
CS 6355: Structured Prediction

From Binary to Multiclass 
Classification
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We have seen binary classification

• We have seen linear models
• Learning algorithms
– Perceptron
– SVM
– Logistic Regression

• Prediction is simple
– Given an example 𝐱, output = sgn(𝐰𝑇𝐱)
– Output is a single bit
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What if we have more than two labels?
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Multiclass classification

• Introduction

• Combining binary classifiers
– One-vs-all
– All-vs-all
– Error correcting codes

• Training a single classifier
– Multiclass SVM
– Constraint classification
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Where are we?

• Introduction

• Combining binary classifiers
– One-vs-all
– All-vs-all
– Error correcting codes

• Training a single classifier
– Multiclass SVM
– Constraint classification
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What is multiclass classification?

• An input can belong to one of K classes

• Training data: examples associated with class label (a number 
from 1 to K)

• Prediction: Given a new input, predict the class label

Each input belongs to exactly one class. Not more, not less. 
Otherwise, the problem is not multiclass classification

If an input can be assigned multiple labels (think tags for emails 
rather than folders), it is called multi-label classification
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Example applications: Images

– Input: hand-written character; Output: which character?

– Input: a photograph of an object; Output: which of a set of 
categories of objects is it? 
• Eg: the Caltech 256 dataset
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all map to the letter A

Car tire Car tire Duck laptop



Example applications: Language

• Input: a news article
• Output: Which section of the newspaper should be be in

• Input: an email
• Output: which folder should an email be placed into

• Input: an audio command given to a car
• Output: which of a set of actions should be executed
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Where are we?

• Introduction

• Combining binary classifiers
– One-vs-all
– All-vs-all
– Error correcting codes

• Training a single classifier
– Multiclass SVM
– Constraint classification
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Binary to multiclass

• Can we use an algorithm for training binary classifiers 
to construct a multiclass classifier?
– Answer: Decompose the prediction into multiple binary 

decisions

• How to decompose?
– One-vs-all
– All-vs-all
– Error correcting codes
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General setting

• Input 𝐱 ∈ ℜ!
– The inputs are represented by their feature vectors

• Output 𝐲 ∈ 1,2,⋯ ,𝐾
– These classes represent domain-specific labels

• Learning: Given a dataset 𝐷 = {(𝐱𝑖, 𝐲𝑖)}
– Need a learning algorithm that uses D to construct a function that can 

predict 𝐱 to 𝐲
– Goal: find a predictor that does well on the training data and has low 

generalization error

• Prediction/Inference: Given an example 𝐱 and the learned 
function, compute the class label for 𝐱
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1. One-vs-all classification

• Assumption: Each class individually separable from 
all the others

• Learning: Given a dataset 𝐷 = {(𝐱𝑖, 𝐲𝑖)}
– Decompose into K binary classification tasks
– For class k, construct a binary classification task as:

• Positive examples: Elements of D with label k
• Negative examples: All other elements of D

– Train K binary classifiers w1, w2, ! wK using any learning 
algorithm we have seen
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1. One-vs-all classification

• Assumption: Each class individually separable from 
all the others

• Learning: Given a dataset 𝐷 = {(𝐱i, 𝐲𝑖)}
– Train K binary classifiers w1, w2, ! wK using any learning 

algorithm we have seen

• Prediction: “Winner Takes All”
argmax𝑖 𝐰𝑖

𝑇𝐱
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1. One-vs-all classification

• Assumption: Each class individually separable from 
all the others
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𝒙 ∈ ℜ!
𝒚 ∈ 1,2,⋯ , 𝐾

Question: What is the 
dimensionality of each wi?



Visualizing One-vs-all
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Visualizing One-vs-all

From the full dataset, construct three 
binary classifiers, one for each class
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Visualizing One-vs-all

From the full dataset, construct three 
binary classifiers, one for each class
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Visualizing One-vs-all

From the full dataset, construct three 
binary classifiers, one for each class
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wblue
Tx > 0 

for blue 
circle inputs

wred
Tx > 0 for 

red triangle 
inputs

wgreen
Tx > 0 for 

green square 
inputs

Notation: Score 
for blue label

Winner Take All will predict the right answer. Only the 
correct label will have a positive score



One-vs-all may not always work
Black points are not separable with a single binary 
classifier

The decomposition will not work for these cases!

wblue
Tx > 0 

for blue
circle inputs

wred
Tx > 0 for 

red triangle 
inputs

wgreen
Tx > 0 for 

green square 
inputs

???
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One-vs-all classification: Summary

• Easy to learn
– Use any binary classifier learning algorithm

• Problems
– No theoretical justification
– Calibration issues

• We are comparing scores produced by K classifiers trained 
independently. No reason for the scores to be in the same 
numerical range!

