
CS 6355: Structured Prediction

From Binary to Multiclass
Classification

1

We have seen binary classification

• We have seen linear models
• Learning algorithms
– Perceptron
– SVM
– Logistic Regression

• Prediction is simple
– Given an example 𝐱, output = sgn(𝐰𝑇𝐱)
– Output is a single bit

2

What if we have more than two labels?

3

Multiclass classification

• Introduction

• Combining binary classifiers
– One-vs-all
– All-vs-all
– Error correcting codes

• Training a single classifier
– Multiclass SVM
– Constraint classification

4

Where are we?

• Introduction

• Combining binary classifiers
– One-vs-all
– All-vs-all
– Error correcting codes

• Training a single classifier
– Multiclass SVM
– Constraint classification

5

What is multiclass classification?

• An input can belong to one of K classes

• Training data: examples associated with class label (a number
from 1 to K)

• Prediction: Given a new input, predict the class label

Each input belongs to exactly one class. Not more, not less.
Otherwise, the problem is not multiclass classification

If an input can be assigned multiple labels (think tags for emails
rather than folders), it is called multi-label classification

6

Example applications: Images

– Input: hand-written character; Output: which character?

– Input: a photograph of an object; Output: which of a set of
categories of objects is it?
• Eg: the Caltech 256 dataset

7

all map to the letter A

Car tire Car tire Duck laptop

Example applications: Language

• Input: a news article
• Output: Which section of the newspaper should be be in

• Input: an email
• Output: which folder should an email be placed into

• Input: an audio command given to a car
• Output: which of a set of actions should be executed

8

Where are we?

• Introduction

• Combining binary classifiers
– One-vs-all
– All-vs-all
– Error correcting codes

• Training a single classifier
– Multiclass SVM
– Constraint classification

9

Binary to multiclass

• Can we use an algorithm for training binary classifiers
to construct a multiclass classifier?
– Answer: Decompose the prediction into multiple binary

decisions

• How to decompose?
– One-vs-all
– All-vs-all
– Error correcting codes

10

General setting

• Input 𝐱 ∈ ℜ!
– The inputs are represented by their feature vectors

• Output 𝐲 ∈ 1,2,⋯ ,𝐾
– These classes represent domain-specific labels

• Learning: Given a dataset 𝐷 = {(𝐱𝑖, 𝐲𝑖)}
– Need a learning algorithm that uses D to construct a function that can

predict 𝐱 to 𝐲
– Goal: find a predictor that does well on the training data and has low

generalization error

• Prediction/Inference: Given an example 𝐱 and the learned
function, compute the class label for 𝐱

11

1. One-vs-all classification

• Assumption: Each class individually separable from
all the others

• Learning: Given a dataset 𝐷 = {(𝐱𝑖, 𝐲𝑖)}
– Decompose into K binary classification tasks
– For class k, construct a binary classification task as:

• Positive examples: Elements of D with label k
• Negative examples: All other elements of D

– Train K binary classifiers w1, w2, ! wK using any learning
algorithm we have seen

12

𝒙 ∈ ℜ!
𝒚 ∈ 1,2,⋯ , 𝐾

1. One-vs-all classification

• Assumption: Each class individually separable from
all the others

• Learning: Given a dataset 𝐷 = {(𝐱𝑖, 𝐲𝑖)}
– Decompose into K binary classification tasks
– For class k, construct a binary classification task as:

• Positive examples: Elements of D with label k
• Negative examples: All other elements of D

– Train K binary classifiers w1, w2, ! wK using any learning
algorithm we have seen

13

𝒙 ∈ ℜ!
𝒚 ∈ 1,2,⋯ , 𝐾

1. One-vs-all classification

• Assumption: Each class individually separable from
all the others

• Learning: Given a dataset 𝐷 = {(𝐱𝑖, 𝐲𝑖)}
– Decompose into K binary classification tasks
– For class k, construct a binary classification task as:

• Positive examples: Elements of D with label k
• Negative examples: All other elements of D

– Train K binary classifiers w1, w2, ! wK using any learning
algorithm we have seen

14

𝐱 ∈ ℜ!
𝐲 ∈ 1,2,⋯ , 𝐾

1. One-vs-all classification

• Assumption: Each class individually separable from
all the others

• Learning: Given a dataset 𝐷 = {(𝐱i, 𝐲𝑖)}
– Train K binary classifiers w1, w2, ! wK using any learning

algorithm we have seen

• Prediction: “Winner Takes All”
argmax𝑖 𝐰𝑖

𝑇𝐱

15

𝒙 ∈ ℜ!
𝒚 ∈ 1,2,⋯ , 𝐾

1. One-vs-all classification

• Assumption: Each class individually separable from
all the others

• Learning: Given a dataset 𝐷 = {(𝐱i, 𝐲𝑖)}
– Train K binary classifiers w1, w2, ! wK using any learning

algorithm we have seen

• Prediction: “Winner Takes All”
argmax𝑖 𝐰𝑖

𝑇𝐱

16

𝒙 ∈ ℜ!
𝒚 ∈ 1,2,⋯ , 𝐾

Question: What is the
dimensionality of each wi?

