
CS	6355:	Structured	Prediction

Neural	Networks

Based	on	slides	and	material	from	Geoffrey	Hinton,	Richard	Socher,	Dan	Roth,	Yoav Goldberg,	
Shai	Shalev-Shwartz and	Shai	Ben-David,	and	others

This	lecture

• What	is	a	neural	network?

• Training	neural	networks

• Practical	concerns

• Neural	networks	and	structures

1

This	lecture

• What	is	a	neural	network?
– The	hypothesis	class
– Structure,	expressiveness

• Training	neural	networks

• Practical	concerns

• Neural	networks	and	structures

2

We	have	seen	linear	threshold	units

3

features

dot	
product

threshold

Prediction
𝑠𝑔𝑛	(𝒘'𝒙 + 𝑏) = 𝑠𝑔𝑛(∑𝑤/𝑥/ + 𝑏)

Learning
various	algorithms	
perceptron,	SVM,	logistic	regression,…

in	general,	minimize	loss

But	where	do	these	input	features	come	from?

What	if	the	features	were	outputs	of	another	classifier?

Features	from	classifiers

4

Features	from	classifiers

5

Features	from	classifiers

6

Each	of	these	connections	have	their	own	weights	as	well

Features	from	classifiers

7

Features	from	classifiers

8

This	is	a	two	layer	feed	forward	neural	network

Features	from	classifiers

9

The	output	layer

The	hidden	layerThe	input	layer

This	is	a	two	layer	feed	forward	neural	network

Think	of	the	hidden	layer	as	learning	a	good	representation	of	the	inputs

Features	from	classifiers

10

The	dot	product	followed	by	the	
threshold	constitutes	a	neuron

Five	neurons	in	this	picture	(four	in	hidden	layer	and	one	output)

This	is	a	two	layer	feed	forward	neural	network

But	where	do	the	inputs	come	from?

11

What	if	the	inputs	were	the	outputs	of	a	classifier?
The	input	layer

We	can	make	a	three layer	network….	And	so	on.

Let	us	try	to	formalize	this

12

Neural	networks

• A	robust	approach	for	approximating	real-valued,	
discrete-valued	or	vector	valued	functions

• Among	the	most	effective	general	purpose supervised	
learning	methods	currently	known
– Especially	for	complex	and	hard	to	interpret	data	such	as	real-

world	sensory	data

• The	Backpropagation	algorithm	for	neural	networks	has	
been	shown	successful	in	many	practical	problems
– handwritten	character	recognition,	speech	recognition,		object	

recognition,	some	NLP	problems

13

Biological	neurons

14

The	first	drawing	of	a	brain	
cells	by	Santiago	Ramón	y	
Cajal in	1899

Neurons:	core	components	of	brain	and	the	
nervous	system	consisting	of

1. Dendrites	that	collect	information	from	
other	neurons

2. An	axon	that	generates	outgoing	spikes

Biological	neurons

15

The	first	drawing	of	a	brain	
cells	by	Santiago	Ramón	y	
Cajal in	1899

Neurons:	core	components	of	brain	and	the	
nervous	system	consisting	of

1. Dendrites	that	collect	information	from	
other	neurons

2. An	axon	that	generates	outgoing	spikes

Modern	artificial neurons	are	“inspired”	by	biological	neurons

But	there	are	many,	many	fundamental	differences	

Don’t	take	the	similarity	seriously	(as	also	claims	in	the	news	
about	the	“emergence”	of	intelligent	behavior)	

Artificial	neurons

Functions	that	very	loosely	mimic	a	biological	neuron

A	neuron	accepts	a	collection	of	inputs	(a	vector	x)	and	produces	
an	output	by:

– Applying	a	dot	product	with	weights	w and	adding	a	bias	b
– Applying	a	(possibly	non-linear)	transformation	called	an	activation

16

Dot	
product

Threshold	activation

Other	activations	are	possible

𝑜𝑢𝑡𝑝𝑢𝑡 = 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛(𝒘'𝒙 + 𝑏)

Activation	functions

Name	of	the	neuron Activation	function:	𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 𝑧
Linear	unit 𝑧
Threshold/sign unit sgn(𝑧)

Sigmoid	unit
1

1 + exp	(−𝑧)
Rectified	linear	unit	(ReLU) max	(0, 𝑧)
Tanh unit tanh	(𝑧)

17

𝑜𝑢𝑡𝑝𝑢𝑡 = 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛(𝒘'𝒙 + 𝑏)

Many	more	activation	functions	exist	(sinusoid,	sinc,	gaussian,	polynomial…)	