– Might not always work
• Yet, works fairly well in many cases, especially if the underlying 

binary classifiers are tuned, regularized
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2. All-vs-all classification

• Assumption: Every pair of classes is separable

Sometimes called one-vs-one
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2. All-vs-all classification

• Assumption: Every pair of classes is separable

• Learning: Given a dataset 𝐷 = {(𝐱𝒊, 𝐲𝑖)}, 
– For every pair of labels (j, k), create a binary classifier with:

• Positive examples: All examples with label j
• Negative examples: All examples with label k

– Train  𝐾2 = -(-/0)
2

classifiers to separate every pair of 

labels from each other

Sometimes called one-vs-one
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2. All-vs-all classification

• Assumption: Every pair of classes is separable

• Learning: Given a dataset 𝐷 = {(𝐱𝒊, 𝐲𝑖)}, 
– Train  𝐾2 = -(-/0)

2 classifiers to separate every pair of 
labels from each other

• Prediction: More complex, each label get K-1 votes
– How to combine the votes? Many methods

• Majority: Pick the label with maximum votes
• Organize a tournament between the labels

Sometimes called one-vs-one
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𝐱 ∈ ℜ!
𝐲 ∈ 1,2,⋯ , 𝐾



All-vs-all classification

• Every pair of labels is linearly separable here
– When a pair of labels is considered, all others are ignored

• Problems
1. O(K2) weight vectors to train and store

2. Size of training set for a pair of labels could be very small, 
leading to overfitting of the binary classifiers

3. Prediction is often ad-hoc and might be unstable
Eg: What if two classes get the same number of votes? For a tournament, 
what is the sequence in which the labels compete?
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3. Error correcting output codes (ECOC)

• Each binary classifier provides one bit of information

• With K labels, we only need log2K bits to represent the 
label
– One-vs-all uses K bits (one per classifier)
– All-vs-all uses O(K2) bits

• Can we get by with O(log K) classifiers?
– Yes! Encode each label as a binary string
– Or alternatively, if we do train more than O(log K) classifiers, can 

we use the redundancy to improve classification accuracy?
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Using log2K classifiers

• Learning:
– Represent each label by a bit string (i.e., its code)
– Train one binary classifier for each bit

• Prediction:
– Use the predictions from all the classifiers to create a log2K bit 

string that uniquely decides the output

• What could go wrong here?
– Even if one of the classifiers makes a mistake, final prediction is 

wrong!

30

label# Code

0 0 0 0

1 0 0 1

2 0 1 0

3 0 1 1

4 1 0 0

5 1 0 1

6 1 1 0

7 1 1 1

8 classes, code-length = 3

Example: For some example, if the three  classifiers predict 
0, 1 and 1, then the label is 3 
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Using log2K classifiers

• Learning:
– Represent each label by a bit string (i.e., its code)
– Train one binary classifier for each bit

• Prediction:
– Use the predictions from all the classifiers to create a log2K bit 

string that uniquely decides the output

• What could go wrong here?
– Even if one of the classifiers makes a mistake, final prediction is 

wrong!
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Error correcting output coding

Answer: Use redundancy 
• Assign a binary string with each label 

– Could be random
– Length of the code word L >= log2K is a parameter

• Train one binary classifier for each bit
– Effectively, split the data into random dichotomies
– We need only log2K bits

• Additional bits act as an error correcting code
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8 classes, code-length = 5

# Code

0 0 0 0 0 0

1 0 0 1 1 0

2 0 1 0 1 1

3 0 1 1 0 1

4 1 0 0 1 1

5 1 0 1 0 0

6 1 1 0 0 0

7 1 1 1 1 1



How to predict?

• Prediction
– Run all L binary classifiers on the example
– Gives us a predicted bit string of length L
– Output = label whose code word is “closest” to

the prediction
– Closest defined using Hamming distance

• Longer code length is better, better error-correction

• Example
– Suppose the binary classifiers here predict 11010
– The closest label to this is 6, with code word 11000
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How to predict?

• Prediction
– Run all L binary classifiers on the example
– Gives us a predicted bit string of length L
– Output = label whose code word is “closest” to

the prediction
– Closest defined using Hamming distance

• Longer code length is better, better error-correction

• Example
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8 classes, code-length = 5

# Code

0 0 0 0 0 0

1 0 0 1 1 0

2 0 1 0 1 1

3 0 1 1 0 1

4 1 0 0 1 1

5 1 0 1 0 0

6 1 1 0 0 0

7 1 1 1 1 1

One-vs-all is a special case 
of this scheme. How?



