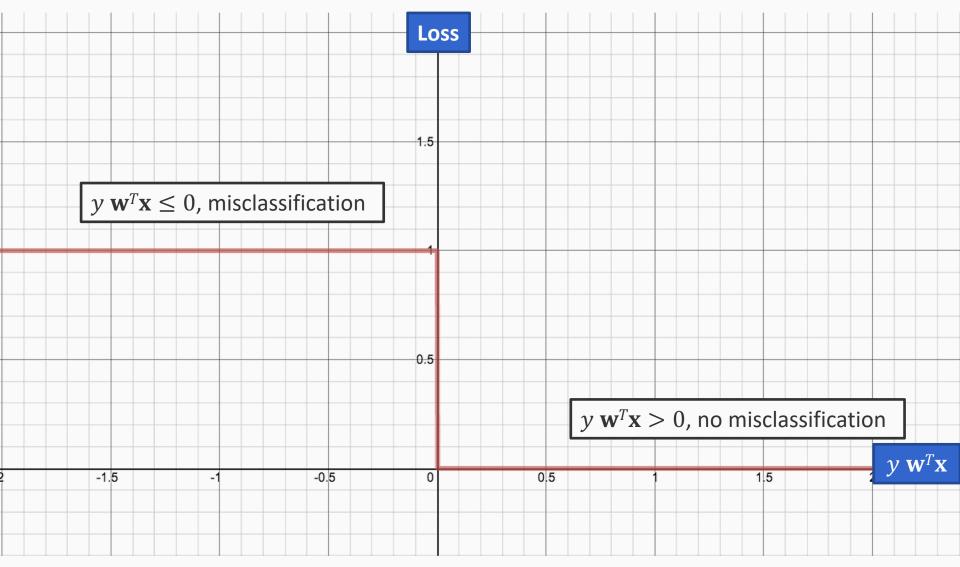
For linear classifiers, the prediction $y' = \operatorname{sgn}(\mathbf{w}^T \mathbf{x})$

- Mistake if $y \mathbf{w}^T \mathbf{x} \le 0$

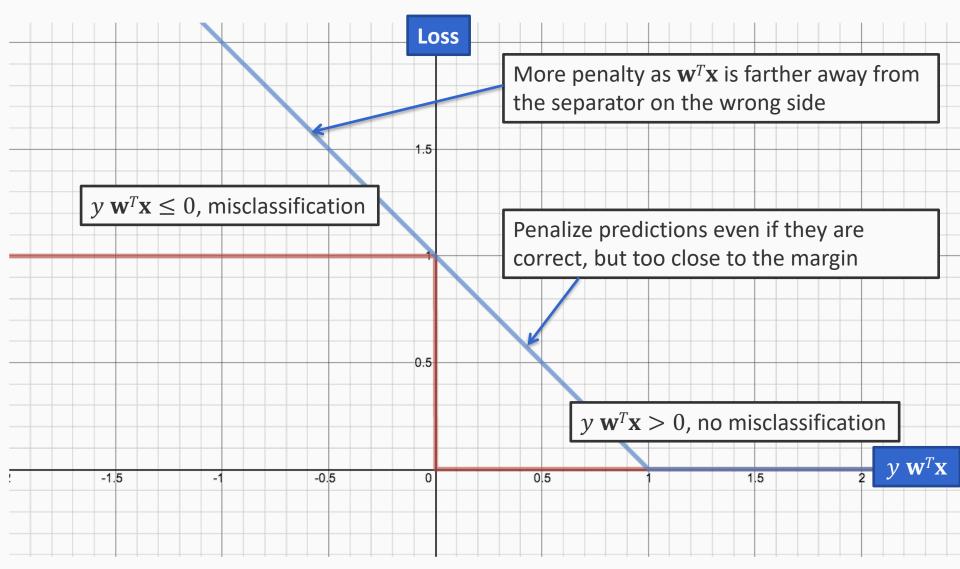
$$L_{0-1}(y, y') = \begin{cases} 1 & \text{if } y \mathbf{w}^T \mathbf{x} \le 0\\ 0 & \text{otherwise} \end{cases}$$