Also	called	transfer	functions

A	neural	network

A	function	that	converts	inputs	to	outputs	
defined	by	a	directed	acyclic	graph

– Nodes	organized	in	layers,	correspond	to	
neurons

– Edges	carry	output	of	one	neuron	to	
another,	associated	with	weights

• To	define	a	neural	network,	we	need	to	
specify:
– The	structure	of	the	graph

• How	many	nodes,	the	connectivity
– The	activation	function	on	each	node
– The	edge	weights

18

A	neural	network

A	function	that	converts	inputs	to	outputs	
defined	by	a	directed	acyclic	graph

– Nodes	organized	in	layers,	correspond	to	
neurons

– Edges	carry	output	of	one	neuron	to	
another,	associated	with	weights

• To	define	a	neural	network,	we	need	to	
specify:
– The	structure	of	the	graph

• How	many	nodes,	the	connectivity
– The	activation	function	on	each	node
– The	edge	weights

19

Called	the	architecture
of	the	network
Typically	predefined,	
part	of	the	design	of	
the	classifier

Learned	from	data

Input

Hidden

Output

wIJ
K

wIJ
L

A	neural	network

A	function	that	converts	inputs	to	outputs	
defined	by	a	directed	acyclic	graph

– Nodes	organized	in	layers,	correspond	to	
neurons

– Edges	carry	output	of	one	neuron	to	
another,	associated	with	weights

• To	define	a	neural	network,	we	need	to	
specify:
– The	structure	of	the	graph

• How	many	nodes,	the	connectivity
– The	activation	function	on	each	node
– The	edge	weights

20

Input

Hidden

Output

wIJ
K

wIJ
L

A	neural	network

A	function	that	converts	inputs	to	outputs	
defined	by	a	directed	acyclic	graph

– Nodes	organized	in	layers,	correspond	to	
neurons

– Edges	carry	output	of	one	neuron	to	
another,	associated	with	weights

• To	define	a	neural	network,	we	need	to	
specify:
– The	structure	of	the	graph

• How	many	nodes,	the	connectivity
– The	activation	function	on	each	node
– The	edge	weights

21

Called	the	architecture
of	the	network
Typically	predefined,	
part	of	the	design	of	
the	classifier

Learned	from	data

Input

Hidden

Output

wIJ
K

wIJ
L

A	brief	history	of	neural	networks

• 1943:	McCullough	and	Pitts	showed	how	linear	threshold	units	can	
compute	logical	functions

• 1949:	Hebb	suggested	a	learning	rule	that	has	some	physiological	
plausibility

• 1950s:	Rosenblatt,	the	Peceptron algorithm	for	a	single	threshold	neuron

• 1969:	Minsky	and	Papert studied	the	neuron	from	a	geometrical	
perspective

• 1980s:	Convolutional	neural	networks	(Fukushima,	LeCun),	the	
backpropagation	algorithm	(various)

• 2003-today:	More	compute,	more	data,	deeper	networks

22
See	also:	http://people.idsia.ch/~juergen/deep-learning-overview.html

What	functions	do	neural	networks	
express?

23

A	single	neuron	with	threshold	activation	

24

Prediction	=	sgn(b	+w1 x1 +	w2x2)

+
+

+
+

+ ++
+

-
- -
-

-
- -
- -
-

-
-
-
- -
-

-
-

b	+w1 x1 +	w2x2=0

Two	layers,	with	threshold	activations

25

In	general,	
convex	
polygons	

Figure	from	Shai	Shalev-Shwartz and	Shai	Ben-David,	2014

Three	layers	with	threshold	activations

26

In	general,	unions	
of	convex	polygons

Figure	from	Shai	Shalev-Shwartz and	Shai	Ben-David,	2014

Neural	networks	are	universal	function	approximators

• Any	continuous	function	can	be	approximated	to	arbitrary	accuracy	using	
one	hidden	layer	of	sigmoid	units	[Cybenko 1989]

• Approximation	error	is	insensitive	to	the	choice	of	activation	functions	
[DasGupta et	al	1993]

• Two	layer	threshold networks	can	express	any	Boolean	function
– Exercise:	Prove	this

• VC	dimension	of	threshold	network	with	edges	E:	𝑉𝐶	 = 	𝑂(|𝐸|	log	|𝐸|)

• VC	dimension	of	sigmoid	networks	with	nodes	V	and	edges	E:
– Upper	bound:	Ο 𝑉 K 𝐸 K

– Lower	bound:	Ω 𝐸 K

27

Exercise:	Show	that	if	we	have	only	linear	units,	then	multiple	layers	does	not	
change	the	expressiveness

An	example	network

28

Bias	feature,	
always	1

Sigmoid	activations

Linear	activation

Naming	conventions	for	this	
example
• Inputs:	x
• Hidden:	z
• Output:	y

The	forward	pass

29

y = 𝑤WLX + 𝑤LLX 𝑧L + 𝑤KLX 𝑧Koutput

Given	an	input	x,	how	is	the	output	predicted

𝑧K = 𝜎(𝑤WKZ + 𝑤LKZ 𝑥L + 𝑤KKZ 𝑥K)

zL = 𝜎(𝑤WLZ + 𝑤LLZ 𝑥L + 𝑤KLZ 𝑥K)

Questions?