Error correcting codes: Discussion

• Assumes that columns are independent
– Otherwise, ineffective encoding

• Strong theoretical results that depend on code length
– If minimal Hamming distance between two rows is 𝑑, then the 

prediction can correct up to #$%
&

errors in the binary predictions

• Code assignment could be random, or designed for the 
dataset or task

• One-vs-all and all-vs-all are special cases
– All-vs-all needs a ternary code (not binary)

36
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Decomposition methods: Summary

• General idea
– Decompose the multiclass problem into many binary problems
– We know how to train binary classifiers
– Prediction depends on the decomposition

• Constructs the multiclass label from the output of the binary classifiers

• Learning optimizes local correctness
– Each binary classifier does not need to be globally correct

• That is, the classifiers do not have to agree with each other
– The learning algorithm is not aware of the prediction procedure!

• Poor decomposition gives poor performance
– Difficult local problems, can be “unnatural”

• Eg. For ECOC, why should the binary problems be separable?
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Where are we?

• Introduction

• Combining binary classifiers
– One-vs-all
– All-vs-all
– Error correcting codes

• Training a single classifier
– Multiclass SVM
– Constraint classification
– Multiclass logistic regression
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Motivation

• Decomposition methods 
– Do not account for how the final predictor will be used
– Do not optimize any global measure of correctness

• Goal: To train a multiclass classifier that is “global”
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Recall: Margin for binary classifiers

The margin of a hyperplane for a dataset: the distance 
between the hyperplane and the data point nearest to it
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Multiclass margin

Defined as the score difference between the highest 
scoring label and the second one
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Defined as the score difference between the highest 
scoring label and the second one
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Multiclass SVM (Intuition)

• Recall: Binary SVM
– Maximize margin
– Equivalently, 

Minimize norm of weights such that the closest points to the hyperplane
have a score ≥ 1

• Multiclass SVM
– Each label has a different weight vector (like one-vs-all)
– Maximize multiclass margin
– Equivalently,

Minimize total norm of the weights such that the true label is scored at 
least 1 more than the second best one
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Multiclass SVM in the separable case
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Recall hard binary SVM

𝑠𝑐𝑜𝑟𝑒 𝑦" – 𝑠𝑐𝑜𝑟𝑒 𝑘 ≥ 1

𝑅𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑧𝑒𝑟 𝐰#, ⋯ ,𝒘$



Multiclass SVM in the separable case
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Multiclass SVM in the separable case
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Recall hard binary SVM



Multiclass SVM in the separable case
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Multiclass SVM in the separable case
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Recall hard binary SVM

The score for the true label is higher 
than the score for any other label by 1

Size of the weights. 
Effectively, regularizer

Problems with this?

What if there is no set of weights that achieves this separation?
That is, what if the data is not linearly separable?



Multiclass SVM: General case
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Size of the weights. 
Effectively, regularizer

The score for the true label is higher 
than the score for any other label by 
1 − 𝜉"

Slack variables. Not all 
examples need to 
satisfy  the margin 

constraint. 



Multiclass SVM: General case
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Multiclass SVM: General case
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Multiclass SVM: General case
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The score for the true label is higher 
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Multiclass SVM: General case
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Solving 

Is equivalent to solving

min
𝐰!,𝐰",⋯,𝐰#

1
2
(
$

𝐰$%𝐰$ + 𝐶 (
(𝐱$,𝐲$)∈+

max 0,max
,-𝐲$

𝐰,%𝐱$ − 𝐰𝐲$
% 𝐱$ + 1

Why?



Multiclass SVM: General case
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Multiclass SVM: General case
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Multiclass SVM: General case
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min
𝐰!,𝐰",⋯,𝐰#

1
2
(
$

𝐰$%𝐰$ + 𝐶 (
(𝐱$,𝐲$)∈+

max 0,max
,-𝐲$

𝐰,%𝐱$ − 𝐰𝐲$
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Size of the weights. 
Effectively, regularizer The multiclass hinge loss

The tradeoff 
hyperparameter



Multiclass SVM

• Generalizes binary SVM algorithm
– If we have only two classes, this reduces to the binary (up 

to scale)

• Comes with similar generalization guarantees as the 
binary SVM

• Can be trained using different optimization methods
– Stochastic sub-gradient descent can be generalized 

• Try as exercise
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Multiclass SVM: Summary

• Training:
– Optimize the SVM objective

• Prediction:
– Winner takes all

argmaxi wi
Tx

• With K labels and inputs in ℜ', we have nK weights in all
– Same as one-vs-all

– But comes with guarantees! 

62
Questions?



Where are we?

• Introduction

• Combining binary classifiers
– One-vs-all
– All-vs-all
– Error correcting codes

• Training a single classifier
– Multiclass SVM
– Constraint classification
– Multiclass logistic regression
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Let us examine one-vs-all again

• Training: 
– Create K binary classifiers w1, w2, …, wK

– wi separates class i from all others

• Prediction: argmaxi wi
Tx

• Observations:
1. At training time, we require wi

Tx to be positive for examples of 
class i. 