Visualizing One-vs-all

17

Visualizing One-vs-all

From the full dataset, construct three
binary classifiers, one for each class

18

Visualizing One-vs-all

From the full dataset, construct three
binary classifiers, one for each class

19

wblue
Tx > 0

for blue
circle inputs

Visualizing One-vs-all

From the full dataset, construct three
binary classifiers, one for each class

20

wblue
Tx > 0

for blue
circle inputs

wred
Tx > 0 for

red triangle
inputs

wgreen
Tx > 0 for

green square
inputs

Visualizing One-vs-all

From the full dataset, construct three
binary classifiers, one for each class

21

wblue
Tx > 0

for blue
circle inputs

wred
Tx > 0 for

red triangle
inputs

wgreen
Tx > 0 for

green square
inputs

Notation: Score
for blue label

Visualizing One-vs-all

From the full dataset, construct three
binary classifiers, one for each class

22

wblue
Tx > 0

for blue
circle inputs

wred
Tx > 0 for

red triangle
inputs

wgreen
Tx > 0 for

green square
inputs

Notation: Score
for blue label

Winner Take All will predict the right answer. Only the
correct label will have a positive score

One-vs-all may not always work
Black points are not separable with a single binary
classifier

The decomposition will not work for these cases!

wblue
Tx > 0

for blue
circle inputs

wred
Tx > 0 for

red triangle
inputs

wgreen
Tx > 0 for

green square
inputs

???

23

One-vs-all classification: Summary

• Easy to learn
– Use any binary classifier learning algorithm

• Problems
– No theoretical justification
– Calibration issues

• We are comparing scores produced by K classifiers trained
independently. No reason for the scores to be in the same
numerical range!

– Might not always work
• Yet, works fairly well in many cases, especially if the underlying

binary classifiers are tuned, regularized

24

2. All-vs-all classification

• Assumption: Every pair of classes is separable

Sometimes called one-vs-one

25

2. All-vs-all classification

• Assumption: Every pair of classes is separable

• Learning: Given a dataset 𝐷 = {(𝐱𝒊, 𝐲𝑖)},
– For every pair of labels (j, k), create a binary classifier with:

• Positive examples: All examples with label j
• Negative examples: All examples with label k

– Train 𝐾2 = -(-/0)
2

classifiers to separate every pair of

labels from each other

Sometimes called one-vs-one

26

𝐱 ∈ ℜ!
𝐲 ∈ 1,2,⋯ , 𝐾

2. All-vs-all classification

• Assumption: Every pair of classes is separable

• Learning: Given a dataset 𝐷 = {(𝐱𝒊, 𝐲𝑖)},
– Train 𝐾2 = -(-/0)

2 classifiers to separate every pair of
labels from each other

• Prediction: More complex, each label get K-1 votes
– How to combine the votes? Many methods

• Majority: Pick the label with maximum votes
• Organize a tournament between the labels

Sometimes called one-vs-one

27

𝐱 ∈ ℜ!
𝐲 ∈ 1,2,⋯ , 𝐾

All-vs-all classification

• Every pair of labels is linearly separable here
– When a pair of labels is considered, all others are ignored

• Problems
1. O(K2) weight vectors to train and store

2. Size of training set for a pair of labels could be very small,
leading to overfitting of the binary classifiers

3. Prediction is often ad-hoc and might be unstable
Eg: What if two classes get the same number of votes? For a tournament,
what is the sequence in which the labels compete?

28

3. Error correcting output codes (ECOC)

• Each binary classifier provides one bit of information

• With K labels, we only need log2K bits to represent the
label
– One-vs-all uses K bits (one per classifier)
– All-vs-all uses O(K2) bits

• Can we get by with O(log K) classifiers?
– Yes! Encode each label as a binary string
– Or alternatively, if we do train more than O(log K) classifiers, can

we use the redundancy to improve classification accuracy?

29

Using log2K classifiers

• Learning:
– Represent each label by a bit string (i.e., its code)
– Train one binary classifier for each bit

• Prediction:
– Use the predictions from all the classifiers to create a log2K bit

string that uniquely decides the output

• What could go wrong here?
– Even if one of the classifiers makes a mistake, final prediction is

wrong!

30

label# Code

0 0 0 0

1 0 0 1

2 0 1 0

3 0 1 1

4 1 0 0

5 1 0 1

6 1 1 0

7 1 1 1

8 classes, code-length = 3

Example: For some example, if the three classifiers predict
0, 1 and 1, then the label is 3

Using log2K classifiers

• Learning:
– Represent each label by a bit string (i.e., its code)
– Train one binary classifier for each bit

• Prediction:
– Use the predictions from all the classifiers to create a log2K bit

string that uniquely decides the output

• What could go wrong here?
– Even if one of the classifiers makes a mistake, final prediction is

wrong!

31

label# Code

0 0 0 0

1 0 0 1

2 0 1 0

3 0 1 1

4 1 0 0

5 1 0 1

6 1 1 0

7 1 1 1

8 classes, code-length = 3

Using log2K classifiers

• Learning:
– Represent each label by a bit string (i.e., its code)
– Train one binary classifier for each bit

• Prediction:
– Use the predictions from all the classifiers to create a log2K bit

string that uniquely decides the output

• What could go wrong here?
– Even if one of the classifiers makes a mistake, final prediction is

wrong!

32

label# Code

0 0 0 0

1 0 0 1

2 0 1 0

3 0 1 1

4 1 0 0

5 1 0 1

6 1 1 0

7 1 1 1

8 classes, code-length = 3

Error correcting output coding

Answer: Use redundancy
• Assign a binary string with each label

– Could be random
– Length of the code word L >= log2K is a parameter

• Train one binary classifier for each bit
– Effectively, split the data into random dichotomies
– We need only log2K bits

• Additional bits act as an error correcting code

33

8 classes, code-length = 5

Code

0 0 0 0 0 0

1 0 0 1 1 0

2 0 1 0 1 1

3 0 1 1 0 1

4 1 0 0 1 1

5 1 0 1 0 0

6 1 1 0 0 0

7 1 1 1 1 1

How to predict?