This	lecture

• What	is	a	neural	network?

• Training	neural	networks
– Backpropagation

• Practical	concerns

• Neural	Networks	and	Structures

30

Training	a	neural	network

• Given
– A	network	architecture	(layout	of	neurons,	their	connectivity	and	

activations)
– A	dataset	of	labeled	examples

• S	=	{(xi,	yi)}

• The	goal:	Learn	the	weights	of	the	neural	network

• Remember:	For	a	fixed	architecture,	a	neural	network	is	a	
function	parameterized	by	its	weights
– Prediction:	𝑦] 	= 	𝑁𝑁(𝒙,𝒘)

31

Back	to	our	running	example

32

output

Given	an	input	x,	how	is	the	output	predicted

y = 𝑤WLX + 𝑤LLX 𝑧L + 𝑤KLX 𝑧K

𝑧K = 𝜎(𝑤WKZ + 𝑤LKZ 𝑥L + 𝑤KKZ 𝑥K)

zL = 𝜎(𝑤WLZ + 𝑤LLZ 𝑥L + 𝑤KLZ 𝑥K)

Back	to	our	running	example

33

output

Given	an	input	x,	how	is	the	output	predicted

Suppose	the	true	label	for	this	example	is	a	number	𝑦∗

We	can	write	the	square	loss	for	this	example	as:

𝐿	 = 	
1
2 𝑦–	𝑦∗ K

y = 𝑤WLX + 𝑤LLX 𝑧L + 𝑤KLX 𝑧K

𝑧K = 𝜎(𝑤WKZ + 𝑤LKZ 𝑥L + 𝑤KKZ 𝑥K)

zL = 𝜎(𝑤WLZ + 𝑤LLZ 𝑥L + 𝑤KLZ 𝑥K)

Learning	as	loss	minimization

We	have	a	classifier	NN that	is	completely	defined	by	its	weights
Learn	the	weights	by	minimizing	a	loss	𝐿

34

Perhaps	with	a	regularizer
min
𝒘
	d𝐿(𝑁𝑁 𝑥/, 𝑤 , 𝑦/)
�

/

How	do	we	solve	the	
optimization	problem?

Stochastic	gradient	descent

Given	a	training	set	S	=	{(xi,	yi)},	x 2 <d

1. Initialize	parameters	w
2. For	epoch	=	1	…	T:

1. Shuffle	the	training	set
2. For	each	training	example	(xi,	yi)2 S:

• Treat	this	example	as	the	entire	dataset	
Compute	the	gradient	of	the	loss	𝛻𝐿(𝑁𝑁 𝒙/, 𝒘 , 𝑦/)

• Update:	𝒘 ← 𝒘− 𝛾i𝛻𝐿(𝑁𝑁 𝒙/, 𝒘 , 𝑦/))

3. Return	w

35

°t:	learning	rate,	many	
tweaks	possible

The	objective	is	not	convex.	
Initialization	can	be	important

min
𝒘
	d𝐿(𝑁𝑁 𝑥/, 𝑤 , 𝑦/)

�

/

Stochastic	gradient	descent

Given	a	training	set	S	=	{(xi,	yi)},	x 2 <d

1. Initialize	parameters	w
2. For	epoch	=	1	…	T:

1. Shuffle	the	training	set
2. For	each	training	example	(xi,	yi)2 S:

• Treat	this	example	as	the	entire	dataset	
Compute	the	gradient	of	the	loss	𝛻𝐿(𝑁𝑁 𝒙/, 𝒘 , 𝑦/)

• Update:	𝒘 ← 𝒘− 𝛾i𝛻𝐿(𝑁𝑁 𝒙/, 𝒘 , 𝑦/))

3. Return	w

36

°t:	learning	rate,	many	
tweaks	possible

The	objective	is	not	convex.	
Initialization	can	be	important

min
𝒘
	d𝐿(𝑁𝑁 𝑥/, 𝑤 , 𝑦/)

�

/

Have	we	solved	everything?

The	derivative	of	the	loss	function?