2. Really, all we need is for wi
Tx to be more than all others

The requirement of being positive is more strict
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Rewrite inputs and weight vector
• Stack all weight vectors into an

nK-dimensional vector

• Define a feature vector for label i being associated to input x:

Linear Separability with multiple classes

65

x in the ith block, zeros 
everywhere else 

For examples with label i, we want 𝐰𝑖
𝑇𝐱 > 𝐰𝑗

𝑇𝐱 for all j



Rewrite inputs and weight vector
• Stack all weight vectors into an

nK-dimensional vector

• Define a feature vector for label i being associated to input x:

Linear Separability with multiple classes
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x in the ith block, zeros 
everywhere else 

This is called the 
Kesler construction

For examples with label i, we want 𝐰𝑖
𝑇𝐱 > 𝐰𝑗

𝑇𝐱 for all j



Linear Separability with multiple classes

Equivalent requirement:
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x in the ith block, zeros 
everywhere else 

Or: 

For examples with label i, we want 𝐰𝑖
𝑇𝐱 > 𝐰𝑗

𝑇𝐱 for all j



Linear Separability with multiple classes
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ith
block

Or equivalently: 
For examples with label i, we want 𝐰𝑖

𝑇𝐱 > 𝐰𝑗
𝑇𝐱 for all j



Linear Separability with multiple classes
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ith
block

For every example (x, i) in dataset, all other labels j 

Positive examples Negative examples

w

That is, the following binary task in nK dimensions that 
should be linearly separable

Or equivalently: 
For examples with label i, we want 𝐰𝑖

𝑇𝐱 > 𝐰𝑗
𝑇𝐱 for all j



Constraint Classification

• Training:
– Given a data set {(x, y)}, create a binary classification task

• Positive examples: 𝜙 𝑥, 𝑦 − 𝜙 𝑥, 𝑦.

• Negative examples: 𝜙 𝑥, 𝑦. − 𝜙 𝑥, 𝑦
for every example, for every 𝑦 ≠ 𝑦.

– Use your favorite algorithm to train a binary classifier

• Prediction: Given a nK dimensional weight vector w
and a new example x

argmaxG𝐰H𝜙 𝑥, 𝑦
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Constraint Classification

• Training:
– Given a data set {(x, y)}, create a binary classification task

• Positive examples: 𝜙 𝑥, 𝑦 − 𝜙 𝑥, 𝑦.

• Negative examples: 𝜙 𝑥, 𝑦. − 𝜙 𝑥, 𝑦
for every example, for every 𝑦 ≠ 𝑦.

– Use your favorite algorithm to train a binary classifier

• Prediction: Given a nK dimensional weight vector w
and a new example x

argmaxG𝐰H𝜙 𝑥, 𝑦
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Exercise: What do the 
perceptron update rule look 
like in terms of the 𝜙’s?

Interpret the update step



Constraint Classification

• Training:
– Given a data set {(x, y)}, create a binary classification task

• Positive examples: 𝜙 𝑥, 𝑦 − 𝜙 𝑥, 𝑦.

• Negative examples: 𝜙 𝑥, 𝑦. − 𝜙 𝑥, 𝑦
for every example, for every 𝑦 ≠ 𝑦.

– Use your favorite algorithm to train a binary classifier

• Prediction: Given a nK dimensional weight vector w
and a new example x

argmaxG𝐰H𝜙 𝑥, 𝑦
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Note: The binary classification task only expresses preferences over 
label assignments

This approach extends to training a ranker, can use partial 
preferences too, more on this later…



A second look at the multiclass margin
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Defined as the score difference between the highest 
scoring label and the second one
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Score for 
a label

Blue
Red
Green
Black

Multiclass Margin



A second look at the multiclass margin
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Defined as the score difference between the highest 
scoring label and the second one

Labels

Score for 
a label

Blue
Red
Green
Black

Multiclass Margin
In terms of Kesler
construction

Here y is the label that 
has the highest score



Where are we?