• Prediction
– Run all L binary classifiers on the example
– Gives us a predicted bit string of length L
– Output = label whose code word is “closest” to

the prediction
– Closest defined using Hamming distance

• Longer code length is better, better error-correction

• Example
– Suppose the binary classifiers here predict 11010
– The closest label to this is 6, with code word 11000

34

8 classes, code-length = 5

Code

0 0 0 0 0 0

1 0 0 1 1 0

2 0 1 0 1 1

3 0 1 1 0 1

4 1 0 0 1 1

5 1 0 1 0 0

6 1 1 0 0 0

7 1 1 1 1 1

How to predict?

• Prediction
– Run all L binary classifiers on the example
– Gives us a predicted bit string of length L
– Output = label whose code word is “closest” to

the prediction
– Closest defined using Hamming distance

• Longer code length is better, better error-correction

• Example
– Suppose the binary classifiers here predict 11010
– The closest label to this is 6, with code word 11000

35

8 classes, code-length = 5

Code

0 0 0 0 0 0

1 0 0 1 1 0

2 0 1 0 1 1

3 0 1 1 0 1

4 1 0 0 1 1

5 1 0 1 0 0

6 1 1 0 0 0

7 1 1 1 1 1

One-vs-all is a special case
of this scheme. How?

Error correcting codes: Discussion

• Assumes that columns are independent
– Otherwise, ineffective encoding

• Strong theoretical results that depend on code length
– If minimal Hamming distance between two rows is 𝑑, then the

prediction can correct up to #$%
&

errors in the binary predictions

• Code assignment could be random, or designed for the
dataset or task

• One-vs-all and all-vs-all are special cases
– All-vs-all needs a ternary code (not binary)

36

Error correcting codes: Discussion

• Assumes that columns are independent
– Otherwise, ineffective encoding

• Strong theoretical results that depend on code length
– If minimal Hamming distance between two rows is 𝑑, then the

prediction can correct up to #$%
&

errors in the binary predictions

• Code assignment could be random, or designed for the
dataset or task

• One-vs-all and all-vs-all are special cases
– All-vs-all needs a ternary code (not binary)

37

Exercise: Convince
yourself that this is correct

Decomposition methods: Summary

• General idea
– Decompose the multiclass problem into many binary problems
– We know how to train binary classifiers
– Prediction depends on the decomposition

• Constructs the multiclass label from the output of the binary classifiers

• Learning optimizes local correctness
– Each binary classifier does not need to be globally correct

• That is, the classifiers do not have to agree with each other
– The learning algorithm is not aware of the prediction procedure!

• Poor decomposition gives poor performance
– Difficult local problems, can be “unnatural”

• Eg. For ECOC, why should the binary problems be separable?

38

Where are we?

• Introduction

• Combining binary classifiers
– One-vs-all
– All-vs-all
– Error correcting codes

• Training a single classifier
– Multiclass SVM
– Constraint classification
– Multiclass logistic regression

39

Motivation

• Decomposition methods
– Do not account for how the final predictor will be used
– Do not optimize any global measure of correctness

• Goal: To train a multiclass classifier that is “global”

40

Recall: Margin for binary classifiers

The margin of a hyperplane for a dataset: the distance
between the hyperplane and the data point nearest to it

41

+
+

+
+

+ ++
+

-
- -
-

-
- -
- -
-

-
-
-
- -
-

-
-

Margin with respect to this hyperplane

Multiclass margin

Defined as the score difference between the highest
scoring label and the second one

42

Labels

Score for
a label

Blue
Red
Green
Black

= wlabel
Tx

Multiclass margin

Defined as the score difference between the highest
scoring label and the second one

43

Labels

Score for
a label

Blue
Red
Green
Black

= wlabel
Tx

Multiclass Margin

Multiclass SVM (Intuition)

• Recall: Binary SVM
– Maximize margin
– Equivalently,

Minimize norm of weights such that the closest points to the hyperplane
have a score ≥ 1

• Multiclass SVM
– Each label has a different weight vector (like one-vs-all)
– Maximize multiclass margin
– Equivalently,

Minimize total norm of the weights such that the true label is scored at
least 1 more than the second best one

44

Multiclass SVM in the separable case

45

Recall hard binary SVM

𝑠𝑐𝑜𝑟𝑒 𝑦" – 𝑠𝑐𝑜𝑟𝑒 𝑘 ≥ 1

𝑅𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑧𝑒𝑟 𝐰#, ⋯ ,𝒘$

Multiclass SVM in the separable case

46

Recall hard binary SVM

𝑅𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑧𝑒𝑟 𝐰#, ⋯ ,𝒘$

Multiclass SVM in the separable case

47

Recall hard binary SVM

Multiclass SVM in the separable case

48

Recall hard binary SVM

The score for the true label is higher
than the score for any other label by 1

Multiclass SVM in the separable case

49

Recall hard binary SVM

The score for the true label is higher
than the score for any other label by 1

Size of the weights.
Effectively, regularizer

Multiclass SVM in the separable case

50

Recall hard binary SVM

The score for the true label is higher
than the score for any other label by 1

Size of the weights.
Effectively, regularizer

Problems with this?

Multiclass SVM in the separable case

51

Recall hard binary SVM

The score for the true label is higher
than the score for any other label by 1

Size of the weights.
Effectively, regularizer

Problems with this?

What if there is no set of weights that achieves this separation?
That is, what if the data is not linearly separable?