If	the	neural	network	is	a	differentiable	function,	we	can	
find	the	gradient

– Or	maybe	its	sub-gradient
– This	is	decided	by	the	activation	functions	and	the	loss	function

It	was	easy	for	SVMs	and	logistic	regression
– Only	one	layer

But	how	do	we	find	the	sub-gradient	of	a	more	complex	
function?

– Eg:	A	recent	paper	used	a	~150	layer	neural	network	for	image	
classification!	

37
We	need	an	efficient	algorithm:	Backpropagation

𝛻𝐿(𝑁𝑁 𝒙/, 𝒘 , 𝑦/)

The	derivative	of	the	loss	function?

If	the	neural	network	is	a	differentiable	function,	we	can	
find	the	gradient

– Or	maybe	its	sub-gradient
– This	is	decided	by	the	activation	functions	and	the	loss	function

It	was	easy	for	SVMs	and	logistic	regression
– Only	one	layer

But	how	do	we	find	the	sub-gradient	of	a	more	complex	
function?

– Eg:	A	recent	paper	used	a	~150	layer	neural	network	for	image	
classification!	

38
We	need	an	efficient	algorithm:	Backpropagation

𝛻𝐿(𝑁𝑁 𝒙/, 𝒘 , 𝑦/)

Checkpoint

39

Where	are	we

If	we	have	a	neural	network	(structure,	activations	and	
weights),	we	can	make	a	prediction	for	an	input

If	we	had	the	true	label	of	the	input,	then	we	can	define	
the	loss	for	that	example

If	we	can	take	the	derivative	of	the	loss	with	respect	to	
each	of	the	weights,	we	can	take	a	gradient	step	in	SGD

Questions?

Reminder:	Chain	rule	for	derivatives

– If	𝑧 is	a	function	of	𝑦	and	𝑦 is	a	function	of	𝑥
• Then	𝑧 is	a	function	of	𝑥,	as	well

– Question:		how	to	find	jk
jl

40Slide	courtesy	Richard	Socher

Reminder:	Chain	rule	for	derivatives

– If	𝑧 is	(a	function	of	𝑦L +	a	function	of	𝑦K),	and	the	𝑦/’s	are	
functions	of	𝑥
• Then	𝑧 is	a	function	of	𝑥,	as	well

– Question:		how	to	find	jk
jl

41Slide	courtesy	Richard	Socher

Reminder:	Chain	rule	for	derivatives

– If	𝑧 is	a	sum	of	functions	of	𝑦/’s,	and	the	𝑦/’s	are	functions	
of	𝑥
• Then	𝑧 is	a	function	of	𝑥,	as	well	

– Question:		how	to	find	jk
jl

42Slide	courtesy	Richard	Socher

Backpropagation

43

output

𝐿	 = 	
1
2 𝑦–	𝑦∗ K

y = 𝑤WLX + 𝑤LLX 𝑧L + 𝑤KLX 𝑧K

𝑧K = 𝜎(𝑤WKZ + 𝑤LKZ 𝑥L + 𝑤KKZ 𝑥K)

zL = 𝜎(𝑤WLZ + 𝑤LLZ 𝑥L + 𝑤KLZ 𝑥K)

Backpropagation

44

We	want	to	compute	
jm
jnop

q and	
jm
jnop

r

output

𝐿	 = 	
1
2 𝑦–	𝑦∗ K

y = 𝑤WLX + 𝑤LLX 𝑧L + 𝑤KLX 𝑧K

𝑧K = 𝜎(𝑤WKZ + 𝑤LKZ 𝑥L + 𝑤KKZ 𝑥K)

zL = 𝜎(𝑤WLZ + 𝑤LLZ 𝑥L + 𝑤KLZ 𝑥K)

Backpropagation

45

Applying	the	chain	rule	to	compute	the	gradient
(And	remembering	partial	computations	along	
the	way	to	speed	up	things)

We	want	to	compute	
jm
jnop

q and	
jm
jnop

r

output

𝐿	 = 	
1
2 𝑦–	𝑦∗ K

y = 𝑤WLX + 𝑤LLX 𝑧L + 𝑤KLX 𝑧K

𝑧K = 𝜎(𝑤WKZ + 𝑤LKZ 𝑥L + 𝑤KKZ 𝑥K)

zL = 𝜎(𝑤WLZ + 𝑤LLZ 𝑥L + 𝑤KLZ 𝑥K)