• Introduction

• Combining binary classifiers
– One-vs-all
– All-vs-all
– Error correcting codes

• Training a single classifier
– Multiclass SVM
– Constraint classification
– Multiclass logistic regression
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Multiclass logistic regression

Known by many other names: 
– Polytomous logistic regression
– Multinomial logistic regression 
– Softmax logistic regression
– Log-linear model for logistic regression
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Multiclass logistic regression

General setting (same as before)
– Inputs: 𝐱
– Output: 𝐲 ∈ 1, 2,⋯ ,𝐾
– Feature representation: 𝜙 𝐱, 𝐲

Define probability of an input 𝐱 taking a label 𝐲 as 

𝑃 𝐲 𝐱,𝐰 =
exp(𝐰6𝜙 𝐱, 𝐲 )

∑𝐲! exp 𝐰6𝜙 𝐱, 𝐲7
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Kesler construction



Multiclass logistic regression

General setting (same as before)
– Inputs: 𝐱
– Output: 𝐲 ∈ 1, 2,⋯ ,𝐾
– Feature representation: 𝜙 𝐱, 𝐲

Define probability of an input 𝐱 taking a label 𝐲 = 𝑖 as 

𝑃 𝐲 = 𝑖 𝐱,𝐰 =
exp(𝐰6𝜙 𝐱, 𝑖 )

∑89:; exp 𝐰6𝜙 𝐱, 𝑗
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Multiclass logistic regression

Define probability of an input 𝐱 taking a label 𝐲 as 

𝑃 𝐲 = 𝑖 𝐱,𝐰 =
exp(𝐰6𝜙 𝐱, 𝑖 )

∑89:; exp 𝐰6𝜙 𝐱, 𝑗

80

Interpretation: Score each label, and then
convert to a well-formed probability distribution by exponentiating + normalizing



Multiclass logistic regression

Define probability of an input 𝐱 taking a label 𝐲 as 

𝑃 𝐲 = 𝑖 𝐱,𝐰 =
exp(𝐰6𝜙 𝐱, 𝑖 )

∑89:; exp 𝐰6𝜙 𝐱, 𝑗
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Interpretation: Score each label, and then
convert to a well-formed probability distribution by exponentiating + normalizing



Multiclass logistic regression

Define probability of an input 𝐱 taking a label 𝐲 as 

𝑃 𝐲 = 𝑖 𝐱,𝐰 =
exp(𝐰6𝜙 𝐱, 𝑖 )

∑89:; exp 𝐰6𝜙 𝐱, 𝑗

This expression uses the softmax function:

softmax 𝑧:, 𝑧<, ⋯ =
exp 𝑧:
∑8 exp 𝑧8

,
exp 𝑧<
∑8 exp 𝑧8

, ⋯
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Multiclass logistic regression

Define probability of an input 𝐱 taking a label 𝐲 as 

𝑃 𝐲 = 𝑖 𝐱,𝐰 =
exp(𝐰6𝜙 𝐱, 𝑖 )

∑89:; exp 𝐰6𝜙 𝐱, 𝑗

When we take log of the probability, we have a linear term and a 
term that doesn’t depend on the label

log 𝑃 𝑦 𝐱,𝐰 = 𝑤J𝜙 𝐱, 𝑦 − log 𝑍 𝐱
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Such models are also called log-linear models



Training for multiclass logistic regression

Given a data set D = { 𝐱= , 𝐲= }
– Apply the maximum likelihood principle

max
𝐰

A
K

log 𝑃(𝐲K ∣ 𝐱K, 𝐰)

– Maybe with a regularizer

max
𝐰

−
𝜆
2
𝐰J𝐰+A

K

log 𝑃(𝐲K ∣ 𝐱K, 𝐰)
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𝑃 𝐲 = 𝑖 𝐱,𝐰 =
exp(𝐰%𝜙 𝐱, 𝑖 )

∑& exp 𝐰%𝜙 𝐱, 𝑗



Training for multiclass logistic regression

Given a data set D = { 𝐱= , 𝐲= }
– Apply the maximum likelihood principle

max
𝐰

A
K

log 𝑃(𝐲K ∣ 𝐱K, 𝐰)

– Maybe with a regularizer

max
𝐰

−
𝜆
2
𝐰J𝐰+A

K

log 𝑃(𝐲K ∣ 𝐱K, 𝐰)

85

The cross-entropy loss

𝑃 𝐲 = 𝑖 𝐱,𝐰 =
exp(𝐰%𝜙 𝐱, 𝑖 )

∑& exp 𝐰%𝜙 𝐱, 𝑗



Consider all distributions P such that the empirical counts of the features 
matches the expected counts

(
$

𝜙$ 𝑥$, 𝑦$ =(
$

(
/

𝑃 𝑦 𝑥$, 𝑤 𝜙0(𝑥$, 𝑦)

Recall: Entropy of a distribution 𝑃(𝑦 ∣ 𝑥) is 

𝐻 𝑃 = −(
$

𝑃 𝑦$ 𝑥$ log 𝑃 𝑦$ 𝑥$

– A measure of smoothness
– Without any other information, maximized by the uniform distribution

Maximum entropy learning
argmaxp H(p) such that it satisfies this constraint 

Another training idea: MaxEnt
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For every feature 𝑗

(Minor detour)



Consider all distributions P such that the empirical counts of the features 
matches the expected counts

(
$

𝜙$ 𝑥$, 𝑦$ =(
$

(
/

𝑃 𝑦 𝑥$, 𝑤 𝜙0(𝑥$, 𝑦)

Recall: Entropy of a distribution 𝑃(𝑦 ∣ 𝑥) is 

𝐻 𝑃 = −(
$

𝑃 𝑦$ 𝑥$ log 𝑃 𝑦$ 𝑥$

– A measure of smoothness
– Without any other information, maximized by the uniform distribution

Maximum entropy learning
argmaxp H(p) such that it satisfies this constraint 

Another training idea: MaxEnt
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There can be many conditional probability 
distributions that satisfy this constraint.