Multiclass SVM: General case

52

Size of the weights.
Effectively, regularizer

The score for the true label is higher
than the score for any other label by
1 − 𝜉"

Slack variables. Not all
examples need to
satisfy the margin

constraint.

Multiclass SVM: General case

53

Size of the weights.
Effectively, regularizer

The score for the true label is higher
than the score for any other label by
1 − 𝜉"

Slack variables. Not all
examples need to
satisfy the margin

constraint.

Total slack. Don’t allow
too many examples to

violate the margin
constraint

Multiclass SVM: General case

54

Size of the weights.
Effectively, regularizer

The score for the true label is higher
than the score for any other label by
1 − 𝜉"

Slack variables. Not all
examples need to
satisfy the margin

constraint.

Total slack. Don’t allow
too many examples to

violate the margin
constraint

Slack variables can
only be positive

Multiclass SVM: General case

55

Size of the weights.
Effectively, regularizer

The score for the true label is higher
than the score for any other label by
1 − 𝜉"

Slack variables. Not all
examples need to
satisfy the margin

constraint.

Total slack. Don’t allow
too many examples to

violate the margin
constraint

Slack variables can
only be positive

Multiclass SVM: General case

56

The score for the true label is higher
than the score for any other label by
1 − 𝜉"

Size of the weights.
Effectively, regularizer

Slack variables. Not all
examples need to
satisfy the margin

constraint.

Total slack. Don’t allow
too many examples to

violate the margin
constraint

Slack variables can
only be positive

Multiclass SVM: General case

57

Solving

Is equivalent to solving

min
𝐰!,𝐰",⋯,𝐰#

1
2
(
$

𝐰$%𝐰$ + 𝐶 (
(𝐱$,𝐲$)∈+

max 0,max
,-𝐲$

𝐰,%𝐱$ − 𝐰𝐲$
% 𝐱$ + 1

Why?

Multiclass SVM: General case

58

min
𝐰!,𝐰",⋯,𝐰#

1
2
(
$

𝐰$%𝐰$ + 𝐶 (
(𝐱$,𝐲$)∈+

max 0,max
,-𝐲$

𝐰,%𝐱$ − 𝐰𝐲$
% 𝐱$ + 1

Size of the weights.
Effectively, regularizer

Multiclass SVM: General case

59

min
𝐰!,𝐰",⋯,𝐰#

1
2
(
$

𝐰$%𝐰$ + 𝐶 (
(𝐱$,𝐲$)∈+

max 0,max
,-𝐲$

𝐰,%𝐱$ − 𝐰𝐲$
% 𝐱$ + 1

Size of the weights.
Effectively, regularizer The multiclass hinge loss

Multiclass SVM: General case

60

min
𝐰!,𝐰",⋯,𝐰#

1
2
(
$

𝐰$%𝐰$ + 𝐶 (
(𝐱$,𝐲$)∈+

max 0,max
,-𝐲$

𝐰,%𝐱$ − 𝐰𝐲$
% 𝐱$ + 1

Size of the weights.
Effectively, regularizer The multiclass hinge loss

The tradeoff
hyperparameter

Multiclass SVM

• Generalizes binary SVM algorithm
– If we have only two classes, this reduces to the binary (up

to scale)

• Comes with similar generalization guarantees as the
binary SVM

• Can be trained using different optimization methods
– Stochastic sub-gradient descent can be generalized

• Try as exercise

61

Multiclass SVM: Summary

• Training:
– Optimize the SVM objective

• Prediction:
– Winner takes all

argmaxi wi
Tx

• With K labels and inputs in ℜ', we have nK weights in all
– Same as one-vs-all

– But comes with guarantees!

62
Questions?

Where are we?

• Introduction

• Combining binary classifiers
– One-vs-all
– All-vs-all
– Error correcting codes

• Training a single classifier
– Multiclass SVM
– Constraint classification
– Multiclass logistic regression

63

Let us examine one-vs-all again

• Training:
– Create K binary classifiers w1, w2, …, wK

– wi separates class i from all others

• Prediction: argmaxi wi
Tx

• Observations:
1. At training time, we require wi

Tx to be positive for examples of
class i.

2. Really, all we need is for wi
Tx to be more than all others

The requirement of being positive is more strict

64

Rewrite inputs and weight vector
• Stack all weight vectors into an

nK-dimensional vector

• Define a feature vector for label i being associated to input x:

Linear Separability with multiple classes

65

x in the ith block, zeros
everywhere else

For examples with label i, we want 𝐰𝑖
𝑇𝐱 > 𝐰𝑗

𝑇𝐱 for all j

Rewrite inputs and weight vector
• Stack all weight vectors into an

nK-dimensional vector

• Define a feature vector for label i being associated to input x:

Linear Separability with multiple classes

66

x in the ith block, zeros
everywhere else

This is called the
Kesler construction

For examples with label i, we want 𝐰𝑖
𝑇𝐱 > 𝐰𝑗

𝑇𝐱 for all j

Linear Separability with multiple classes

Equivalent requirement:

67

x in the ith block, zeros
everywhere else

Or:

For examples with label i, we want 𝐰𝑖
𝑇𝐱 > 𝐰𝑗

𝑇𝐱 for all j

Linear Separability with multiple classes

68

ith
block

Or equivalently:
For examples with label i, we want 𝐰𝑖

𝑇𝐱 > 𝐰𝑗
𝑇𝐱 for all j

Linear Separability with multiple classes

69

ith
block

For every example (x, i) in dataset, all other labels j

Positive examples Negative examples

w

That is, the following binary task in nK dimensions that
should be linearly separable

Or equivalently:
For examples with label i, we want 𝐰𝑖

𝑇𝐱 > 𝐰𝑗
𝑇𝐱 for all j

Constraint Classification

• Training:
– Given a data set {(x, y)}, create a binary classification task

• Positive examples: 𝜙 𝑥, 𝑦 − 𝜙 𝑥, 𝑦.