Minimizing 0-1 loss is intractable. Need surrogates

The 0-1 loss



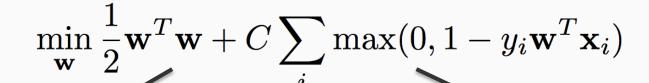
Compare to the hinge loss



Support Vector Machines

- SVM = linear classifier combined with regularization
- Ideally, we would like to minimize 0-1 loss,
 But we can't for computational reasons
- SVM minimizes hinge loss $L_{Hinge}(y, \mathbf{x}, \mathbf{w}) = \max(0, 1 y \mathbf{w}^T \mathbf{x})$
 - Variants exist

SVM objective function



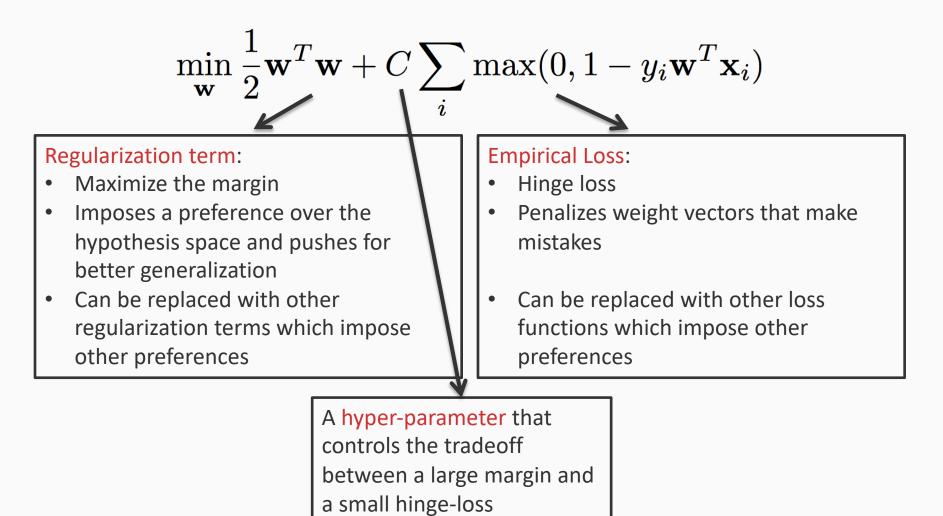
Regularization term:

- Maximize the margin
- Imposes a preference over the hypothesis space and pushes for better generalization
- Can be replaced with other regularization terms which impose other preferences

Empirical Loss:

- Hinge loss
- Penalizes weight vectors that make mistakes
- Can be replaced with other loss functions which impose other preferences

SVM objective function

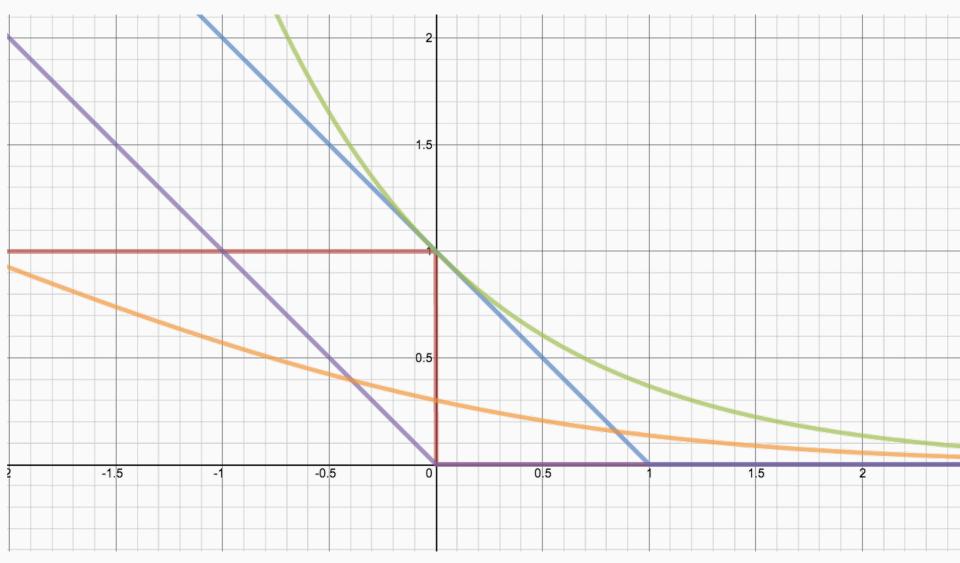


$\min_{h \in H} \operatorname{regularizer}(h) + C \frac{1}{m} \sum_{i} L(h(\mathbf{x}_i), f(\mathbf{x}_i))$ The loss function zoo