Output	layer

46

output

𝐿	 = 	
1
2 𝑦–	𝑦∗ K

y = 𝑤WLX + 𝑤LLX 𝑧L + 𝑤KLX 𝑧K

𝜕𝐿
𝜕𝑤WLX 		

= 	
𝜕𝐿
𝜕𝑦

𝜕𝑦
𝜕𝑤WLW

Backpropagation	example

Output	layer

47

output

𝐿	 = 	
1
2 𝑦–	𝑦∗ K

y = 𝑤WLX + 𝑤LLX 𝑧L + 𝑤KLX 𝑧K

𝜕𝐿
𝜕𝑤WLX 		

= 	
𝜕𝐿
𝜕𝑦

𝜕𝑦
𝜕𝑤WLX

𝜕𝐿
𝜕𝑦 = 𝑦	 − 𝑦∗

𝜕𝑦
𝜕𝑤WLX

= 1

Backpropagation	example

Output	layer

48

𝜕𝐿
𝜕𝑤LLX 		

= 	
𝜕𝐿
𝜕𝑦

𝜕𝑦
𝜕𝑤LLW

output

𝐿	 = 	
1
2 𝑦–	𝑦∗ K

y = 𝑤WLX + 𝑤LLX 𝑧L + 𝑤KLX 𝑧K

Backpropagation	example

Output	layer

49

𝜕𝐿
𝜕𝑤LLX 		

= 	
𝜕𝐿
𝜕𝑦

𝜕𝑦
𝜕𝑤LLW

𝜕𝐿
𝜕𝑦 = 𝑦	 − 𝑦∗

𝜕𝑦
𝜕𝑤WLX

= 𝑧L

output

𝐿	 = 	
1
2 𝑦–	𝑦∗ K

y = 𝑤WLX + 𝑤LLX 𝑧L + 𝑤KLX 𝑧K

We	have	already	computed	this	
partial	derivative	for	the	
previous	case

Cache	to	speed	up!

Backpropagation	example

Hidden	layer	derivatives

50

We	want	
jm
jnttr

output

𝐿	 = 	
1
2 𝑦–	𝑦∗ K

y = 𝑤WLX + 𝑤LLX 𝑧L + 𝑤KLX 𝑧K

𝑧K = 𝜎(𝑤WKZ + 𝑤LKZ 𝑥L + 𝑤KKZ 𝑥K)

zL = 𝜎(𝑤WLZ + 𝑤LLZ 𝑥L + 𝑤KLZ 𝑥K)

Backpropagation	example

Hidden	layer	derivatives

51

𝜕𝐿
𝜕𝑤KKZ 		

= 	
𝜕𝐿
𝜕𝑦

𝜕𝑦
𝜕𝑤KKZ

Backpropagation	example 𝐿	 = 	
1
2 𝑦–	𝑦∗ K

Hidden	layer

52

𝜕𝐿
𝜕𝑤KKZ 		

= 	
𝜕𝐿
𝜕𝑦

𝜕𝑦
𝜕𝑤KKZ

= 	
𝜕𝐿
𝜕𝑦

𝜕
𝜕𝑤KKZ

(𝑤WLX + 𝑤LLX 𝑧L + 𝑤KLX 𝑧K)

y = 𝑤WLX + 𝑤LLX 𝑧L + 𝑤KLX 𝑧K
Backpropagation	example

Hidden	layer

53

𝜕𝐿
𝜕𝑤KKZ 		

= 	
𝜕𝐿
𝜕𝑦

𝜕𝑦
𝜕𝑤KKZ

= 	
𝜕𝐿
𝜕𝑦

𝜕
𝜕𝑤KKZ

(𝑤WLX + 𝑤LLX 𝑧L + 𝑤KLX 𝑧K)

y = 𝑤WLX + 𝑤LLX 𝑧L + 𝑤KLX 𝑧K

= 	
𝜕𝐿
𝜕𝑦 (𝑤LL

X 𝜕
𝜕𝑤KKZ

𝑧L + 𝑤KLX
𝜕

𝜕𝑤KKZ
𝑧K)

𝑧L is	not	a	function	of	𝑤KKZ

0

Backpropagation	example

Hidden	layer

54

𝜕𝐿
𝜕𝑤KKZ 		

= 	
𝜕𝐿
𝜕𝑦

𝜕𝑦
𝜕𝑤KKZ

= 	
𝜕𝐿
𝜕𝑦

𝜕
𝜕𝑤KKZ

(𝑤WLX + 𝑤LLX 𝑧L + 𝑤KLX 𝑧K)

y = 𝑤WLX + 𝑤LLX 𝑧L + 𝑤KLX 𝑧K

= 	
𝜕𝐿
𝜕𝑦𝑤KL

X 𝜕𝑧K
𝜕𝑤KKZ 	

Backpropagation	example

Hidden	layer

55

𝜕𝐿
𝜕𝑤KKZ 		

= 	
𝜕𝐿
𝜕𝑦

𝜕𝑦
𝜕𝑤KKZ

= 	
𝜕𝐿
𝜕𝑦

𝜕
𝜕𝑤KKZ

(𝑤WLX + 𝑤LLX 𝑧L + 𝑤KLX 𝑧K)