• Negative examples: 𝜙 𝑥, 𝑦. − 𝜙 𝑥, 𝑦
for every example, for every 𝑦 ≠ 𝑦.

– Use your favorite algorithm to train a binary classifier

• Prediction: Given a nK dimensional weight vector w
and a new example x

argmaxG𝐰H𝜙 𝑥, 𝑦

70

Constraint Classification

• Training:
– Given a data set {(x, y)}, create a binary classification task

• Positive examples: 𝜙 𝑥, 𝑦 − 𝜙 𝑥, 𝑦.

• Negative examples: 𝜙 𝑥, 𝑦. − 𝜙 𝑥, 𝑦
for every example, for every 𝑦 ≠ 𝑦.

– Use your favorite algorithm to train a binary classifier

• Prediction: Given a nK dimensional weight vector w
and a new example x

argmaxG𝐰H𝜙 𝑥, 𝑦

71

Constraint Classification

• Training:
– Given a data set {(x, y)}, create a binary classification task

• Positive examples: 𝜙 𝑥, 𝑦 − 𝜙 𝑥, 𝑦.

• Negative examples: 𝜙 𝑥, 𝑦. − 𝜙 𝑥, 𝑦
for every example, for every 𝑦 ≠ 𝑦.

– Use your favorite algorithm to train a binary classifier

• Prediction: Given a nK dimensional weight vector w
and a new example x

argmaxG𝐰H𝜙 𝑥, 𝑦

72

Exercise: What do the
perceptron update rule look
like in terms of the 𝜙’s?

Interpret the update step

Constraint Classification

• Training:
– Given a data set {(x, y)}, create a binary classification task

• Positive examples: 𝜙 𝑥, 𝑦 − 𝜙 𝑥, 𝑦.

• Negative examples: 𝜙 𝑥, 𝑦. − 𝜙 𝑥, 𝑦
for every example, for every 𝑦 ≠ 𝑦.

– Use your favorite algorithm to train a binary classifier

• Prediction: Given a nK dimensional weight vector w
and a new example x

argmaxG𝐰H𝜙 𝑥, 𝑦

73

Note: The binary classification task only expresses preferences over
label assignments

This approach extends to training a ranker, can use partial
preferences too, more on this later…

A second look at the multiclass margin

74

Defined as the score difference between the highest
scoring label and the second one

Labels

Score for
a label

Blue
Red
Green
Black

Multiclass Margin

A second look at the multiclass margin

75

Defined as the score difference between the highest
scoring label and the second one

Labels

Score for
a label

Blue
Red
Green
Black

Multiclass Margin
In terms of Kesler
construction

Here y is the label that
has the highest score

Where are we?

• Introduction

• Combining binary classifiers
– One-vs-all
– All-vs-all
– Error correcting codes

• Training a single classifier
– Multiclass SVM
– Constraint classification
– Multiclass logistic regression

76

Multiclass logistic regression

Known by many other names:
– Polytomous logistic regression
– Multinomial logistic regression
– Softmax logistic regression
– Log-linear model for logistic regression

77

Multiclass logistic regression

General setting (same as before)
– Inputs: 𝐱
– Output: 𝐲 ∈ 1, 2,⋯ ,𝐾
– Feature representation: 𝜙 𝐱, 𝐲

Define probability of an input 𝐱 taking a label 𝐲 as

𝑃 𝐲 𝐱,𝐰 =
exp(𝐰6𝜙 𝐱, 𝐲)

∑𝐲! exp 𝐰6𝜙 𝐱, 𝐲7

78

Kesler construction

Multiclass logistic regression

General setting (same as before)
– Inputs: 𝐱
– Output: 𝐲 ∈ 1, 2,⋯ ,𝐾
– Feature representation: 𝜙 𝐱, 𝐲

Define probability of an input 𝐱 taking a label 𝐲 = 𝑖 as

𝑃 𝐲 = 𝑖 𝐱,𝐰 =
exp(𝐰6𝜙 𝐱, 𝑖)

∑89:; exp 𝐰6𝜙 𝐱, 𝑗

79

Multiclass logistic regression

Define probability of an input 𝐱 taking a label 𝐲 as

𝑃 𝐲 = 𝑖 𝐱,𝐰 =
exp(𝐰6𝜙 𝐱, 𝑖)

∑89:; exp 𝐰6𝜙 𝐱, 𝑗

80

Interpretation: Score each label, and then
convert to a well-formed probability distribution by exponentiating + normalizing

Multiclass logistic regression

Define probability of an input 𝐱 taking a label 𝐲 as

𝑃 𝐲 = 𝑖 𝐱,𝐰 =
exp(𝐰6𝜙 𝐱, 𝑖)

∑89:; exp 𝐰6𝜙 𝐱, 𝑗

81

Interpretation: Score each label, and then
convert to a well-formed probability distribution by exponentiating + normalizing

Multiclass logistic regression

Define probability of an input 𝐱 taking a label 𝐲 as

𝑃 𝐲 = 𝑖 𝐱,𝐰 =
exp(𝐰6𝜙 𝐱, 𝑖)