What is a trivial one that does so?



Consider all distributions P such that the empirical counts of the features 
matches the expected counts

(
$

𝜙$ 𝑥$, 𝑦$ =(
$

(
/

𝑃 𝑦 𝑥$, 𝑤 𝜙0(𝑥$, 𝑦)

Recall: Entropy of a distribution 𝑃(𝑦 ∣ 𝑥) is 

𝐻 𝑃 = −(
$

𝑃 𝑦$ 𝑥$ log 𝑃 𝑦$ 𝑥$

– A measure of smoothness
– Without any other information, maximized by the uniform distribution

Maximum entropy learning
argmaxp H(p) such that it satisfies this constraint 

Another training idea: MaxEnt
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There can be many conditional probability 
distributions that satisfy this constraint.

We need a principled way to choose between such distributions. 



Consider all distributions P such that the empirical counts of the features 
matches the expected counts

(
$

𝜙$ 𝑥$, 𝑦$ =(
$

(
/

𝑃 𝑦 𝑥$, 𝑤 𝜙0(𝑥$, 𝑦)

Recall: Entropy of a distribution 𝑃(𝑦 ∣ 𝑥) is 

𝐻 𝑃 = −(
$

𝑃 𝑦$ 𝑥$ log 𝑃 𝑦$ 𝑥$

– A measure of smoothness
– Without any other information, maximized by the uniform distribution

Maximum entropy learning
argmaxp H(p) such that it satisfies this constraint 

Another training idea: MaxEnt
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There can be many conditional probability 
distributions that satisfy this constraint.

We need a principled way to choose between such distributions: 

Find a distribution that satisfies the constraint,
and does not make any other commitments otherwise. 

That is, given the constraint, it is maximally uncertain otherwise.



Consider all distributions P such that the empirical counts of the features 
matches the expected counts

(
$

𝜙$ 𝑥$, 𝑦$ =(
$

(
/

𝑃 𝑦 𝑥$, 𝑤 𝜙0(𝑥$, 𝑦)

Recall: Entropy of a distribution 𝑃(𝑦 ∣ 𝑥) is 

𝐻 𝑃 = −(
$

𝑃 𝑦$ 𝑥$ log 𝑃 𝑦$ 𝑥$

– A measure of smoothness
– Without any other information, maximized by the uniform distribution

Maximum entropy learning
argmaxp H(p) such that it satisfies this constraint 

Another training idea: MaxEnt
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Consider all distributions P such that the empirical counts of the features 
matches the expected counts

(
$

𝜙$ 𝑥$, 𝑦$ =(
$

(
/

𝑃 𝑦 𝑥$, 𝑤 𝜙0(𝑥$, 𝑦)

Recall: Entropy of a distribution 𝑃(𝑦 ∣ 𝑥) is 

𝐻 𝑃 = −(
$

𝑃 𝑦$ 𝑥$ log 𝑃 𝑦$ 𝑥$

– A measure of smoothness
– Without any other information, maximized by the uniform distribution

Maximum entropy learning
argmaxp H(p) such that it satisfies this constraint 

Another training idea: MaxEnt
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Maximum Entropy distribution = log-linear

Theorem

The maximum entropy distribution among those 
satisfying the constraint has an exponential form

Among exponential distributions, the maximum 
entropy distribution is the most likely distribution

92
Questions?



Discussion

• The number of weights for multiclass SVM, constraint 
classification, multiclass logistic regression are still same as 
One-vs-all, much less than all-vs-all

• All account for pairwise label preferences 
– Multiclass SVM via the definition of the learning objective

𝐰/$
% 𝐱 − 𝐰,%𝐱 ≥ 1 − 𝜉$

– Constraint classification by constructing a binary classification problem
– Multiclass logistic regression because the probability is normalized 

(i.e. softmax)

• Important ideas that are applicable when we move to 
arbitrary structures
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Questions?