= 	
𝜕𝐿
𝜕𝑦𝑤KL

X 𝜕𝑧K
𝜕𝑤KKZ 	

𝑧K = 𝜎(𝑤WKZ + 𝑤LKZ 𝑥L + 𝑤KKZ 𝑥K)
Backpropagation	example

Hidden	layer

56

𝜕𝐿
𝜕𝑤KKZ 		

= 	
𝜕𝐿
𝜕𝑦

𝜕𝑦
𝜕𝑤KKZ

= 	
𝜕𝐿
𝜕𝑦

𝜕
𝜕𝑤KKZ

(𝑤WLX + 𝑤LLX 𝑧L + 𝑤KLX 𝑧K)

= 	
𝜕𝐿
𝜕𝑦𝑤KL

X 𝜕𝑧K
𝜕𝑤KKZ 	

𝑧K = 𝜎(𝑤WKZ + 𝑤LKZ 𝑥L + 𝑤KKZ 𝑥K)

Call	this	s

Backpropagation	example

Hidden	layer

57

𝜕𝐿
𝜕𝑤KKZ 		

= 	
𝜕𝐿
𝜕𝑦

𝜕𝑦
𝜕𝑤KKZ

= 	
𝜕𝐿
𝜕𝑦

𝜕
𝜕𝑤KKZ

(𝑤WLX + 𝑤LLX 𝑧L + 𝑤KLX 𝑧K)

= 	
𝜕𝐿
𝜕𝑦𝑤KL

X 𝜕𝑧K
𝜕𝑤KKZ 	

𝑧K = 𝜎(𝑤WKZ + 𝑤LKZ 𝑥L + 𝑤KKZ 𝑥K)

Call	this	s

=	
𝜕𝐿
𝜕𝑦𝑤KL

X 𝜕𝑧K
𝜕𝑠

𝜕𝑠
𝜕𝑤KKZ 	

Backpropagation	example

Hidden	layer

58

𝜕𝐿
𝜕𝑤KKZ 		

= 	
𝜕𝐿
𝜕𝑦𝑤KL

X 𝜕𝑧K
𝜕𝑠

𝜕𝑠
𝜕𝑤KKZ 	

𝑧K = 𝜎(𝑤WKZ + 𝑤LKZ 𝑥L + 𝑤KKZ 𝑥K)

Call	this	s

𝜕𝐿
𝜕𝑦 = 𝑦	 − 𝑦∗

𝜕𝑧K
𝜕𝑠 = 𝑧K(1 − 𝑧K)

Why?	Because	𝑧K 𝑠
is	the	logistic	
function	we	have	
already	seen𝜕𝑠

𝜕𝑤KKZ
= 𝑥K

Each	of	these	partial	derivatives	is	easy

Backpropagation	example

Hidden	layer

59

𝜕𝐿
𝜕𝑤KKZ 		

= 	
𝜕𝐿
𝜕𝑦𝑤KL

X 𝜕𝑧K
𝜕𝑠

𝜕𝑠
𝜕𝑤KKZ 	

𝑧K = 𝜎(𝑤WKZ + 𝑤LKZ 𝑥L + 𝑤KKZ 𝑥K)

Call	this	s

𝜕𝐿
𝜕𝑦 = 𝑦	 − 𝑦∗

𝜕𝑧K
𝜕𝑠 = 𝑧K(1 − 𝑧K)

Why?	Because	𝑧K 𝑠
is	the	logistic	
function	we	have	
already	seen𝜕𝑠

𝜕𝑤KKZ
= 𝑥K

Each	of	these	partial	derivatives	is	easy

More	important:	We	have	already	
computed	many	of	these	partial	
derivatives	because	we	are	proceeding	
from	top	to	bottom

Backpropagation	example

The	Backpropagation	Algorithm

Repeated	application	of	the	chain	rule	for	partial	
derivatives
– First	perform	forward	pass	from	inputs	to	the	output
– Compute	loss

– From	the	loss,	proceed	backwards	to	compute	partial	
derivatives	using	the	chain	rule

– Cache	partial	derivatives	as	you	compute	them
• Will	be	used	for	lower	layers

60

Mechanizing	learning

• Backpropagation	gives	you	the	gradient	that	will	be	used	for	
gradient	descent
– SGD	gives	us	a	generic	learning	algorithm	
– Backpropagation	is	a	generic	method	for	computing	partial	derivatives

• A	recursive	algorithm	that	proceeds	from	the	top	of	the	
network	to	the	bottom

• Modern	neural	network	libraries	implement	automatic	
differentiation	using	backpropagation	
– Allows	easy	exploration	of	network	architectures
– Don’t	have	to	keep	deriving	the	gradients	by	hand	each	time