∑89:; exp 𝐰6𝜙 𝐱, 𝑗

This expression uses the softmax function:

softmax 𝑧:, 𝑧<, ⋯ =
exp 𝑧:
∑8 exp 𝑧8

,
exp 𝑧<
∑8 exp 𝑧8

, ⋯

82

Multiclass logistic regression

Define probability of an input 𝐱 taking a label 𝐲 as

𝑃 𝐲 = 𝑖 𝐱,𝐰 =
exp(𝐰6𝜙 𝐱, 𝑖)

∑89:; exp 𝐰6𝜙 𝐱, 𝑗

When we take log of the probability, we have a linear term and a
term that doesn’t depend on the label

log 𝑃 𝑦 𝐱,𝐰 = 𝑤J𝜙 𝐱, 𝑦 − log 𝑍 𝐱

83

Such models are also called log-linear models

Training for multiclass logistic regression

Given a data set D = { 𝐱= , 𝐲= }
– Apply the maximum likelihood principle

max
𝐰

A
K

log 𝑃(𝐲K ∣ 𝐱K, 𝐰)

– Maybe with a regularizer

max
𝐰

−
𝜆
2
𝐰J𝐰+A

K

log 𝑃(𝐲K ∣ 𝐱K, 𝐰)

84

𝑃 𝐲 = 𝑖 𝐱,𝐰 =
exp(𝐰%𝜙 𝐱, 𝑖)

∑& exp 𝐰%𝜙 𝐱, 𝑗

Training for multiclass logistic regression

Given a data set D = { 𝐱= , 𝐲= }
– Apply the maximum likelihood principle

max
𝐰

A
K

log 𝑃(𝐲K ∣ 𝐱K, 𝐰)

– Maybe with a regularizer

max
𝐰

−
𝜆
2
𝐰J𝐰+A

K

log 𝑃(𝐲K ∣ 𝐱K, 𝐰)

85

The cross-entropy loss

𝑃 𝐲 = 𝑖 𝐱,𝐰 =
exp(𝐰%𝜙 𝐱, 𝑖)

∑& exp 𝐰%𝜙 𝐱, 𝑗

Consider all distributions P such that the empirical counts of the features
matches the expected counts

(
$

𝜙$ 𝑥$, 𝑦$ =(
$

(
/

𝑃 𝑦 𝑥$, 𝑤 𝜙0(𝑥$, 𝑦)

Recall: Entropy of a distribution 𝑃(𝑦 ∣ 𝑥) is

𝐻 𝑃 = −(
$

𝑃 𝑦$ 𝑥$ log 𝑃 𝑦$ 𝑥$

– A measure of smoothness
– Without any other information, maximized by the uniform distribution

Maximum entropy learning
argmaxp H(p) such that it satisfies this constraint

Another training idea: MaxEnt

86

For every feature 𝑗

(Minor detour)

Consider all distributions P such that the empirical counts of the features
matches the expected counts

(
$

𝜙$ 𝑥$, 𝑦$ =(
$

(
/

𝑃 𝑦 𝑥$, 𝑤 𝜙0(𝑥$, 𝑦)

Recall: Entropy of a distribution 𝑃(𝑦 ∣ 𝑥) is

𝐻 𝑃 = −(
$

𝑃 𝑦$ 𝑥$ log 𝑃 𝑦$ 𝑥$

– A measure of smoothness
– Without any other information, maximized by the uniform distribution

Maximum entropy learning
argmaxp H(p) such that it satisfies this constraint

Another training idea: MaxEnt

87

There can be many conditional probability
distributions that satisfy this constraint.

What is a trivial one that does so?

Consider all distributions P such that the empirical counts of the features
matches the expected counts

(
$

𝜙$ 𝑥$, 𝑦$ =(
$

(
/

𝑃 𝑦 𝑥$, 𝑤 𝜙0(𝑥$, 𝑦)

Recall: Entropy of a distribution 𝑃(𝑦 ∣ 𝑥) is

𝐻 𝑃 = −(
$

𝑃 𝑦$ 𝑥$ log 𝑃 𝑦$ 𝑥$

– A measure of smoothness
– Without any other information, maximized by the uniform distribution

Maximum entropy learning
argmaxp H(p) such that it satisfies this constraint

Another training idea: MaxEnt

88

There can be many conditional probability
distributions that satisfy this constraint.

We need a principled way to choose between such distributions.

Consider all distributions P such that the empirical counts of the features
matches the expected counts

(
$

𝜙$ 𝑥$, 𝑦$ =(
$

(
/

𝑃 𝑦 𝑥$, 𝑤 𝜙0(𝑥$, 𝑦)

Recall: Entropy of a distribution 𝑃(𝑦 ∣ 𝑥) is

𝐻 𝑃 = −(
$

𝑃 𝑦$ 𝑥$ log 𝑃 𝑦$ 𝑥$

– A measure of smoothness
– Without any other information, maximized by the uniform distribution

Maximum entropy learning
argmaxp H(p) such that it satisfies this constraint

Another training idea: MaxEnt

89

There can be many conditional probability
distributions that satisfy this constraint.

We need a principled way to choose between such distributions:

Find a distribution that satisfies the constraint,
and does not make any other commitments otherwise.

That is, given the constraint, it is maximally uncertain otherwise.