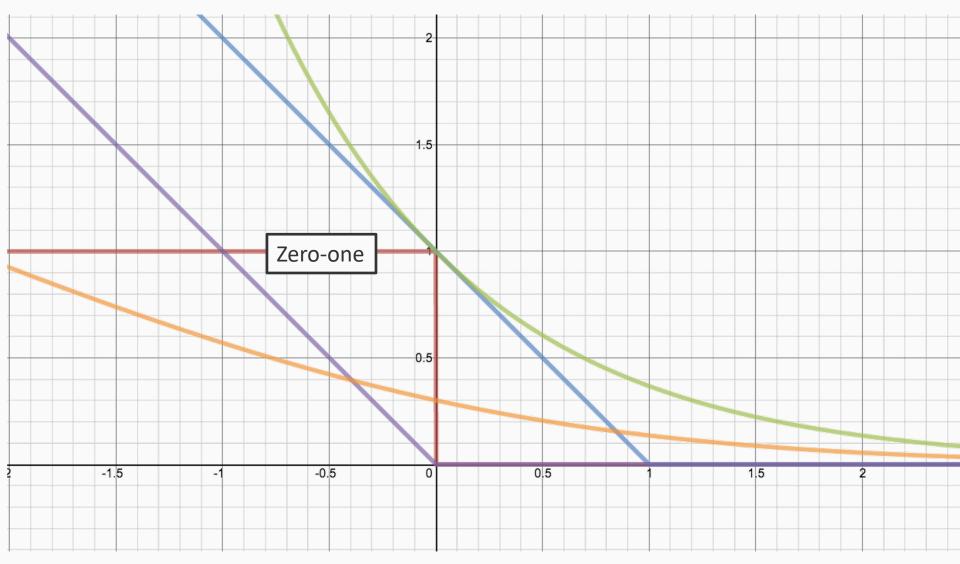
Many loss functions exist

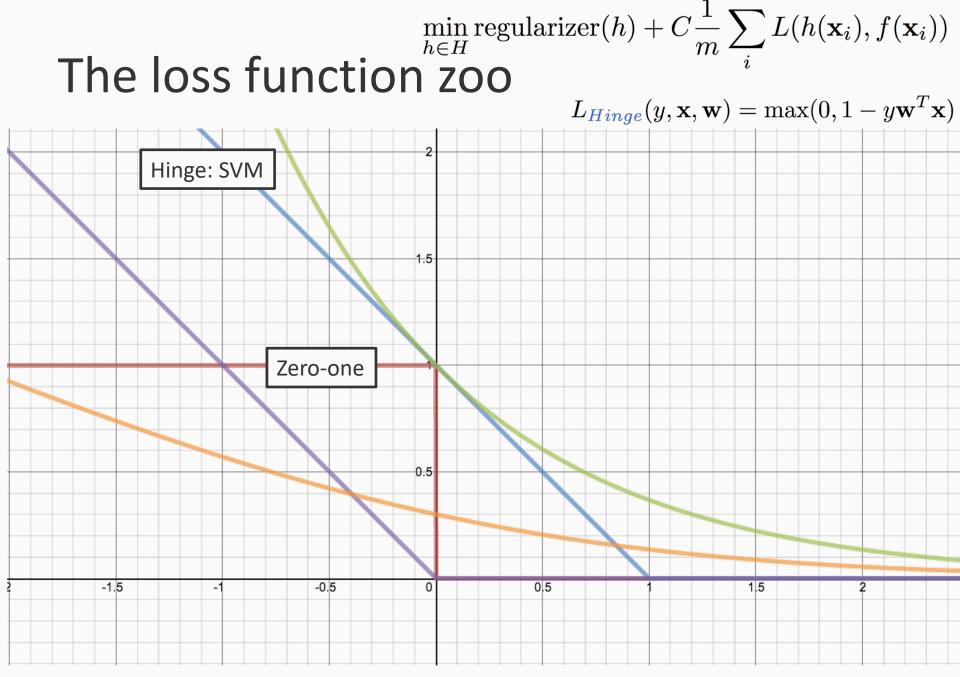
- Perceptron loss $L_{Perceptron}(y, \mathbf{x}, \mathbf{w}) = \max(0, -y\mathbf{w}^T\mathbf{x})$
- Hinge loss (SVM) $L_{Hinge}(y, \mathbf{x}, \mathbf{w}) = \max(0, 1 y\mathbf{w}^T\mathbf{x})$
- Exponential loss (AdaBoost) $L_{Exponential}(y, \mathbf{x}, \mathbf{w}) = e^{-y\mathbf{w}^T\mathbf{x}}$
- Logistic loss (logistic regression) $L_{Logistic}(y, \mathbf{x}, \mathbf{w}) = \log(1 + e^{-y\mathbf{w}^T\mathbf{x}})$