Training multiclass classifiers: Wrap-up

• Label belongs to a set that has more than two elements

• Methods
– Decomposition into a collection of binary (local) decisions

• One-vs-all
• All-vs-all
• Error correcting codes

– Training a single (global) classifier
• Multiclass SVM
• Constraint classification
• Multiclass logistic regression

• Exercise: Which of these will work for this case?
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Questions?



Next steps…

• Build up to structured prediction
– Multiclass is really a simple structure

• Different aspects of structured prediction
– Deciding the structure, training, inference

• Sequence models
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Extra: Training a log-linear model
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Training a log-linear model

• Gradient based methods to minimize

𝐿 𝐰 = −A
K

log 𝑃(𝐲K ∣ 𝐱K, 𝐰)

• Usual stochastic gradient descent
– Initialize 𝒘 ← 𝟎
– Iterate through examples for multiple epochs

• For each example 𝒙$ 𝒚$ take gradient step for the loss at that 
example
– Update 𝒘 ← 𝒘 − r(𝛻𝐿(𝒘, 𝒙" , 𝒚")

– Return 𝒘
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Training a log-linear model

• Gradient based methods to minimize

𝐿 𝐰 = −A
K

log 𝑃(𝐲K ∣ 𝐱K, 𝐰)

• Usual stochastic gradient descent
– Initialize 𝒘 ← 𝟎
– Iterate through examples for multiple epochs

• For each example 𝒙$ 𝒚$ take gradient step for the loss at that 
example
– Update 𝒘 ← 𝒘 − r(𝛻𝐿(𝒘, 𝒙" , 𝒚")

– Return 𝒘
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Other methods exist 

For example the L-BFGS algorithm



Training a log-linear model

• Gradient based methods to minimize

𝐿 𝐰 = −A
K

log 𝑃(𝐲K ∣ 𝐱K, 𝐰)

• Usual stochastic gradient descent
– Initialize 𝒘 ← 𝟎
– Iterate through examples for multiple epochs

• For each example 𝒙$ 𝒚$ take gradient step for the loss at that 
example
– Update 𝒘 ← 𝒘 − r(𝛻𝐿(𝒘, 𝒙" , 𝒚")

– Return 𝒘
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A vector, whose jth element is the 
derivative of L with wj.
Has a neat interpretation



Gradients of the loss function

Let us compute this derivative of L with respect to w

𝑃 𝐲 𝐱,𝐰 =
exp(𝐰%𝜙 𝐱, 𝐲 )

∑𝐲' exp 𝐰%𝜙 𝐱, 𝐲.

𝐿 𝐰, 𝐱, 𝐲 = −log𝑃(𝐲 ∣ 𝐱,𝐰)

= −𝐰%𝜙 𝐱, 𝐲 + log(
/'
exp 𝐰%𝜙 𝐱, 𝐲.

The derivative of the loss with respect to the weights is:
𝜕𝐿
𝜕𝐰 = −𝜙 𝐱, 𝐲 +

∑/' exp 𝐰%𝜙 𝐱, 𝐲. 𝜙 𝐱, 𝐲.

∑/' exp 𝐰%𝜙 𝐱, 𝐲.

= −𝜙 𝐱, 𝐲 +(
𝐲'
𝑃 𝐲. 𝐱,𝐰 𝜙 𝐱, 𝐲.
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Gradients of the loss function

Let us compute this derivative of L with respect to w

𝑃 𝐲 𝐱,𝐰 =
exp(𝐰%𝜙 𝐱, 𝐲 )

∑𝐲' exp 𝐰%𝜙 𝐱, 𝐲.

𝐿 𝐰, 𝐱, 𝐲 = −log𝑃(𝐲 ∣ 𝐱,𝐰)

= −𝐰%𝜙 𝐱, 𝐲 + log(
/'
exp 𝐰%𝜙 𝐱, 𝐲.

The derivative of the loss with respect to the weights is:
𝜕𝐿
𝜕𝐰 = −𝜙 𝐱, 𝐲 +

∑/' exp 𝐰%𝜙 𝐱, 𝐲. 𝜙 𝐱, 𝐲.

∑/' exp 𝐰%𝜙 𝐱, 𝐲.

= −𝜙 𝐱, 𝐲 +(
𝐲'
𝑃 𝐲. 𝐱,𝐰 𝜙 𝐱, 𝐲.
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Gradients of the loss function

Let us compute this derivative of L with respect to w

𝑃 𝐲 𝐱,𝐰 =
exp(𝐰%𝜙 𝐱, 𝐲 )

∑𝐲' exp 𝐰%𝜙 𝐱, 𝐲.

𝐿 𝐰, 𝐱, 𝐲 = −log𝑃(𝐲 ∣ 𝐱,𝐰)

= −𝐰%𝜙 𝐱, 𝐲 + log(
/'
exp 𝐰%𝜙 𝐱, 𝐲.