Consider all distributions P such that the empirical counts of the features
matches the expected counts

(
$

𝜙$ 𝑥$, 𝑦$ =(
$

(
/

𝑃 𝑦 𝑥$, 𝑤 𝜙0(𝑥$, 𝑦)

Recall: Entropy of a distribution 𝑃(𝑦 ∣ 𝑥) is

𝐻 𝑃 = −(
$

𝑃 𝑦$ 𝑥$ log 𝑃 𝑦$ 𝑥$

– A measure of smoothness
– Without any other information, maximized by the uniform distribution

Maximum entropy learning
argmaxp H(p) such that it satisfies this constraint

Another training idea: MaxEnt

90

Consider all distributions P such that the empirical counts of the features
matches the expected counts

(
$

𝜙$ 𝑥$, 𝑦$ =(
$

(
/

𝑃 𝑦 𝑥$, 𝑤 𝜙0(𝑥$, 𝑦)

Recall: Entropy of a distribution 𝑃(𝑦 ∣ 𝑥) is

𝐻 𝑃 = −(
$

𝑃 𝑦$ 𝑥$ log 𝑃 𝑦$ 𝑥$

– A measure of smoothness
– Without any other information, maximized by the uniform distribution

Maximum entropy learning
argmaxp H(p) such that it satisfies this constraint

Another training idea: MaxEnt

91

Maximum Entropy distribution = log-linear

Theorem

The maximum entropy distribution among those
satisfying the constraint has an exponential form

Among exponential distributions, the maximum
entropy distribution is the most likely distribution

92
Questions?

Discussion

• The number of weights for multiclass SVM, constraint
classification, multiclass logistic regression are still same as
One-vs-all, much less than all-vs-all

• All account for pairwise label preferences
– Multiclass SVM via the definition of the learning objective

𝐰/$
% 𝐱 − 𝐰,%𝐱 ≥ 1 − 𝜉$

– Constraint classification by constructing a binary classification problem
– Multiclass logistic regression because the probability is normalized

(i.e. softmax)

• Important ideas that are applicable when we move to
arbitrary structures

93
Questions?

Training multiclass classifiers: Wrap-up

• Label belongs to a set that has more than two elements

• Methods
– Decomposition into a collection of binary (local) decisions

• One-vs-all
• All-vs-all
• Error correcting codes

– Training a single (global) classifier
• Multiclass SVM
• Constraint classification
• Multiclass logistic regression

• Exercise: Which of these will work for this case?

94
Questions?

Next steps…

• Build up to structured prediction
– Multiclass is really a simple structure

• Different aspects of structured prediction
– Deciding the structure, training, inference

• Sequence models

95

Extra: Training a log-linear model

96

Training a log-linear model

• Gradient based methods to minimize

𝐿 𝐰 = −A
K

log 𝑃(𝐲K ∣ 𝐱K, 𝐰)

• Usual stochastic gradient descent
– Initialize 𝒘 ← 𝟎
– Iterate through examples for multiple epochs

• For each example 𝒙$ 𝒚$ take gradient step for the loss at that
example
– Update 𝒘 ← 𝒘 − r(𝛻𝐿(𝒘, 𝒙" , 𝒚")

– Return 𝒘

97

Training a log-linear model

• Gradient based methods to minimize

𝐿 𝐰 = −A
K

log 𝑃(𝐲K ∣ 𝐱K, 𝐰)

• Usual stochastic gradient descent
– Initialize 𝒘 ← 𝟎
– Iterate through examples for multiple epochs

• For each example 𝒙$ 𝒚$ take gradient step for the loss at that
example
– Update 𝒘 ← 𝒘 − r(𝛻𝐿(𝒘, 𝒙" , 𝒚")

– Return 𝒘

98
Other methods exist

For example the L-BFGS algorithm

Training a log-linear model

• Gradient based methods to minimize

𝐿 𝐰 = −A
K

log 𝑃(𝐲K ∣ 𝐱K, 𝐰)

• Usual stochastic gradient descent
– Initialize 𝒘 ← 𝟎
– Iterate through examples for multiple epochs

• For each example 𝒙$ 𝒚$ take gradient step for the loss at that
example
– Update 𝒘 ← 𝒘 − r(𝛻𝐿(𝒘, 𝒙" , 𝒚")

– Return 𝒘

99

A vector, whose jth element is the
derivative of L with wj.
Has a neat interpretation

Gradients of the loss function

Let us compute this derivative of L with respect to w

𝑃 𝐲 𝐱,𝐰 =
exp(𝐰%𝜙 𝐱, 𝐲)

∑𝐲' exp 𝐰%𝜙 𝐱, 𝐲.

𝐿 𝐰, 𝐱, 𝐲 = −log𝑃(𝐲 ∣ 𝐱,𝐰)

= −𝐰%𝜙 𝐱, 𝐲 + log(
/'
exp 𝐰%𝜙 𝐱, 𝐲.

The derivative of the loss with respect to the weights is:
𝜕𝐿
𝜕𝐰 = −𝜙 𝐱, 𝐲 +

∑/' exp 𝐰%𝜙 𝐱, 𝐲. 𝜙 𝐱, 𝐲.

∑/' exp 𝐰%𝜙 𝐱, 𝐲.

= −𝜙 𝐱, 𝐲 +(
𝐲'
𝑃 𝐲. 𝐱,𝐰 𝜙 𝐱, 𝐲.

100

Gradients of the loss function

Let us compute this derivative of L with respect to w

𝑃 𝐲 𝐱,𝐰 =
exp(𝐰%𝜙 𝐱, 𝐲)

∑𝐲' exp 𝐰%𝜙 𝐱, 𝐲.

𝐿 𝐰, 𝐱, 𝐲 = −log𝑃(𝐲 ∣ 𝐱,𝐰)

= −𝐰%𝜙 𝐱, 𝐲 + log(
/'
exp 𝐰%𝜙 𝐱, 𝐲.

The derivative of the loss with respect to the weights is:
𝜕𝐿
𝜕𝐰 = −𝜙 𝐱, 𝐲 +

∑/' exp 𝐰%𝜙 𝐱, 𝐲. 𝜙 𝐱, 𝐲.