61

Stochastic	gradient	descent

Given	a	training	set	S	=	{(xi,	yi)},	x 2 <d

1. Initialize	parameters	w
2. For	epoch	=	1	…	T:

1. Shuffle	the	training	set
2. For	each	training	example	(xi,	yi)2 S:

• Treat	this	example	as	the	entire	dataset	

• Compute	the	gradient	of	the	loss	𝛻𝐿(𝑁𝑁 𝒙/,𝒘 , 𝑦/) using		
backpropagation

• Update:	𝒘 ← 𝒘− 𝛾i𝛻𝐿(𝑁𝑁 𝒙/,𝒘 , 𝑦/))

3. Return	w

62

°t:	learning	rate,	many	
tweaks	possible

The	objective	is	not	convex.	
Initialization	can	be	important

min
𝒘
	d𝐿(𝑁𝑁 𝑥/, 𝑤 , 𝑦/)

�

/

The	usual	stochastic	gradient	descent	tricks	apply	here

This	lecture

• What	is	a	neural	network?

• Training	neural	networks

• Practical	concerns

• Neural	Networks	and	Structures

63

Practical	concerns

1. Addressing	problems	with	SGD

2. Preventing	overfitting

3. Number	of	hidden	layers

64

Training	neural	networks	with	SGD

• No	guarantee	of	convergence,	may	oscillate or	reach	a	local	minima

• In	practice,	many	large	networks	are	trained	on	large	amounts	of	data	for	
realistic	problems

• Many	epochs	(tens	of	thousands)	may	be	needed	for	adequate	training
– Large	data	sets	may	require	many	hours	of	CPU	or	GPU	time
– Sometimes	specialized	hardware	even

• Termination	criteria:	Number	of	epochs,		Threshold	on	training	set	error,	
No	decrease	in	error,	Increased	error	on	a	validation	set

• To	avoid	local	minima:	several	trials	with	different	random	initial	weights	
with	majority	or	voting	techniques

65

Preventing	overfitting

• Running	too	many	epochs	may	over-train	the	network	and	result	in	
over-fitting

• Keep	a	hold-out	validation	set	and	test	accuracy	after	every	epoch

• Maintain	weights	for	best	performing	network	on	the	validation	set	
and	return	it	when	performance	decreases	significantly	beyond	that

• To	avoid	losing	training	data	to	validation:
– Use	k-fold	cross-validation	to	determine	the	average	number	of	epochs	that	

optimizes	validation	performance
– Train	on	the	full	data	set	using	this	many	epochs	to	produce	the	final	results

66

Number	of	hidden	units

• Too	few	hidden	units	prevent	the	system	from	
adequately	fitting	the	data	and	learning	the	concept.

• Using	too	many	hidden	units	leads	to	over-fitting.

• Similar	cross-validation	method	can		be	used	to	
determine	an	appropriate	number	of	hidden	units.		

67

This	lecture

• What	is	a	neural	network?

• Training	neural	networks

• Practical	concerns

• Neural	Networks	and	Structures

68

What	do	neural	networks	bring	us?

“Deep	learning”	is	a	combination	of	various	modeling	and	
optimization	ideas

From	our	perspective,	two	important	ideas	stand	out:

1. Neural	networks	for	scoring	outputs
– Non-linear	scoring	functions
– Much	wider	design	space

2. Distributed	representations
– Learned	vector	valued	representations	can	coalesce	superficially	

distinct	objects
– Eg:	“cat”	and	“feline”	share	overlap	in	meaning,	but	

69

Why	Distributed	Representations

Think	about	feature	representations

70

Cat Dog Tiger Table

These	vectors	do	not	capture	inherent	similarities

Distances	or	dot	products	are	all	equal

Why	Distributed	Representations

Think	about	feature	representations

71

Cat Dog Tiger Table

Dense	vector	(often	lower	dimensional)	representations	can	capture	similarities	better

Neural	Networks	in	the	age	of	structures

How	can	we	exploit	expressive	scoring	functions	and	
distributed	representations	for	structures?

Ideas?

72

Some	possible	approaches

• Treat	neural	networks	as	graphical	models
– Each	neuron	with	a	sigmoid	activation	function	expresses	a	probability	

distribution	over	a	single	bit
– This	approach	gives	us	Restricted	Boltzmann	Machines

• Adapt	standard	conditional	random	fields	to	use	distributed	
representations

• Treat	neural	networks	as	simple	scoring	functions
– We	can	still	do	inference	on	over	the	neural	networks
– For	eg:	Greedy	inference	over	a	sequence
– Or	perhaps	more	complex	inference

• Open	question

73

Predicting	sequences

Recurrent	Neural	Networks
Long	Short-Term	Memories and	its	siblings

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

https://karpathy.github.io/2015/05/21/rnn-effectiveness/
74

Neural	networks	are	prediction	machines

Neural	
network

Input

Prediction
We	can	assign	labels	to	inputs

cat burrito

But	what	if	the	label	to	an	input	depends	on	a	previous	state	of	the	network?