The derivative of the loss with respect to the weights is:
𝜕𝐿
𝜕𝐰 = −𝜙 𝐱, 𝐲 +

∑/' exp 𝐰%𝜙 𝐱, 𝐲. 𝜙 𝐱, 𝐲.

∑/' exp 𝐰%𝜙 𝐱, 𝐲.

= −𝜙 𝐱, 𝐲 +(
𝐲'
𝑃 𝐲. 𝐱,𝐰 𝜙 𝐱, 𝐲.
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Gradients of the loss function

Let us compute this derivative of L with respect to w

𝑃 𝐲 𝐱,𝐰 =
exp(𝐰%𝜙 𝐱, 𝐲 )

∑𝐲' exp 𝐰%𝜙 𝐱, 𝐲.

𝐿 𝐰, 𝐱, 𝐲 = −log𝑃(𝐲 ∣ 𝐱,𝐰)

= −𝐰%𝜙 𝐱, 𝐲 + log(
/'
exp 𝐰%𝜙 𝐱, 𝐲.

The derivative of the loss with respect to the weights is:
𝜕𝐿
𝜕𝐰 = −𝜙 𝐱, 𝐲 +

∑/' exp 𝐰%𝜙 𝐱, 𝐲. 𝜙 𝐱, 𝐲.

∑/' exp 𝐰%𝜙 𝐱, 𝐲.

= −𝜙 𝐱, 𝐲 +(
𝐲'
𝑃 𝐲. 𝐱,𝐰 𝜙 𝐱, 𝐲.
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Gradients of the loss function

– Initialize 𝒘 ← 𝟎
– Iterate through examples for multiple epochs

• For each example 𝒙$ 𝒚$ take gradient step for the loss at that 
example
– Update 𝒘 ← 𝒘 − r(𝛻𝐿(𝒘, 𝒙" , 𝒚")

– Return 𝒘
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A vector, whose jth element is the 
derivative of L with wj.
Has a neat interpretation

𝜕
𝜕𝐰𝐿 𝒘, 𝒙" , 𝒚" = 𝜙 𝒙" , 𝒚𝒊 −S

𝒚!
𝑃 𝒚+ 𝒙" , 𝐰 𝜙(𝒙𝒊, 𝒚+)

𝑃 𝐲 𝐱,𝐰 =
exp(𝐰!𝜙 𝐱, 𝐲 )

∑𝐲! exp 𝐰!𝜙 𝐱, 𝐲#

𝐿 𝐰, 𝐱, 𝐲 = −log𝑃(𝐲 ∣ 𝐱,𝐰)



Gradients of the loss function

– Initialize 𝒘 ← 𝟎
– Iterate through examples for multiple epochs

• For each example 𝒙$ 𝒚$ take gradient step for the loss at that 
example
– Update 𝒘 ← 𝒘 − r(𝛻𝐿(𝒘, 𝒙" , 𝒚")

– Return 𝒘
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A vector, whose jth element is the 
derivative of L with wj.
Has a neat interpretation

𝜕
𝜕𝐰𝐿 𝒘, 𝒙" , 𝒚" = 𝜙 𝒙" , 𝒚𝒊 −S

𝒚!
𝑃 𝒚+ 𝒙" , 𝐰 𝜙(𝒙𝒊, 𝒚+)

Features for the true output

𝑃 𝐲 𝐱,𝐰 =
exp(𝐰!𝜙 𝐱, 𝐲 )

∑𝐲! exp 𝐰!𝜙 𝐱, 𝐲#

𝐿 𝐰, 𝐱, 𝐲 = −log𝑃(𝐲 ∣ 𝐱,𝐰)



Gradients of the loss function

– Initialize 𝒘 ← 𝟎
– Iterate through examples for multiple epochs

• For each example 𝒙$ 𝒚$ take gradient step for the loss at that 
example
– Update 𝒘 ← 𝒘 − r(𝛻𝐿(𝒘, 𝒙" , 𝒚")

– Return 𝒘
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A vector, whose jth element is the 
derivative of L with wj.
Has a neat interpretation

𝜕
𝜕𝐰𝐿 𝒘, 𝒙" , 𝒚" = 𝜙 𝒙" , 𝒚𝒊 −S

𝒚!
𝑃 𝒚+ 𝒙" , 𝐰 𝜙(𝒙𝒊, 𝒚+)

The expected feature  vector 
according to the current modelFeatures for the true output

𝑃 𝐲 𝐱,𝐰 =
exp(𝐰!𝜙 𝐱, 𝐲 )

∑𝐲! exp 𝐰!𝜙 𝐱, 𝐲#

𝐿 𝐰, 𝐱, 𝐲 = −log𝑃(𝐲 ∣ 𝐱,𝐰)