∑/' exp 𝐰%𝜙 𝐱, 𝐲.

= −𝜙 𝐱, 𝐲 +(
𝐲'
𝑃 𝐲. 𝐱,𝐰 𝜙 𝐱, 𝐲.

101

Gradients of the loss function

Let us compute this derivative of L with respect to w

𝑃 𝐲 𝐱,𝐰 =
exp(𝐰%𝜙 𝐱, 𝐲)

∑𝐲' exp 𝐰%𝜙 𝐱, 𝐲.

𝐿 𝐰, 𝐱, 𝐲 = −log𝑃(𝐲 ∣ 𝐱,𝐰)

= −𝐰%𝜙 𝐱, 𝐲 + log(
/'
exp 𝐰%𝜙 𝐱, 𝐲.

The derivative of the loss with respect to the weights is:
𝜕𝐿
𝜕𝐰 = −𝜙 𝐱, 𝐲 +

∑/' exp 𝐰%𝜙 𝐱, 𝐲. 𝜙 𝐱, 𝐲.

∑/' exp 𝐰%𝜙 𝐱, 𝐲.

= −𝜙 𝐱, 𝐲 +(
𝐲'
𝑃 𝐲. 𝐱,𝐰 𝜙 𝐱, 𝐲.

102

Gradients of the loss function

Let us compute this derivative of L with respect to w

𝑃 𝐲 𝐱,𝐰 =
exp(𝐰%𝜙 𝐱, 𝐲)

∑𝐲' exp 𝐰%𝜙 𝐱, 𝐲.

𝐿 𝐰, 𝐱, 𝐲 = −log𝑃(𝐲 ∣ 𝐱,𝐰)

= −𝐰%𝜙 𝐱, 𝐲 + log(
/'
exp 𝐰%𝜙 𝐱, 𝐲.

The derivative of the loss with respect to the weights is:
𝜕𝐿
𝜕𝐰 = −𝜙 𝐱, 𝐲 +

∑/' exp 𝐰%𝜙 𝐱, 𝐲. 𝜙 𝐱, 𝐲.

∑/' exp 𝐰%𝜙 𝐱, 𝐲.

= −𝜙 𝐱, 𝐲 +(
𝐲'
𝑃 𝐲. 𝐱,𝐰 𝜙 𝐱, 𝐲.

103

Gradients of the loss function

– Initialize 𝒘 ← 𝟎
– Iterate through examples for multiple epochs

• For each example 𝒙$ 𝒚$ take gradient step for the loss at that
example
– Update 𝒘 ← 𝒘 − r(𝛻𝐿(𝒘, 𝒙" , 𝒚")

– Return 𝒘

104

A vector, whose jth element is the
derivative of L with wj.
Has a neat interpretation

𝜕
𝜕𝐰𝐿 𝒘, 𝒙" , 𝒚" = 𝜙 𝒙" , 𝒚𝒊 −S

𝒚!
𝑃 𝒚+ 𝒙" , 𝐰 𝜙(𝒙𝒊, 𝒚+)

𝑃 𝐲 𝐱,𝐰 =
exp(𝐰!𝜙 𝐱, 𝐲)

∑𝐲! exp 𝐰!𝜙 𝐱, 𝐲#

𝐿 𝐰, 𝐱, 𝐲 = −log𝑃(𝐲 ∣ 𝐱,𝐰)

Gradients of the loss function

– Initialize 𝒘 ← 𝟎
– Iterate through examples for multiple epochs

• For each example 𝒙$ 𝒚$ take gradient step for the loss at that
example
– Update 𝒘 ← 𝒘 − r(𝛻𝐿(𝒘, 𝒙" , 𝒚")

– Return 𝒘

105

A vector, whose jth element is the
derivative of L with wj.
Has a neat interpretation

𝜕
𝜕𝐰𝐿 𝒘, 𝒙" , 𝒚" = 𝜙 𝒙" , 𝒚𝒊 −S

𝒚!
𝑃 𝒚+ 𝒙" , 𝐰 𝜙(𝒙𝒊, 𝒚+)

Features for the true output

𝑃 𝐲 𝐱,𝐰 =
exp(𝐰!𝜙 𝐱, 𝐲)

∑𝐲! exp 𝐰!𝜙 𝐱, 𝐲#

𝐿 𝐰, 𝐱, 𝐲 = −log𝑃(𝐲 ∣ 𝐱,𝐰)

Gradients of the loss function

– Initialize 𝒘 ← 𝟎
– Iterate through examples for multiple epochs

• For each example 𝒙$ 𝒚$ take gradient step for the loss at that
example
– Update 𝒘 ← 𝒘 − r(𝛻𝐿(𝒘, 𝒙" , 𝒚")

– Return 𝒘

106

A vector, whose jth element is the
derivative of L with wj.
Has a neat interpretation

𝜕
𝜕𝐰𝐿 𝒘, 𝒙" , 𝒚" = 𝜙 𝒙" , 𝒚𝒊 −S

𝒚!
𝑃 𝒚+ 𝒙" , 𝐰 𝜙(𝒙𝒊, 𝒚+)

The expected feature vector
according to the current modelFeatures for the true output

𝑃 𝐲 𝐱,𝐰 =
exp(𝐰!𝜙 𝐱, 𝐲)

∑𝐲! exp 𝐰!𝜙 𝐱, 𝐲#

𝐿 𝐰, 𝐱, 𝐲 = −log𝑃(𝐲 ∣ 𝐱,𝐰)