Vanilla	neural	networks	
1. Do	not	have	persistent	memory
2. Can	not		deal	with	varying	sized	inputs

75

Sequential	prediction:	Examples

• Language	models:	“It	was	a	dark	and	stormy	_______”
– Constructing	sentences	automatically	requires	us	to	remember	what	

we	constructed	before

• Speech	recognition
– Convert	a	sequence	of	audio	signals	to	words
– The	word	at	time	t	may	depend	on	what	word	was	predicted	at	time	

(t-1)

• Event	extraction	from	movies
– Watch	a	movie	and	predict	what	events	are	happening
– The	events	at	a	particular	scene	probably	depends	on	both	the	video	

signal	and the	events	that	were	predicted	in	the	previous	scene

• …..	Many	more	examples

76

Recurrent	Neural	Networks:	Networks	with	
“loops”

Sequential	input

Sequential	output

Recurrent	
connections

The	same	
template	is	
repeated	
over	time

77

Various	configurations	possible

Vanilla	
networks

Sequence	
output (eg:	
image	
captioning)

Sequence	input	
(eg:	sentiment	
analysis)

Seq2seq	(eg:	translation)

78

Insides	of	an	RNN	

Each	recurrent	neuron	has	maintains	a	state vector	(h)	
that	it	updates

Forward	pass:

1. Accept	input	x
2. Update	𝐡vwL = 	𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛(𝒘𝟏 ⋅ 𝒉i + 𝒘𝟐 ⋅ 𝒙)
3. Produce	𝑜𝑢𝑡𝑝𝑢𝑡 = 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛(𝒘𝒐 ⋅ 𝒉𝒕)

79

An	example:	Character	level	language	
model

80

The	problem:	Vanishing	gradient

RNNs	are	particularly	prone	to	the	vanishing	gradient	
problem I	grew	up	in	France….	I	speak	____

The	answer:	Better	control	over	the	memory	via	
Long	Short-term	Memory	(LSTM)	units

RNNs	don’t	seem	to	be	able	to	learn	long	range	dependencies	
[Hochreiter 1991,	Bengio et	al	1994]

81

Inside	an	Recurrent	neuron

82

Inside	a	Long	Short	Term	Memory	unit

Adds	an	additional	memory	to	the	cell	

83

Let	us	zoom	in

Cell	state

84

Let	us	zoom	in

The	“forget	gate”:	Use	the	current	input	to	decide	what	to	erase	in	the	cell	state

85

Let	us	zoom	in

Create	a	new	cell	state	and	also	a	filter	that	decides	what	part	of	the	
newly	created	cell	state	should	be	remembered

86

Let	us	zoom	in

New	cell	state	=	remaining	part	of	previous	state	+	newly	computed	information

87

Let	us	zoom	in

Finally,	output	=	filtered	version	of	the	new	cell	state

88

Examples:	Generating	Shakespeare

https://karpathy.github.io/2015/05/21/rnn-effectiveness/

A	three	layer	RNN,	512	hidden	nodes	in	each	layer

Millions	of	parameters

89

Examples:	Generating	Audio

https://highnoongmt.wordpress.com/2015/05/22/lisls-stis-recurrent-neural-networks-for-folk-music-generation/
90

Predicting	sequences

LSTMs	are	a	fundamental	unit	of	recurrent	neural	
networks
– They	are	here	to	stay
– Essential	component	of	sequence-to-sequence	models
– Massive	in	terms	of	the	number	of	parameters	

• The	Google	neural	language	model	has	billions	of	parameters

– Several	variants	exist,	but	all	have	a	similar	flavor
• Eg:	The	gated	recurrent	unit	is	a	simpler	variant

91

Summary

• Neural	networks	combine	expressive	scoring	functions	with	
distributed	input	representations

• Several	open	questions	still	remain.	Some	examples:
– How	do	we	incorporate	output	dependencies	between	vector	valued	

representations?

– Structures	offer	a	clean	approach	for	modeling	compositionality.	How	
do	we	compose	distributed	representations	that	are	scored	with	
neural	networks?

– Incorporating	inference	and	domain	knowledge	within	neural	
networks.	Perhaps	to	guide	training	or	for	improved	predictions?

92