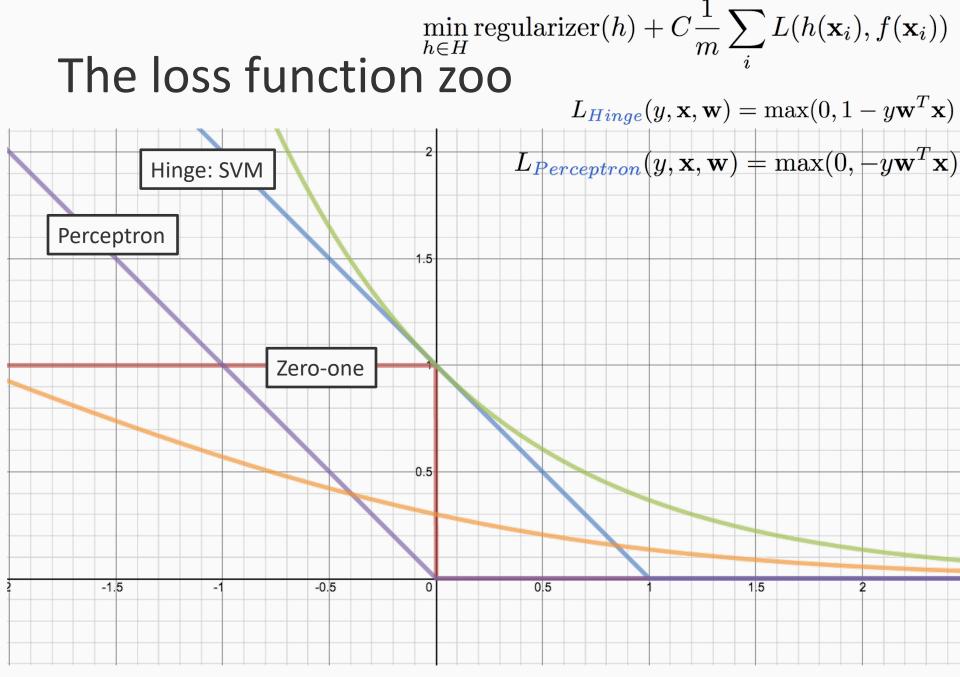
$\min_{h \in H} \operatorname{regularizer}(h) + C \frac{1}{m} \sum_{i} L(h(\mathbf{x}_i), f(\mathbf{x}_i))$ The loss function zoo

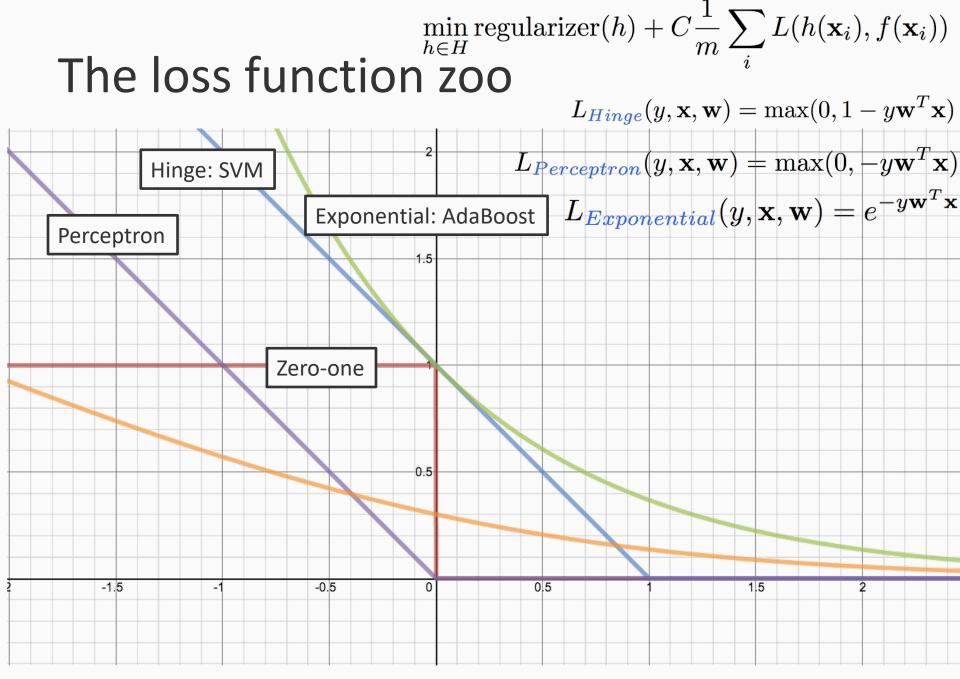


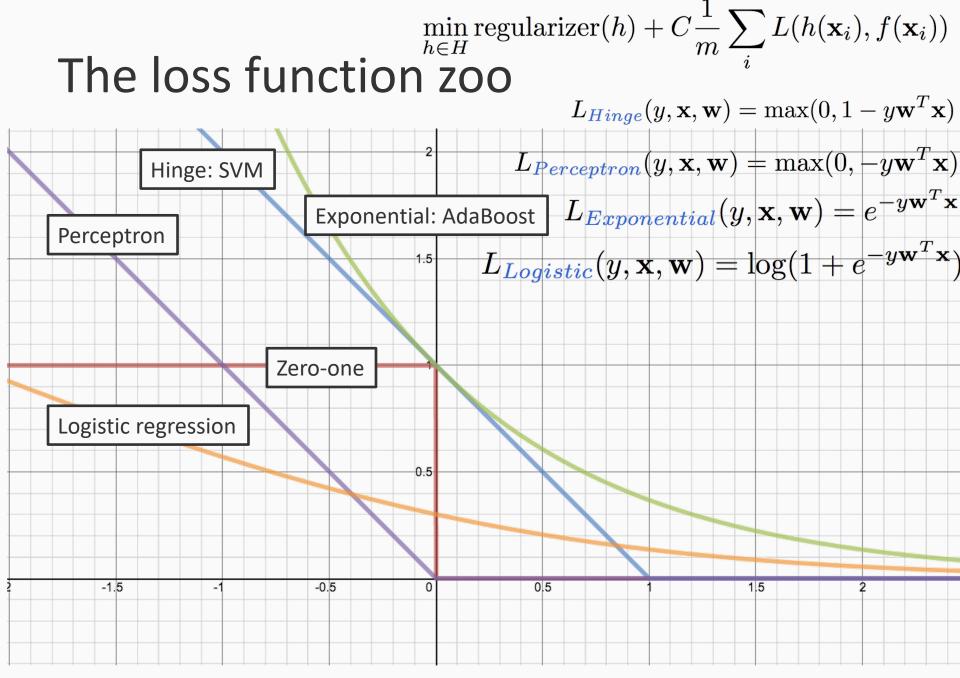
$\min_{h \in H} \operatorname{regularizer}(h) + C \frac{1}{m} \sum_{i} L(h(\mathbf{x}_i), f(\mathbf{x}_i))$ The loss function zoo











Learning via Loss Minimization: Summary

- Learning via Loss Minimization
 - Write down a loss function
 - Minimize empirical loss
- Regularize to avoid overfitting
 - Neural networks use other strategies such as dropout
- Widely applicable, different loss functions and regularizers